用户名: 密码: 验证码:
中国地区低对流层高层大气化学与长距离输送特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
了解低对流层高层空气(海拔约1000~4000米高度)的污染特征及其物理化学变化过程对于认识人类活动对区域甚至全球尺度大气环境的影响具有重要意义。本研究通过在我国西北瓦里关山、华北泰山以及华南衡山开展高山观测,在东北吉林、西北甘肃、华东山东、江苏等地开展飞机航测,对主要的大气污染物进行了测量,并利用多种统计方法和分析手段如大气光化学箱模型、气流轨迹分析和聚类分析等对实验数据进行分析,研究了我国典型地区低对流层高层空气的污染状况、时空变化特征及其相关的大气化学过程与长距离输送特征。
     基于观测实验所获得的第一手数据,本研究系统掌握了我国上述典型地区低对流层高层大气的污染水平与时空变化特征。作为我国的大气本底,瓦里关的大气污染物浓度普遍较低,但在某种条件下也可受到人为污染长距离输送的影响。主要污染物均呈现春季浓度高、夏季浓度低的季节变化特征和白天浓度低、夜间浓度高的日变化趋势。与之相比,泰山和衡山的大气污染物浓度则显著较高,明显受到了人为污染的影响。尤其是泰山,其主要一次污染物浓度高达瓦里关和部分欧美高山站点的几倍到几十倍,表明华北地区低对流层高层的空气污染已十分严重。受日间边界层发展以及山谷风的影响,泰山和衡山的主要污染物均呈现出下午浓度高、夜间浓度低的日变化特征。
     研究还发现我国东北吉林地区夏季的高空云水已明显酸化,样品的平均pH值约为4.93。硫酸根和硝酸根为主要的致酸离子,二者的当量比约为2.1。对比同步采集的高空云水和地面降水样品发现,云下冲刷过程可对该地区的降水酸度起到一定的中和作用。此外,通过对比本研究与PEM-WestB和TRACE-P飞机航测实验关于几种关键卤代烃的观测资料发现,1994-2007年间中国-西北太平洋地区自由对流层大气中CH3CCl3、CCl4和C2Cl4的浓度均呈现持续下降的趋势,说明我国加入《蒙特利尔公约》后所采取的控制措施已取得较好效果。
     通过后向气流轨迹聚类分析,本研究查明了瓦里关夏季大气来源的气候态长距离输送规律,并分析了其年际变化。发现瓦里关夏季来自东部的气流较多,气团在抵达前于低空经过了我国中、东部等人口密集、经济发达的地区;进一步研究发现这些气团具有较高的臭氧生成效率(7.7~11.3 ppbv/ppbv),因此我国东部地区人类活动排放的污染物向西长距离输送对瓦里关乃至整个青藏高原的大气臭氧(及其它微量成分)具有重要贡献。应用MCM光化学箱模式模拟了瓦里关的现场大气光化学反应过程,发现春、夏季的大气光化学反应均可导致03净生成,日间O3的平均生成速率分别约为0.30 ppbv/h和0.26 ppbv/h。HO2与NO反应是导致03化学生成的主要反应,而03的化学消耗则主要来自03的光解反应,其次为O3与自由基OH和HO2的反应。
     通过对大气总氮氧化物(NOy)及其主要组成物种(包括NO、N02、HN03、aerosol NO3和PAN)进行测量,本研究查明了瓦里关、泰山和衡山大气中反应性氮氧化物的组成特征。上述我国典型地区的大气反应性氮氧化物均主要以硝酸(盐)的形式存在,表明在我国特定的大气环境中氮氧化物的化学转化以参与无机反应生成硝酸(盐)为主。研究也发现上述地区的氮氧化物组成特征各不相同,反映了我国不同地区具有各自独特的大气化学过程。研究同时认识了泰山和衡山典型季节大气气溶胶NO3-的粒径分布特征:泰山春、夏季气溶胶NO3-均呈粗、细双模态分布,且粗、细粒子中的浓度基本相当,而衡山春季气溶胶NO3-主要分布于粗模态中。
     利用后向气流轨迹聚类分析,本研究还查明了泰山和衡山典型季节的大气长距离输送特征。春季泰山地区主要受到来自华北平原西部和北部地区污染物区域输送的影响;而夏季则主要受来自华北平原西南部以及鲁东胶东半岛地区污染物区域输送的影响。华东(包括华北平原和长三角)、珠三角以及衡山北部地区污染物的跨界传输是春季影响衡山地区大气污染的重要来源。此外,夏季华北地区污染物的跨界传输是导致在东北地区自由对流层内观测到严重污染个例的主要原因。
     本研究获得了我国东北、西北、华东和华北地区典型季节对流层低层二氧化硫(802)和颗粒物光散射系数(Bsp)的垂直分布廓线,也获得了东北地区对流层低层内多种非甲烷烃和卤代烃的垂直分布廓线。大部分组分均呈现地面浓度最高,随高度升高浓度逐渐降低的垂直分布特征。这些廓线将有助于对化学传输模式以及对大气成分卫星遥感产品的验证等。通过对比飞机航测结果与OMI边界层SO2反演产品,本研究初步评估了OMI卫星在我国开展8O2空间遥感的表现,发现OMI二级产品可以较好地区分不同地区的8O2污染状况,但在污染极为严重的山东济南地区,OMI反演产品明显低估了实际的SO2浓度。
The pollution characteristics, atmospheric chemistry and transport at high altitudes in the lower troposphere (i.e.1000~4000 m a.s.l.) are crucial for understanding the influences of anthropogenic forcing on the regional and even global atmosphere. In the present study, several intensive field campaigns were carried out at Mt. Waliguan (100.90°E,36.28°E,3816 m a.s.l.) in western China, Mt. Tai (117.10°E, 36.25°E,1532 m a.s.l.) in northern China and Mt. Heng (112.70°E,27.30°E,1269 m a.s.l.) in southern China. Aircraft studies were also conducted over northeast (Jilin), northwest (Gansu) and central eastern China (Shandong and Jiangsu). During these experiments, large suites of air pollutants were measured. The data was analyzed with the aid of many statistical tools and modeling techniques including a photochemical box model, a backward trajectory model and cluster analysis. The results developed some better understandings of the pollution situation, chemical transformation and transport processes in the elevated lower troposphere over China.
     Based on the firsthand observational data, this study provides a whole knowledge on the levels and temporal-spatial variations of air pollution at high altitudes in the lower troposphere over typical regions of China. As China's atmospheric baseline, the concentrations of air pollutants at Mt. Waliguan are generally low. However, it can also be affected to some extent by the long range transport of anthropogenic pollution. Major pollutants showed a well-defined seasonal pattern with higher concentrations in spring and lower levels in summer, and a unique diurnal profile with lower mixing ratios during the day and higher values at night. In comparison, the concentrations of air pollutants at Mt. Tai and Mt. Heng are substantially high, indicating more influences from anthropogenic activities. In particular, the abundances of primary pollutants at Mt. Tai are several to dozens of times higher than those at Mt. Waliguan and some European and American mountainous sites, demonstrating that air pollution at high altitudes over North China are quite serious. Affected by evolution of the boundary layer and mountain-valley breeze, all the major pollutants at Mt. Tai and Mt. Heng presented diurnal variations with the mixing ratios being the highest in the afternoon and the lowest at night.
     We also found that the cloud water over northeast China (Jilin) had been evidently acidified with the mean pH value of~4.93. The dominant anion ions were SO42- and NO3- with the equivalent ratio of~2.1. Comparison of the cloud sample with the concurrent precipitation at the ground level suggested that the wash-out process can neutralize the acidity of rainfalls over this area. In addition, by comparing the results of several key halocarbons with the earlier PEM-West B (1994) and TRACE-P (2001) aircraft studies, continuous declining trends were derived for methyl chloroform (CH3CCl3), tetrachloromethane (CCl4) and tetrachloroethene (C2Cl4) over the great China-northwestern Pacific region. These results indicate the accomplishment of China in reducing these ozone-depleting compounds under the Montreal protocol.
     The summertime climatological transport pattern of air masses arriving at Mt. Waliguan was derived by the cluster analysis of backward trajectories. Air parcels originating from central and eastern China dominated the air flow at Mt. Waliguan in summer. The pollution plumes from central and eastern China also showed high ozone production efficiencies (7.7~11.3 ppbv/ppbv). These results suggest strong impacts of anthropogenic forcing on the surface ozone and other atmospheric trace constituents on the Qinghai-Tibetan Plateau. The chemical budget of ozone was estimated using a photochemical box model constrained by the measured time-profiles of trace gases and meteorological variables. In-situ atmospheric photochemistry can lead to net ozone production in both spring and summer, with the mean daytime net production rates of 0.30 and 0.26 ppb/h respectively. Reaction of NO with HO2 dominates the ozone production, while ozone chemical destruction is mainly contributed by its photolysis followed by the reactions with OH and HO2.
     The partitioning of reactive nitrogen was investigated for the first time in China based on the measurements of total and speciated nitrogen oxides (i.e. NOy, NO, NO2, PAN, HNO3, and particulate NO3-) at Mt. Waliguan, Mt. Tai and Mt. Heng. Distinct NOy budgets were obtained at the above three stations, suggesting different chemical transformation processes in different areas. However, inorganic nitrate (i.e. HNO3+ aerosol NO3-) was the most abundant reactive nitrogen species in all the three sites, indicating the chemical evolution of nitrogen oxides was dominated by the inorganic reactions. The size distributions of particulate NO3- were also gained at Mt. Tai and Mt. Heng during the measurement campaigns. The results showed bimodal distributions of NO3- in both spring and summer at Mt. Tai, while NO3- was mainly presented in coarse particles in spring at Mt. Heng.
     Backward trajectories were also calculated and categorized to learn about the long-range transport patterns of air masses reaching Mt. Tai and Mt. Heng during the field experiments. In spring 2007, Mt. Tai was mainly affected by regional transport of air pollution from the western and northern parts of north China plains (NCP), while in summer mostly influenced by the regional transport from the southwestern NCP and the eastern Shandong peninsula. In spring 2009, air pollutants at Mt. Heng were mostly transported from eastern China (including NCP and Yangtze River Delta), Pearl River Delta and the northern areas.
     Vertical distributions of SO2 and aerosol scattering coefficients (Bsp) were determined by aircraft measurements over northeast, northwest and central eastern China. Altitude profiles of many non-methane hydrocarbons and halocarbons were also obtained over northeast China. Most compounds exhibited a typical negative profile of decreasing mixing ratios with increasing altitude, although the gradients differed with different species. These data can be used to validate the chemical transport models and satellite retrievals. The SO2 column concentrations determined from the in-situ aircraft measurements were compared with the Ozone Monitoring Instrument (OMI) SO2 retrievals. The results show that the OMI data could distinguish the varying levels of SO2 pollution in the study regions, but appeared to have underestimated the SO2 column in the highly polluted region of eastern China (e.g. Ji'nan).
引文
[1]Seinfeld J. H., Pandis S. N.(2006). Atmospheric chemistry and physics:from air pollution to climate change[M]. New York:Wiley.
    [2]Monks P. S., Granier C., Fuzzi S., et al. (2009). Atmospheric composition change-global and regional air quality[J]. Atmospheric Environment,43(33), 5268-5350.
    [3]IGBP (2006). International Global Atmospheric Chemistry:science plan and implementation strategy[R], Sweden.
    [4]Ohara T., Akimoto H., Kurokawa J., Horii N., Yamaji K., Yan X., Hayasaka T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980-2020[J]. Atmospheric Chemistry and Physics,7(16),4419-4444.
    [5]Zhang Q., Streets D. G., Carmichael G. R., et al. (2009). Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmospheric Chemistry and Physics, 9(14),5131-5153.
    [6]Chan C. K., Yao X. (2008). Air pollution in mega cities in China[J]. Atmospheric Environment,42(1),1-42.
    [7]Wang W., Wang T. (1996). On acid rain formation in China[J]. Atmospheric Environment,30(23),4091-4093.
    [8]王文兴,许鹏举(2009).中国大气降水化学研究进展[J].化学进展,21(2/3),266-281.
    [9]Wang T., Ding A. J., Gao J., Wu W. S. (2006). Strong ozone production in urban plumes from Beijing, China[J]. Geophysical Research Letters,33(21), doi: 10.1029/2006GRL027689.
    [10]Zhang J., Wang T., Chameides W. L., et al. (2007). Ozone production and hydrocarbon reactivity in Hong Kong, Southern China[J]. Atmospheric Chemistry and Physics,7,557-573.
    [11]Zhao C., Wang Y. H., Zeng T. (2009). East China Plains:A "Basin" of Ozone Pollution[J]. Environmental Science & Technology,43(6),1911-1915.
    [12]Yang F., Tan J., Zhao Q., et al. (2011). Characteristics of PM(2.5) speciation in representative megacities and across China[J]. Atmospheric Chemistry and Physics,11(11),5207-5219.
    [13]Guo J.-P., Zhang X.-Y., Che H.-Z., et al. (2009). Correlation between PM concentrations and aerosol optical depth in eastern China[J]. Atmospheric Environment,43(37),5876-5886.
    [14]唐孝炎,张远航,邵敏.(2006)大气环境化学(第二版)[M].北京:高等教育出版社.
    [15]Ridley B. A., Robinson E. (1992). The Mauna Loa Observatory Photochemistry Experiment[J]. Journal of Geophysical Research,97(D10).
    [16]Atlas E. L., Ridley B. A. (1996). The Mauna Loa Observatory Photochemistry Experiment:introduction[J]. Journal of Geophysical Research,101(D9), 14531-14541.
    [17]Fischer H., Nikitas C., Parchatka U., et al. (1998). Trace gas measurements during the Oxidizing Capacity of the Tropospheric Atmosphere campaign 1993 at Izana[J]. Journal of Geophysical Research-Atmospheres,103(D11), 13505-13518.
    [18]Zanis P., Monks P. S., Schuepbach E., et al. (2000). In situ ozone production under free tropospheric conditions during FREETEX'98 in the Swiss Alps[J]. Journal of Geophysical Research-Atmospheres,105(D19),24223-24234.
    [19]Fischer H., Kormann R., Klupfel T., et al. (2003). Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone[J]. Atmospheric Chemistry and Physics,3,725-738.
    [20]Talbot R. W., Dibb J. E., Klemm K. I, et al. (1996). Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September-October 1991:results from PEM-West A[J]. Journal of Geophysical Research,101(D1), doi:10.1029/95JD01044.
    [21]Talbot R. W., Dibb J. E., Lefer B. L., et al. (1997). Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994:results from PEM-West B[J]. Journal of Geophysical Research,102(D23), doi:10.1029/96JD02340.
    [22]Russo R. S., Talbot R. W., Dibb J. E., et al. (2003). Chemical composition of Asian continental outflow over the western Pacific:Results from Transport and Chemical Evolution over the Pacific (TRACE-P)[J]. Journal of Geophysical Research-Atmospheres,108(D20), doi:10.1029/2002JD003184.
    [23]Fehsenfeld F. C., Trainer M., Parrish D. D., Volz-Thomas A., Penkett S. (1996). North Atlantic Regional Experiment 1993 summer intensive[J]. Journal of Geophysical Research,101(D22), doi:10.1029/95JD03629.
    [24]Bates T. S., Huebert B. J., Gras J. L., Griffiths F. B., Durkee P. A. (1998). International Global Atmospheric Chemistry (IGAC) project's first aerosol characterization experiment (ACE-1):Overview[J]. Journal of Geophysical Research-Atmospheres,103(D13),16297-16318.
    [25]Raes F., Bates T., McGovern F., Van Liedekerke M. (2000). The 2nd Aerosol Characterization Experiment (ACE-2):general overview and main results[J]. Tellus Series B-Chemical and Physical Meteorology,52(2),111-125.
    [26]Huebert B. J., Bates T., Russell P. B., et al. (2003). An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts[J]. Journal of Geophysical Research-Atmospheres,108(D23), doi:10.1029/2003JD003550.
    [27]Marenco A., Thouret V., Nedelec P., et al. (1998). Measurement of ozone and water vapor by Airbus in-service aircraft:The MOZAIC airborne program, An overview[J]. Journal of Geophysical Research-Atmospheres,103(D19), 25631-25642.
    [28]Sierau B., Covert D. S., Coffman D. J., Quinn P. K., Bates T. S. (2006). Aerosol optical properties during the 2004 New England Air Quality Study Intercontinental Transport and Chemical Transformation:Gulf of Maine surface measurements-Regional and case studies[J]. Journal of Geophysical Research-Atmospheres,111(D23), doi:10.1029/2006JD007568.
    [29]Cook P. A., Savage N. H., Turquety S., et al. (2007). Forest fire plumes over the North Atlantic:p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign[J]. Journal of Geophysical Research-Atmospheres,112(D10), doi:10.1029/2006JD007563.
    [30]Thornhill K. L., Chen G., Dibb J., et al. (2008). The impact of local sources and long-range transport on aerosol properties over the northeast US region during INTEX-NA[J]. Journal of Geophysical Research-Atmospheres,113(D8), doi: 10.1029/2007JD008666.
    [31]Jacob D. J., Crawford J. H., Maring H., et al. (2010). The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission:design, execution, and first results[J]. Atmospheric Chemistry and Physics,10(11),5191-5212.
    [32]Brock C. A., Cozic J., Bahreini R., et al. (2011). Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project[J]. Atmospheric Chemistry and Physics,11(6),2423-2453.
    [33]Taubman B. F., Hains J. C., Thompson A. M., et al. (2006). Aircraft vertical profiles of trace gas and aerosol pollution over the mid-Atlantic United States: Statistics and meteorological cluster analysis[J]. Journal of Geophysical Research-Atmospheres, 111(D10), doi:10.1029/2005JD006196.
    [34]Parrish D. D., Allen D. T., Bates T. S., et al. (2009). Overview of the Second Texas Air Quality Study (TexAQS Ⅱ) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)[J]. Journal of Geophysical Research-Atmospheres,114, doi:10.1029/2009JD011842.
    [35]Nunnermacker L. J., Weinstein-Lloyd J. B., Hillery B., et al. (2008). Aircraft and ground-based measurements of hydroperoxides during the 2006 MILAGRO field campaign[J]. Atmospheric Chemistry and Physics,8(24), 7619-7636.
    [36]王玮,王文兴,宁洁,陈延智,齐立文,蔡乙乞,叶芹,黄星源,孙文舜(1991).峨眉山金顶云水化学性质的研究[J].中国环境科学,11(4),241-246.
    [37]王玮,张孟衡,庞燕波,王文兴(1992).衡山地区酸性降水来源和成因的研究[J].环境科学学报,12(1),48-57.
    [38]刘嘉麒,Keene W. C. (1993)中国丽江内陆背景降水值研究[J].中国环境科学,13(4),246-250.
    [39]王文兴,刘红杰,汤大钢,张婉华,吕晓红(1997).辽宁凤凰山酸雨来源研究[J].环境科学研究,10(1),22-26.
    [40]洪少贤,王文兴,蔡乙乞,齐立文(1988).峨眉山大气臭氧的时空分布规律[J].环境科学研究,1(1),31-37.
    [41]Tang J., Wen Y. P., Xu X. B., Zheng X. D., Guo S., Zhao Y. C. (1995). China Global Atmosphere Watch Baseline Observatory and its measurement program, in CAMS annual report[R]. Beijing.
    [42]Zhou L. X., Conway T. J., White J. W. C., et al. (2005). Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan Observatory: Background features and possible drivers,1991-2002[J]. Global Biogeochemical Cycles,19(3), doi:10.1029/2004GB002430.
    [43]Zhou L., Zhou X., Zhang X., Wen Y., Yan P. (2007). Progress in the study of background greenhouse gases at Waliguan Observatory[J]. Acta Meteorologica Sinica,65(3).
    [44]Zhou L., Worthy D. E. J., Lang P. M., Ernst M. K., Zhang X. C., Wen Y. P., Li J. L. (2004). Ten years of atmospheric methane observations at a high elevation site in Western China[J]. Atmospheric Environment,38(40),7041-7054.
    [45]汤洁,薛虎圣,于晓岚,程红兵,徐晓斌,张晓春,季军(2000).瓦里关山降水化学特征的初步分析[J].环境科学学报,20(4),420-425.
    [46]Ma J. Z., Tang J., Zhou X. J., Zhang X. S. (2002). Estimates of the chemical budget for ozone at Waliguan Observatory[J]. Journal of Atmospheric Chemistry,41(1),21-48.
    [47]Zhu B., Akimoto H., Wang Z., Sudo K., Tang J., Uno I. (2004). Why does surface ozone peak in summertime at Waliguan?[J]. Geophysical Research Letters,31(17), doi:10.1029/2004GL020609.
    [48]Wang T., Wong H. L. A., Tang J., Ding A., Wu W. S., Zhang X. C. (2006). On the origin of surface ozone and reactive nitrogen observed at a remote mountain site in the northeastern Qinghai-Tibetan Plateau, western China[J]. Journal of Geophysical Research-Atmospheres,111(D8), doi:10.1029 /2005JD006527.
    [49]Ding A. J., Wang T. (2006). Influence of stratosphere-to-troposphere exchange on the seasonal cycle of surface ozone at Mount Waliguan in western China[J]. Geophysical Research Letters,33(3), doi:10.1029/2005GL024760.
    [50]Li J., Wang Z. F., Akimoto H., Tang J., Uno I. (2009). Modeling of the impacts of China's anthropogenic pollutants on the surface ozone summer maximum on the northern Tibetan Plateau[J]. Geophysical Research Letters,36, doi: 10.1029/2009g1041123.
    [51]Mu Y. J., Pang X. B., Quan J. N., Zhang X. S. (2007). Atmospheric carbonyl compounds in chinese background area:a remote mountain of the Qinghai-tibetan plateau[J]. Journal of Geophysical Research-Atmospheres, 112(D22), doi:10.1029/2006JD008211.
    [52]Zhang F., Zhou L. X., Novelli P. C., et al. (2011). Evaluation of in situ measurements of atmospheric carbon monoxide at Mount Waliguan, China[J]. Atmospheric Chemistry and Physics,11(11),5195-5206.
    [53]Ma J. Z., Tang J., Li S. M., Jacobson M. Z. (2003). Size distributions of ionic aerosols measured at Waliguan Observatory:Implication for nitrate gas-to-particle transfer processes in the free troposphere[J]. Journal of Geophysical Research-Atmospheres,108(D17), doi:10.1029/2002JD003356.
    [54]Kivekas N., Sun J., Zhan M., et al. (2009). Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China[J]. Atmospheric Chemistry and Physics,9(15),5461-5474.
    [55]Monks P. S. (2000). A review of the observations and origins of the spring ozone maximum[J]. Atmospheric Environment,34(21),3545-3561.
    [56]Ma J. Z., Zheng X. D., Xu X. D. (2005). Comment on "Why does surface ozone peak in summertime at Waliguan?" by Bin Zhu et al[J]. Geophysical Research Letters,32(1), doi:10.1029/2004GL021683.
    [57]Gao J., Wang T., Ding A. J., Liu C. B. (2005). Observational study of ozone and carbon monoxide at the summit of mount Tai (1534m a.s.l.) in central-eastern China[J]. Atmospheric Environment,39(26),4779-4791.
    [58]王艳,葛福玲,刘晓环,王文兴,贾汉奎,王德众(2006).泰山降水的离子组成特征分析[J].中国环境科学,26(4),422-426.
    [59]王艳,葛福玲,刘晓环,高健,程淑会,王文兴,朱晨,岳太星(2006).泰山降水化学及大气输送的研究[J].环境科学学报,26(7),1187-1194.
    [60]王艳,刘晓环,金玲仁,岳太星,王德众,王文兴(2007).泰山地区湿沉降中重金属的空间分布[J].环境科学,28(11),2562-2568.
    [61]Wang Y., Wai K. M., Gao J., Liu X., Wang T., Wang W. (2008). The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China[J]. Atmospheric Environment,42(13),2959-2970.
    [62]Li P. H., Wang Y., Li Y. H., Wang Z. F., Zhang H. Y, Xu P.J., Wang W. X. (2010). Characterization of polycyclic aromatic hydrocarbons deposition in PM2.5 and cloud/fog water at Mount Taishan (China)[J]. Atmospheric Environment,44(16),1996-2003.
    [63]Wang, Y., Li, P. H., Li, H. L., Liu, X. H., Wang, W. X. (2010). PAHs distribution in precipitation at Mount Taishan China. Identification of sources and meteorological influences[J]. Atmospheric Research,95(1),1-7.
    [64]Li J., Wang Z., Akimoto H., et al. (2008). Near-ground ozone source attributions and outflow in central eastern China during MTX2006[J]. Atmospheric Chemistry and Physics,8(24),7335-7351.
    [65]Suthawaree J., Kato S., Okuzawa K., et al. (2010). Measurements of volatile organic compounds in the middle of Central East China during Mount Tai Experiment 2006 (MTX2006):observation of regional background and impact of biomass burning[J]. Atmospheric Chemistry and Physics,10(3),1269-1285.
    [66]Inomata S., Tanimoto H., Kato S., et al. (2010). PTR-MS measurements of non-methane volatile organic compounds during an intensive field campaign at the summit of Mount Tai, China, in June 2006[J]. Atmospheric Chemistry and Physics,10(15),7085-7099.
    [67]Fu P. Q., Kawamura K., Kanaya Y., Wang Z. F. (2010). Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt Tai, Central East China[J]. Atmospheric Environment,44(38), 4817-4826.
    [68]Kanaya Y., Pochanart P., Liu Y, et al. (2009). Rates and regimes of photochemical ozone production over Central East China in June 2006:a box model analysis using comprehensive measurements of ozone precursors [J]. Atmospheric Chemistry and Physics,9(20),7711-7723.
    [69]Mao T., Wang Y. S., Xu H. H., Jiang J., Wu F. K., Xu X. B. (2009). A study of the atmospheric VOCs of Mount Tai in June 2006[J]. Atmospheric Environment,43(15),2503-2508.
    [70]Deng C., Zhuang G., Huang K., et al. (2011). Chemical characterization of aerosols at the summit of Mountain Tai in Central East China[J]. Atmospheric Chemistry and Physics,11(14),7319-7332.
    [71]徐宏辉,王跃思,杨勇杰,赵亚南,温天雪,吴方堃(2008).泰山顶夏季大气气溶胶中水溶性离子的浓度及其粒径分布研究[J].环境科学,29(2),305-309.
    [72]Wang Z., Li J., Wang X., Pochanart P., Akimoto H. (2006). Modeling of regional high ozone episode observed at two mountain sites (Mt. Tai and Huang) in East China[J]. Journal of Atmospheric Chemistry,55(3),253-272.
    [73]Li J., Wang Z., Akimoto H., Gao C., Pochanart P., Wang X. (2007). Modeling study of ozone seasonal cycle in lower troposphere over east Asia[J]. Journal of Geophysical Research-Atmospheres,112 (D22), doi:10.1029/2006JD 008209.
    [74]Wang G., Li J., Cheng C., et al. (2011). Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009-Part 1:EC, OC and inorganic ions[J]. Atmospheric Chemistry and Physics,11(9), 4221-4235.
    [75]林子瑜,王德辉,任阵海,王文兴(1986).航测火电厂烟羽中二氧化硫转化速率[J].中国环境科学,6(5),18-20.
    [76]Lei H. C., Tanner P. A., Huang M.-Y., Shen Z. L., Wu Y. X. (1997). The acidification process under the cloud in southwest China:Observation results and simulation[J]. Atmospheric Environment,31(6),851-861.
    [77]Wang W., Liu H. J., Yue X., Li H., Chen J. H., Tang D. G. (2005). Study on size distributions of airborne particles by aircraft observation in spring over eastern coastal areas of China[J]. Advances in Atmospheric Sciences,22(3),328-336.
    [78]Zhang Y. H., Hu M., Zhong L. J., et al. (2008). Regional Integrated Experiments on Air Quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview[J]. Atmospheric Environment,42(25),6157-6173.
    [79]Wang W., Ren L. H., Zhang Y. H., et al. (2008). Aircraft measurements of gaseous pollutants and particulate matter over Pearl River Delta in China[J]. Atmospheric Environment,42(25),6187-6202.
    [80]Dickerson R. R., Li C., Li Z., et al. (2007). Aircraft observations of dust and pollutants over northeast China:Insight into the meteorological mechanisms of transport[J]. Journal of Geophysical Research-Atmospheres,112(D24), doi: 10.1029/2007JD008999.
    [81]Zhang Q., Ma X. C., Tie X. X., Huang M. Y., Zhao C. S. (2009). Vertical distributions of aerosols under different weather conditions:Analysis of in-situ aircraft measurements in Beijing, China[J]. Atmospheric Environment,43(34), 5526-5535.
    [82]Zhang Q., Quan J., Tie X., Huang M., Ma X. (2011). Impact of aerosol particles on cloud formation:Aircraft measurements in China[J]. Atmospheric Environment,45(3),665-672.
    [83]Zhao, C. S., Tie, X. X., Brasseur G., et al. (2006). Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing[J]. Geophysical Research Letters,33(16), doi:10.1029/ 2006GL026653.
    [84]Wang W., Ma J., Hatakeyama S., et al. (2008). Aircraft measurements of vertical ultrafine particles profiles over Northern China coastal areas during dust storms in 2006[J]. Atmospheric Environment,42(22),5715-5720.
    [85]Geng F., Zhang Q., Tie X., et al. (2009). Aircraft measurements of 03, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region[J]. Atmospheric Environment,43(3),584-593.
    [86]Wang G. H., Kawamura K., Hatakeyama S., Takami A., Li H., Wang W. (2007). Aircraft measurement of organic aerosols over China[J]. Environmental Science & Technology,41(9),3115-3120.
    [87]Hofzumahaus A., Rohrer F., Lu K. D., et al. (2009). Amplified Trace Gas Removal in the Troposphere[J]. Science,324(5935),1702-1704.
    [88]Wu W. S., Wang T. (2007). On the performance of a semi-continuous PM2.5 sulphate and nitrate instrument under high loadings of particulate and sulphur dioxide[J]. Atmospheric Environment,41(26),5442-5451.
    [89]Ding A. J., Wang T., Thouret V., Cammas J. P., Nedelec P. (2008). Tropospheric ozone climatology over Beijing:analysis of aircraft data from the MOZAIC program[J]. Atmospheric Chemistry and Physics,8(1),1-13.
    [90]汤洁,徐晓斌,巴金,王淑凤(2010).1992~2006年中国降水酸度的变化趋势[J].科学通报,55(8),705-712.
    [91]Pathak R. K., Wu W. S., Wang T. (2009). Summertime PM(2.5) ionic species in four major cities of China:nitrate formation in an ammonia-deficient atmosphere[J]. Atmospheric Chemistry and Physics,9(5),1711-1722.
    [92]Zellweger C., Forrer J., Hofer P., et al. (2003). Partitioning of reactive nitrogen (NOy) and dependence on meteorological conditions in the lower free troposphere [J]. Atmospheric Chemistry and Physics,3,779-796.
    [93]Zhang Q., Streets D. G., He K., et al. (2007). NOx emission trends for China, 1995-2004:The view from the ground and the view from space[J]. Journal of Geophysical Research-Atmospheres,112(D22), doi:10.1029/2007JD008684.
    [94]Ren, Y., Ding A., Wang T., et al. (2009). Measurement of gas-phase total peroxides at the summit of Mount Tai in China[J]. Atmospheric Environment, 43(9),1702-1711.
    [95]Zhou Y., Wang T., Gao X. M., et al. (2010). Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 ma.s.l.) in central-eastern China[J]. Journal of Atmospheric Chemistry,64,107-127.
    [96]Wang Z., Wang T., Gao R., et al. (2011). Source and variation of carbonaceous aerosols at Mount Tai, North China:Results from a semi-continuous instrument[J]. Atmospheric Environment,45(9),1655-1667.
    [97]Xue L. K., Ding A. J., Gao J., et al. (2010). Aircraft measurements of the vertical distribution of sulfur dioxide and aerosol scattering coefficient in China[J]. Atmospheric Environment,44(2),278-282.
    [98]沈志来,宁天山,黄美元,吴玉霞(1988).云水收集器及其观测结果的简要分析[J].大气科学,1,99-102.
    [99]Wang T., Cheung V. T. F., Lam K. S., Kok G. L., Harris J. M. (2001). The characteristics of ozone and related compounds in the boundary layer of the South China coast:temporal and vertical variations during autumn season[J]. Atmospheric Environment,35(15),2735-2746.
    [100]Dunlea E. J., Herndon S. C., Nelson D. D., et al. (2007). Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment J]. Atmospheric Chemistry and Physics,7(10),2691-2704.
    [101]Goldan P., Kuster W. C., Albritton D. L., Fehsenfeld F. C., Connell P. S., Norton R. B., Huebert B. J. (1983). Calibration and tests of the filter-collection method for measuring clean-air, ambient levels of nitric acid[J]. Atmospheric Environment,17,1355-1364.
    [102]Anlauf K. G., Fellin P., Wiebe H. A., Schiff H. I., Mackay G. I., Braman R. S., Gilbert R. (1985). A comparison of three methods for measurement of atmospheric nitric acid and aerosol nitrate and ammonium[J]. Atmospheric Environment,19(2),325-333.
    [103]Xue L. K., Wang T., Zhang J. M., et al. (2011). Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China:New insights from the 2006 summer study[J]. Journal of Geophysical Research-Atmospheres,116, doi:10.1029/2010JD014735.
    [104]Zhang J. M., Wang T., Ding A. J., et al. (2009). Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China[J]. Atmospheric Environment,43(2),228-237.
    [105]Colman J. J., Swanson A. L., Meinardi S., Sive B. C., Blake D. R., Rowland F. S. (2001). Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-Tropics A and B[J]. Analytical Chemistry,73(15),3723-3731.
    [106]Simpson I. J., Blake N. J., Barletta B., et al. (2010). Characterization of trace gases measured over Alberta oil sands mining operations:76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2)[J]. Atmospheric Chemistry and Physics,10(23),11931-11954.
    [107]Brankov E., Rao S. T., Porter P. S. (1998). A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants[J]. Atmospheric Environment,32(9),1525-1534.
    [108]Harris J. M., Dlugokencky E. J., Oltmans S. J., et al. (2000). An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986-1997[J]. Journal of Geophysical Research-Atmospheres,105(D13), 17267-17278.
    [109]Stohl A., Forster C., Eckhardt S., et al. (2003). A backward modeling study of intercontinental pollution transport using aircraft measurements [J]. Journal of Geophysical Research-Atmospheres,108(D12), doi:10.1029/2002jd002862.
    [110]Draxler R. R., Taylor A. D. (1982). Horizontal dispersion parameters for long-range transport modeling[J]. Journal of Applied Meteorology,21(3), 367-372.
    [111]Draxler R. R., Stunder B. J. B. (1988). Modeling the CAPTEX vertical tracer concentration profiles[J]. Journal of Applied Meteorology,27(5),617-625.
    [112]Draxler R. R. (1990). The calculation of low-level winds from the archived data of a regional primitive equation forecast model[J]. Journal of Applied Meteorology,29(3),240-248.
    [113]Draxler R. R. (1992). Hybrid single-particle Lagrangian integrated trajectories (HY-SPLIT):Version 3.0 -- User's guide and model description[R].
    [114]Taylor A. D. (1997). Conformal map transformations for meteorological modelers[J]. Computers & Geosciences,23(1),63-75.
    [115]Draxler R. R. (1996). Boundary layer isentropic and kinematic trajectories during the August 1993 North Atlantic Regional Experiment intensive[J]. Journal of Geophysical Research,101(D22), doi:10.1029/95JD03760.
    [116]Stohl A., Seibert P. (1998). Accuracy of trajectories as determined from the conservation of meteorological tracers [J]. Quarterly Journal of the Royal Meteorological Society,124 (549),1465-1484.
    [117]Merrill J. T., Bleck R., Avila L. (1985). Modeling atmospheric transport to the Marshall Islands[J]. Journal of Geophysical Research,90(D7), doi:10.1029/ JD090iD07p 12927.
    [118]Draxler R. R., Rolph G. D. (2010). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY website (http://ready.arl.noaa.gov/HYSPLIT.php).
    [119]Harris J. M., Kahl J. D. (1990). A descriptive atmospheric transport climatology for the Mauna Loa Observatory, using clustered trajectories[J]. Journal of Geophysical Research,95(D9), doi:10.1029/JD095iD09p13651.
    [120]Moody J. L., Oltmans S. J., Levy H., II, Merrill J. T. (1995). Transport climatology of tropospheric ozone:Bermuda,1988-1991 [J]. Journal of Geophysical Research,100(D4), doi:10.1029/94JD02830.
    [121]Jenkin M. E., Saunders S. M., Pilling M. J. (1997). The tropospheric degradation of volatile organic compounds:A protocol for mechanism development[J]. Atmospheric Environment,31(1),81-104.
    [122]Jenkin M. E., Saunders S. M., Wagner V., Pilling M. J. (2003). Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds[J]. Atmospheric Chemistry and Physics,3,181-193.
    [123]Saunders S. M., Jenkin M. E., Derwent R. G., Pilling M. J. (2003). Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds[J]. Atmospheric Chemistry and Physics,3,161-180.
    [124]Bloss C., Wagner V., Jenkin M. E., et al. (2005). Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons[J]. Atmospheric Chemistry and Physics,5,641-664.
    [125]Elshorbany Y. F., Kurtenbach R., Wiesen P., et al. (2009). Oxidation capacity of the city air of Santiago, Chile[J]. Atmospheric Chemistry and Physics, 9(6),2257-2273.
    [126]Sheehy P. M., Volkamer R., Molina L. T., Molina M. J. (2010). Oxidative capacity of the Mexico City atmosphere-Part 2:A ROx radical cycling perspective[J]. Atmospheric Chemistry and Physics,10(14),6993-7008.
    [127]Volkamer R., Sheehy P., Molina L. T., Molina M. J. (2010). Oxidative capacity of the Mexico City atmosphere-Part 1:A radical source perspective[J]. Atmospheric Chemistry and Physics,10(14),6969-6991.
    [128]Williams E. J., Roberts J. M., Baumann K., Bertman S. B., Buhr S., Norton R. B., Fehsenfeld F. C. (1997). Variations in NOy composition at Idaho Hill, Colorado[J]. Journal of Geophysical Research-Atmospheres,102(D5), 6297-6314.
    [129]Greenberg J. P., Zimmerman P. R., Pollock W. F., Lueb R. A., Heidt L. E. (1992). Diurnal variability of atmospheric methane, nonmethane hydrocarbons, and carbon monoxide at Mauna Loa[J]. Journal of Geophysical Research,97(D10),10395-10413.
    [130]Oltmans S. J., Levy H. I. (1994). Surface ozone measurements from a global network[J]. Atmospheric Environment,28(1),9-24.
    [131]Parrish D. D., Fahey D. W., Williams E. J., et al. (1986). Background ozone and anthropogenic ozone enhancement at Niwot Ridge, Colorado [J]. Journal of Atmospheric Chemistry,4(1),63-80.
    [132]Duderstadt K. A., Carroll M. A., Sillman S., et al. (1998). Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive[J]. Journal of Geophysical Research-Atmospheres,103(D11),13531-13555.
    [133]Preunkert S., Legrand M., Jourdain B., Dombrowski-Etchevers I. (2007). Acidic gases (HCOOH, CH3COOH, HNO3, HCl, and SO2) and related aerosol species at a high mountain Alpine site (4360 m elevation) in Europe[J]. Journal of Geophysical Research-Atmospheres,112(D23), doi: 10.1029/2006JD008225.
    [134]Hains J. C., Taubman B. F., Thompson A. M., Stehr J. W., Marufu L. T., Doddridge B. G., Dickerson R. R. (2008). Origins of chemical pollution derived from Mid-Atlantic aircraft profiles using a clustering technique[J]. Atmospheric Environment,42(8),1727-1741.
    [135]Xu Y. W., Carmichael G. R. (1998). Modeling the dry deposition velocity of sulfur dioxide and sulfate in Asia[J]. Journal of Applied Meteorology,37, 1084-1099.
    [136]Ding A. J., Wang T., Xue L. K., et al. (2009). Transport of north China air pollution by midlatitude cyclones:Case study of aircraft measurements in summer 2007[J]. Journal of Geophysical Research-Atmospheres,114, doi: 10.1029/2008JD011023.
    [137]Hallquist M., Wenger J. C., Baltensperger U., et al. (2009). The formation, properties and impact of secondary organic aerosol:current and emerging issues[J]. Atmospheric Chemistry and Physics,9(14),5155-5236.
    [138]Blake N. J., Blake D. R., Simpson I. J., et al. (2003). NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) Field Campaign:Comparison with PEM-West B[J]. Journal of Geophysical Research-Atmospheres,108(D20), doi:10.1029 /2002JD003367.
    [139]Klemp D., Kley D., Kramp F., et al. (1997). Long-Term Measurements of Light Hydrocarbons (C2-C5) at Schauinsland (Black Forest)[J]. Journal of Atmospheric Chemistry,28,135-171.
    [140]Choi Y., Elliott S., Simpson I. J., et al. (2003). Survey of whole air data from the second airborne Biomass Burning and Lightning Experiment using principal component analysis [J]. Journal of Geophysical Research Atmospheres,108(D5), doi:10.1029/2002JD002841.
    [141]Morikawa T., Wakamatsu S., Tanaka M., Uno I., Kamiura T., Maeda T. (1998). C2-C5 hydrocarbon concentrations in central Osaka[J]. Atmospheric Environment,32(11),2007-2016.
    [142]Carpenter L. J., Green T. J., Mills G. P., et al. (2000). Oxidized nitrogen and ozone production efficiencies in the springtime free troposphere over the Alps[J]. Journal of Geophysical Research-Atmospheres,105(D11), 14547-14559.
    [143]Sharma U. K., Kajii Y., Akimoto H. (2000). Seasonal variation of C2-C6 NMHCs at Happo, a remote site in Japan[J]. Atmospheric Environment, 34(26),4447-4458.
    [144]Ogi M., Yamazaki K., Tachibana Y. (2005). The summer northern annular mode and abnormal summer weather in 2003[J]. Geophysical Research Letters,32(4), doi:10.1029/2004GL021528.
    [145]Saigusa N., Ichii K., Murakami H., et al. (2010). Impact of meteorological anomalies in the 2003 summer on Gross Primary Productivity in East Asia[J]. Biogeosciences,7(2),641-655.
    [146]Trainer M. e. a. (1993). Correlation of ozone with NOy in photochemically aged air[J]. Journal of Geophysical Research-Atmospheres,98(D2),2917-2925.
    [147]Zanis P., Ganser A., Zellweger C., Henne S., Steinbacher M., Staehelin J. (2007). Seasonal variability of measured ozone production efficiencies in the lower free troposphere of Central Europe[J]. Atmospheric Chemistry and Physics,7,223-236.
    [148]Jaegle L., Jacob D. J., Wang Y., et al. (1998). Sources and chemistry of NOx in the upper troposphere over the United States[J]. Geophysical Research Letters,25(10),1705-1708.
    [149]Hirsch R. M., Gilroy E. J. (1984). Methods of fitting a straight line to data: examples in water resources[J]. Water Res. Bull.,20(5),705-711.
    [150]Wang T., Nie W., Gao J., et al. (2010). Air quality during the 2008 Beijing Olympics:secondary pollutants and regional impact[J]. Atmospheric Chemistry and Physics,10(16),7603-7615.
    [151]Chin M., Jacob D. J., Munger J. W., Parrish D. D., Doddridge B. G. (1994). Relationship of ozone and carbon monoxide over North America[J]. Journal of Geophysical Research,99(D7)., doi:10.1029/94JD00907.
    [152]Wood E. C., Herndon S. C., Onasch T. B., et al. (2009). A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City[J]. Atmospheric Chemistry and Physics,9(7),2499-2516.
    [153]WMO (1995). Scientific Assessment of Ozone Depletion:1994. Global Ozone Research and Monitoring Project[R]. Geneva, Switzerland.
    [154]Ridley B., Walega J., Hubler G., et al. (1998). Measurements of NOx and PAN and estimates of O-3 production over the seasons during Mauna Loa Observatory Photochemistry Experiment 2[J]. Journal of Geophysical Research-Atmospheres,103(D7),8323-8339.
    [155]Ramanathan V., Crutzen P. J., Kiehl J. T., Rosenfeld D. (2001). Atmosphere-Aerosols, climate, and the hydrological cycle[J]. Science,294(5549), 2119-2124.
    [156]Duce R. A., LaRoche J., Altieri K., et al. (2008). Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science,320(5878),893-897.
    [157]Zellweger C., Ammann M., Buchmann B., et al. (2000). Summertime NOy speciation at the Jungfraujoch,3580 m above sea level, Switzerland[J]. Journal of Geophysical Research-Atmospheres,105 (D5),6655-6667.
    [158]Martin M. V., Honrath R. E., Owen R. C., Li Q. B. (2008). Seasonal variation of nitrogen oxides in the central North Atlantic lower free troposphere[J]. Journal of Geophysical Research-Atmospheres,113 (D17), doi:10.1029/ 2007JD009688.
    [159]Ford K. M., Campbell B. M., Shepson P. B., Bertman S. B., Honrath R. E., Peterson M., Dibb J. E. (2002). Studies of Peroxyacetyl nitrate (PAN) and its interaction with the snowpack at Summit, Greenland[J]. Journal of Geophysical Research-Atmospheres,107 (D10), doi:10.1029/2001jd000547.
    [160]Munger J. W., Jacob D. J., Fan S. M., Colman A. S., Dibb J. E. (1999). Concentrations and snow-atmosphere fluxes of reactive nitrogen at Summit, Greenland[J]. Journal of Geophysical Research-Atmospheres,104(D11), 13721-13734.
    [161]Singh H. B., Herlth D., O'Hara D., et al. (1994). Summertime distribution of PAN and other reactive nitrogen species in the northern high-latitude atmosphere of eastern Canada[J]. Journal of Geophysical Research,99 (D1), doi:10.1029/93 JD00946.
    [162]Singh H. B., Herlth D., Kolyer R., et al. (1996). Reactive nitrogen and ozone over the western Pacific:Distribution, partitioning, and sources [J]. Journal of Geophysical Research-Atmospheres,101 (D1),1793-1808.
    [163]Talbot R., Dibb J., Scheuer E., et al. (2003). Reactive nitrogen in Asian continental outflow over the western Pacific:Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission[J]. Journal of Geophysical Research-Atmospheres,108 (D20), doi: 10.1029/2002JD003129.
    [164]Singh H. B., Salas L., Herlth D., et al. (2007). Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere[J]. Journal of Geophysical Research-Atmospheres,112 (D12), doi:10.1029/2006JD007664.
    [165]Song C. H., Carmichael G. R. (2001). A three-dimensional modeling investigation of the evolution processes of dust and sea-salt particles in east Asia[J]. Journal of Geophysical Research-Atmospheres,106(D16), 18131-18154.
    [166]Meng Z. Y., Xu X. B., Wang T., et al. (2010). Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and rural sites in China during 2007-2008[J]. Atmospheric Environment,44 (21),2625-2631.
    [167]Gao Y., Anderson J. R. (2001). Characteristics of Chinese aerosols determined by individual-particle analysis[J]. Journal of Geophysical Research-Atmospheres,106 (D16),18037-18045.
    [168]Barletta B., Meinardi S., Simpson I. J., et al. (2009). Characterization of volatile organic compounds (VOCs) in Asian and north American pollution plumes during INTEX-B:identification of specific Chinese air mass tracers[J]. Atmospheric Chemistry and Physics,9(14),5371-5388.
    [169]Xiao Y., Jacob D. J., Turquety S. (2007). Atmospheric acetylene and its relationship with CO as an indicator of air mass age[J]. Journal of Geophysical Research-Atmospheres,112 (D12), doi:10.1029/2006jd008268.
    [170]Atkinson R., Arey J. (2003). Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews,103(12),4605-4638.
    [171]Wang T., Wong C. H., Cheung T. F., et al. (2004). Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China, during spring 2001[J]. Journal of Geophysical Research-Atmospheres, 109 (D19), doi:10.1029/2003JD004119.
    [172]Barletta B., Meinardi S., Rowland F. S., et al. (2005). Volatile organic compounds in 43 Chinese cities[J]. Atmospheric Environment,39(32), 5979-5990.
    [173]Molina M. J., Rowland F. S. (1975). Stratospheric sink for chlorofluoromethanes:chlorine atom-catalysed destruction of ozone[J]. Nature,249,810-812.
    [174]WMO (2002). Scientific assessment of ozone depletion:2002. Global Ozone Research and Monitoring Project-Report No.47[R]. Geneva, Switzerland.
    [175]UNEP (2003). Handbook for the International treaties for the protection of the ozone layer. Nairobi, Kenya.
    [176]SEPA (2000). Update of Country Programme for Ozone Depleting Substances Phase-out in China[R]. Beijing, China.
    [177]Wan D., Xu J. H., Zhang J. B., Tong X. C., Hu J. X. (2009). Historical and projected emissions of major halocarbons in China[J]. Atmospheric Environment,43(36),5822-5829.
    [178]Kim J., Li S., Kim K. R., et al. (2010). Regional atmospheric emissions determined from measurements at Jeju Island, Korea:Halogenated compounds from China[J]. Geophysical Research Letters,37, doi:10.1029/ 2010GL043263.
    [179]Barletta B., Meinardi S., Simpson I. J., et al. (2006). Ambient halocarbon mixing ratios in 45 Chinese cities[J]. Atmospheric Environment,40(40), 7706-7719.
    [180]UNEP (2008). HCFCs Phase Out:convenient opportunity to safeguard the ozone layer and climate[R].
    [181]WMO (2007). Scientific assessment of ozone depletion:2006. Global Ozone Research and Monitoring Project-Report No.50[R]. Geneva, Switzerland.
    [182]Andreae M. O., Merlet P. (2001). Emission of trace gases and aerosols from biomass burning[J]. Emission of trace gases and aerosols from biomass burning,15(4),955-966.
    [183]Likens G E, Bormann F H, M J. N. (1972). Acid Rain[J]. Environment,14(2),33-40.
    [184]杨东贞,周怀钢,张忠华(2002).中国区域空气污染本底站的降水化学特征[J].应用气象学报,13(4),430-439.
    [185]翟金良,邓伟(1999).吉林省城市大气降水pH值时空分异及成因[J].城市环境与城市生态,12(5),50-53.
    [186]晏晓英,王雅君,冯喜媛(2007).吉林省酸雨历史资料的整理与初步分析[J].吉林气象,2,44-46.
    [187]Kim M.-G., Lee B.-K., Kim H.-J. (2006). Cloud/fog water chemistry at a high elevation site in South Korea[J]. Journal of Atmospheric Chemistry,55(1), 13-29.
    [188]Aikawa M., Hiraki T., Tamaki M. (2006). Comparative field study on precipitation, throughfall, stemflow, to water, an atmospheric aerosol and gases at urban and rural sites in Japan[J]. Science of the Total Environment, 366(1),275-285.
    [189]Zimmermann L., Zimmermann F. (2002). Fog deposition to Norway Spruce stands at high-elevation sites in the Eastern Erzgebirge (Germany)[J]. Journal of Hydrology,256,166-175.
    [190]Anderson J. B., Baumgardner R. E., Mohnen V. A., Bowser J. J. (1999). Cloud chemistry in the eastern United States, as sampled from three high-elevation sites along the Appalachian Mountains[J]. Atmospheric Environment,33(30), 5105-5114.
    [191]Draxler R. R. (2003). Evaluation of an ensemble dispersion calculation[J]. Journal of Applied Meteorology,42(2),308-317.
    [192]Baumann K., Stohl A. (1997). Validation of a long-range trajectory model using gas balloon tracks from the Gordon Bennett Cup 95[J]. Journal of Applied Meteorology,36(6),711-720.
    [193]UNEP (1991). Handbook for the Montreal protocol on substances that deplete the ozone layer,2nd ed.[R]. Nairobi, Kenya.
    [194]Romashkin P. A., Hurst D. F., Elkins J. W., Dutton G. S., Wamsley P. R. (1999). Effect of the tropospheric trend on the stratospheric tracer-tracer correlations:Methyl chloroform[J]. Journal of Geophysical Research-Atmospheres,104 (D21),26643-26652.
    [195]Prinn R. G., Weiss R. F., Fraser P. J., et al. (2000). A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE[J]. Journal of Geophysical Research-Atmospheres,105 (D14),17751-17792.
    [196]Simpson I. J., Meinardi S., Blake N. J., Rowland F. S., Blake D. R. (2004). Long-term decrease in the global atmospheric burden of tetrachloroethene (C2Cl4)[J]. Geophysical Research Letters,31(8), doi:10.1029/2003g1019351.
    [197]Wang Y., Logan J. A., Jacob D. J. (1998). Global simulation of tropospheric O3-NOx-hydrocarbon chemistry:2. Model evaluation and global ozone budget[J]. Journal of Geophysical Research-Atmospheres,103(D9), 10727-10755.
    [198]Singh H. B., Salas L. J. (1983). PEROXYACETYL NITRATE IN THE FREE TROPOSPHERE[J]. Nature,302(5906),326-328.
    [199]Singh H. B., Salas L. J., Viezee W. (1986). GLOBAL DISTRIBUTION OF PEROXYACETYL NITRATE[J]. Nature,321(6070),588-591.
    [200]Chan L. Y, Chan C. Y, Liu H. Y., Christopher S., Oltmans S. J., Harris J. M. (2000). A case study on the biomass burning in southeast Asia and enhancement of tropospheric ozone over Hong Kong[J]. Geophysical Research Letters,27(10),1479-1482.
    [201]高晓梅,王韬,周杨,薛丽坤,张庆竹,王新锋,聂玮,王文兴,王德众(2011).泰山春、夏两季大气颗粒物及其水溶性无机离子的粒径分布特征 [J].环境化学,3,686-692.
    [202]Meskhidze N., Chameides W. L., Nenes A., Chen G. (2003). Iron mobilization in mineral dust:Can anthropogenic SO2 emissions affect ocean productivity?[J]. Geophysical Research Letters,30(21), doi:10.1029/ 2003GL018035.
    [203]葛宝珠,徐晓斌,林伟立,王瑛(2010).上甸子本底站臭氧生成效率的观测研究[J].环境科学,7,1444-1450.
    [204]Nunnermacker L. J., Imre D., Daum P. H., et al. (1998). Characterization of the Nashville urban plume on July 3 and July 18,1995[J]. Journal of Geophysical Research-Atmospheres,103 (D21),28129-28148.
    [205]Zaveri R. A., Berkowitz C. M., Kleinman L. I., Springston S. R., Doskey P. V., Lonneman W. A., Spicer C. W. (2003). Ozone production efficiency and NOx depletion in an urban plume:Interpretation of field observations and implications for evaluating O3-NOx-VOC sensitivity[J]. Journal of Geophysical Research-Atmospheres,108 (D19), doi:10.1029/2002jd003144.
    [206]Kleinman L., Yin-Nan L., Springston S. R., et al. (1994). Ozone formation at a rural site in the southeastern United States[J]. Journal of Geophysical Research,99 (D2), doi:10.1029/93JD02991.
    [207]Krueger A. J., Krotkov N. A., Yang K., Cam S., Vicente G., Schroeder W. (2009). Applications of Satellite-Based Sulfur Dioxide Monitoring[J]. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2(4),293-298.
    [208]Krotkov N. A., McClure B., Dickerson R. R., et al. (2008). Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China[J]. Journal of Geophysical Research-Atmospheres,113 (D16), doi:10.1029/ 2007JD008818.
    [209]Krueger A. J. (1983). Sighting of el chichon sulfur dioxide clouds with the nimbus 7 total ozone mapping spectrometer[J]. Science (New York, N.Y.), 220(4604),1377-1379.
    [210]Heath D. F., Krueger A. J., Roeder H. A., Henderson B. D. (1975). The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for NIMBUS G[J]. Optical Engineering,14(4),323-331.
    [211]Krueger A. J., Walter L. S., Bhartia P. K., Schnetzler C. C., Krotkov N. A., Sprod I., Bluth G. J. S. (1995). Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments [J]. Journal of Geophysical Research,100 (D7), doi:10.1029/95JD01222.
    [212]Cam S. A., Krueger A. J., Krotkov N. A., Gray M. A. (2004). Fire at Iraqi sulfur plant emits SO2 clouds detected by Earth Probe TOMS[J]. Geophysical Research Letters,31 (19), doi:10.1029/2004GL020719.
    [213]Burrows J. P., Weber M., Buchwitz M., et al. (1999). The global ozone monitoring experiment (GOME):Mission concept and first scientific results[J]. Journal of the Atmospheric Sciences,56 (2),151-175.
    [214]Bovensmann H., Burrows J. P., Buchwitz M., et al. (1999). SCIAMACHY: Mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences,56 (2),127-150.
    [215]Cam S. A., Strow L. L., de Souza-Machado S., Edmonds Y., Hannon S. (2005). Quantifying tropospheric volcanic emissions with AIRS:The 2002 eruption of Mt. Etna (Italy)[J]. Geophysical Research Letters,32(2), doi: 10.1029/2004GL021034.
    [216]Clerbaux C., Boynard A., Clarisse L., et al. (2009). Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder[J]. Atmospheric Chemistry and Physics,9(16),6041-6054.
    [217]Krotkov N. A., Cam S. A., Krueger A. J., Bhartia P. K., Yang K. (2006). Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI)[J]. Ieee Transactions on Geoscience and Remote Sensing,44 (5),1259-1266.
    [218]Bogumil K., Orphal J., Homann T., et al. (2003). Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model:instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region[J]. Journal of Photochemistry and Photobiology a-Chemistry,157 (2/3),167-184.
    [219]Colarco P. R., Toon O. B., Torres O., Rasch P. J. (2002). Determining the UV imaginary index of refraction of Saharan dust particles from Total Ozone Mapping Spectrometer data using a three-dimensional model of dust transport[J]. Journal of Geophysical Research-Atmospheres,107 (D16), doi: 10.1029/2001JD000903.
    [220]Torres O., Tanskanen A., Veihelmann B., et al. (2007). Aerosols and surface UV products from Ozone Monitoring Instrument observations:An overview[J]. Journal of Geophysical Research-Atmospheres,112 (D24), doi: 10.1029/2007JD008809.
    [221]周学华,王哲,郝明途,杨凌霄,王文兴(2008).济南市春季大气颗粒物污染研究[J].环境科学学报,28(4),755-763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700