用户名: 密码: 验证码:
差分OFDM系统与MIMO系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术因其频谱利用率高、对信道多径时延抵抗力强等诸多优势而成为各种无线通信常用技术。如何有效地提高系统频谱效率和链路质量已成为当今无线通信系统设计的一大挑战,其中一条有效的解决途径是在系统的收发两端均配置多根天线来发送和接收信号,即组成多输入多输出(Multiple Input Multiple Output, MIMO)系统。MIMO系统可以很容易实现无线信道的容量增益并获得无线信道的多维分集增益。OFDM技术和MIMO技术已成为当今先进无线传输技术的两大基石。
     如何在快衰落信道环境下实现正交频分复用系统的高效调制并同时降低实现的复杂性,是当前正交频分复用技术研究的热点之一。针对相干正交频分复用系统,研究者们已提出大量的解决方案。但是,目前的解决方案存在综合性能不高的问题。现有的MIMO多天线传输系统虽然具有明显的优势,并已被新一代无线通信系统的主流协议所采纳,但其本身仍然存在一些问题。例如现有的多天线都安装在基站端,而移动终端则很难配置多天线。
     鉴于如上所述,本文对正交频分复用的调制与解调问题进行了完整的和系统的研究,希望籍此分析改善相干调制技术的一些不足。并利用经典的四元数理论,对空时分组码进行了扩展性研究。所做的主要工作如下:
     首先,在时变多径信道环境下本文推导得出了正交频分复用差分系统的信道间干扰功率理论表达式,还分别推导出正交频分复用中三类系统的有用信号功率与信道间干扰功率之比的理论表达式。
     其次,研究分析了正交频分复用差分系统的信道干扰问题,得出信道中的多径延时干扰可引起星座图的同相位偏移,在系统的解调端,利用简单的相位估计得出同相位偏移量,并进行相位纠正。据此本文提出了一种新的针对正交频分复用差分系统的干扰噪声相位纠正解调方案。
     之后,由前面得到的正交频分复用系统的信道干扰分析结论,本文进一步提出了一种新的协同频域差分调制与解调方案。该方案在可获得信道延时的先验知识的前提下,同过选择不同的协同差分调制长度进行正交频分复用调制;在不增加企图实现复杂度的情况下,充分利用系统各参数的设计,正交频分复用差分系统在时变多径信道环境下的抗干扰性能得到有效提高。因此在强延时、快时变的衰落信道下这种协同频域差分调制与解调方案可以得到很好的利用。
     最后,基于天线的极化分集特性,利用四元数正交设计理论,在空时分组码中融入天线极化维资源,提出了一种新的三极化正交空时极分组码,该码字满足正交设计关系,可采用最大似然检测进行解码。与同条件下的经典空时分组码方案相比较,本方案可以更加有效地降低误码率,提高系统性能。
Orthorgonal Frequency Division Multiplexing (OFDM) becomes one common technology in the high-speed communication system such as digital multimedia broadcasting owing to the high spectrum efficiency, robustness to multipath fading. One of the main drawbacks is sensitive to the time-variant interference, especially in using high level modulation. In OFDM systems, time-variant interference results in the interchannel interference (ICI). The ICI will gives in many system proplem such as spectrum efficience, complexity and error floor. Another wireless system design challenge is how to improve the system spectral efficiency and link quality, using multiple antennas in sending and receiving terminal to transmit signals is an effective solution, multiple-input multiple-output system. MIMO system can be easily obtained wireless channels to achieve spatial diversity gain and capacity of wireless channel gain. OFDM and MIMO technology has become the two cornerstones of advanced wireless transmission technology.
     Now, the problem of how to use high level modulation in time-viarant mutipath channel and low complexity becomes a hot topic in the OFDM technology, and many schemes have been proposed. These schemes are based on coherent modulation. But, the major proplem of these schemes is low comprehensive performance, that is, the excessive pursuit of high performance, regardless of the side effect. While traditional multi-antenna transmission has obvious advantages, and has been a new generation of wireless communication system adopted by the mainstream protocol, but there are still problems. Specifically, the existing multi-antenna base stations are set up in the end, while the mobile terminal multi-antenna placement is difficult.
     In this paper, the above problems for differential system are analyzed completely, at the same tiem, base on the classical quaternion theory, we extended study space-time block codes. The main works are described as follow:
     First of all, the effects of the inter-channel interference (ICI) resulting from Doppler frequency and carrier offset on OFDM systems with various demodulation schemes are analyzed. To evaluate these effects, the signal-to-ICI ratio (SIR) has been derived for different demodulation systems. The results show time-variant characteristic of channel has different effects on different demodulation.
     Sendly, the bit error rate (BER) of MDPSK-OFDM in frequency domain over HF fading channels is evaluated, the optimum value of subcarrier number is given and the upper and lower bound on BER is obtained. Improved frequency domain differential demodulation (FDDD) scheme for fast fading HF channel is proposed. Extensive computer simulation results show that the proposed scheme is superior to the conventional differential demodulation technique at fast fading HF channel. In addition, the convention differential demodulation scheme is sensitive to the value of subcarrier number in time-variant mutipah channel.
     Thirdly, According to the analysis of channel interference, new block frequeny differential modulation and demodulation is suggested. New scheme selects the lenth of block according to the knowledge of delay spread. The performance of new scheme has obvious gain in time-variant multipath channel, without any addition of complexity. This scheme is very adapted to the environment of fast fading and strong delay spread such as bad HF channel enviroment.
     Finally, based on characteristics of the antenna polarization diversity, using Quaternion orthogonal design theory, in the space-time block code into the antenna polarization-dimensional resources, design of a new three-pole polarized orthogonal space-time block code, the code words satisfy the orthogonal relations maximum likelihood detection can be used to decode. Under the same conditions, the classical space-time block code scheme comparison, the program to more effectively reduce the error rate and improve system performance.
引文
[1] B. Sklar, Rayleigh fading channels in mobile digital communication systems part I: characterization, IEEE Communications Magazine, July 1997, 35(7), 90~100
    [2] J. C. I. Chuang, The effects of time delay spread on portable radio communications channels with digital modulation, IEEE Journal on Selected Areas in Communications, June 1987, 5(5), 879~889
    [3] J. A. C. Bingham, Multicarrier modulation for data transmission: An idea whose time has come, IEEE Communications Magazine, May 1990, 28(5), 5~14
    [4] B. Stanchev and G. Fettweis, Time-Variant Distortions in OFDM. IEEE Communications Letters, Oct. 2000, 4(10), 312~314
    [5] P. H. Moose, A technique for orthogonal frequency multiplexing division frequency offset correction, IEEE Transactions on Communications, Oct. 1994, 42(10), 2908~2914
    [6] J. Li and M. Kavehrad, Effects of time selective multipath fading on OFDM systems for broadband mobile applications, IEEE Communications Letters, Dec. 1999, 3(12), 332~334
    [7] R. W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission, Bell System Technical Journal, Dec. 1966, 45, 1775~1796
    [8] R. W. Chang and R. A. Gibby, A theoretical study of performance of an orthogonal multiplexing data transmission scheme, IEEE Transactions on Communication Technology, Aug. 1968, 16(4), 529~540
    [9] B.R. Saltzberg, Performance of an efficient parallel data transmission, IEEE Transactions on Communication Technology, Dec. 1967, 15(6), 805~813
    [10] S. B. Weinstein and P. M. Ebert, Data transmission by frequency-division multiplexing using the discrete fourier transform, IEEE Transactions on Communication Technology, Oct. 1971, 19(5), 628~634
    [11] A. Peled and A. Ruiz, Frequency domain data transmission using reduced computation complexity modems, in Proceeding of ICASSP, 1980, 964~967
    [12] B. Hirosaki, An orthogonally multiplexed QAM system using the discrete fourier transform, IEEE Transactions on Communications, July 1981, 29(7), 982~989
    [13] L. J. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing, IEEE Transactions onCommunications, July 1985, 33(7), 665~675
    [14] H. Rohling and V. Engels, Differential amplitude phase shift keying (DAPSK)—A new modulation method for DTVB, in Proceeding International Broadcasting Convention, Amsterdam, The Netherlands, Sep. 1995, 102~108
    [15] European standard (telecommunications series), radio broadcasting systems; digital audio broadcasting (DAB)to mobile, portable and receivers, ETSI EN 300 401 V 1.3.3 (20001-05), 2001
    [16] ETSI TS 101980: Digital Radio Mondiale; Systems specification (ETSI, 2001). See http:// www.etsi.org
    [17] European standard (telecommunications series), digital video broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television, ETSI EN 300 300 744 v1.4.1 (2001-01), 2001
    [18] IEEE Std 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band, New York, NY, 1999
    [19] IEEE 802.11g-2003, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further High-speed Physical Layer Extension in the 2.4 GHz Band, New York, NY, 2003
    [20] European Telecommunications Standards Institute (ETSI), Broadband Radio Access Networks(BRAN): High Performanc Radio Lcoal Area Networks (HIPERLAN) Type 2, Physical(PHY) Layer, ETSI TS 101 475, v1.3.1, Nov. 2001
    [21] IEEE 802.16a-2003, Part 16: Air Interface for fixed Broadband Wireless Access Systems: Media Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz, New York, NY, 2003
    [22] O. Edfors , M. Sandell, J. Van De Beek , and S. K. Wilson, OFDM channel estimation by singular value decomposition, IEEE Transactions on Communications, July 1998, 46(7), 931~939
    [23] J. van de Beek, O. Edfors, and M. Sandell, On channel estimation in OFDM systems, in Proceeding IEEE Vehicular Technology Conference, Chicago, July 1995, 815~819
    [24] V. Mignone and A. Morello, CD3-OFDM: A novel demodulation scheme for fixed and mobile receivers, IEEE Transactions on Communications, July 1996, 44(9), 1144~1151
    [25] Y. Li, Jr. L. J. Cimini and N. R. Sollenberger, Robust channel estimation for OFDM systems with rapid dispersive fading channels, IEEE Transactions on Communications, July 1998, 46(7), 902~915
    [26] W. G. Jeon, H. K. Chang, and Y. S. Cho, An equalization technique fororthogonal frequency-division multiplexing systems in time-variant Multipath channels, IEEE Transactions on Communications, Jan 1998, 47(1), 27~32
    [27] M. Morelli and U. Mengali, A Comparison of pilot-aided channel estimation methods for OFDM systems, IEEE Transactions on Signal Procession, Dec. 2001, 49(12), 3065~3073
    [28] C. Y. Li and S. Roy, Subspace based blind channel estimation for OFDM by exploiting virtual carrier, IEEE Globecom 2001, 295~299
    [29] B. Yang, K. B. letaief and S. C. Roger, Timing recovery for OFDM transmission, IEEE Journal on Slected Areas in communications, 2000, 18(11), 278~2291
    [30] H. Nogami and T. Nagashima, A frequency and timing period acquisition technique for OFDM systems, Sixth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep.1995, 3, 1010
    [31] J. van de Beek, M. Sandell, and P. Borjesson, ML estimation of time and frequency offset in OFDM systems, IEEE Transactions on Signal Processing, July 1997, 45(7), 1800~1805
    [32] Y. L. Huang, C. R. Sheu, and C. C. Huang, Joint synchronization in Eureka 147 DAB system based on abrupt phase change detection, IEEE Journal on Selected Areas in Communications, Oct. 1999, 17(10), 1770~1780
    [33] F. Classen and H. Meyer, Synchronization algorithms for an OFDM system for mobile communiation, ITG-Fachtaggung, Oct. 1994, 105~113
    [34] T. M. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM, IEEE Transactions on Communications, Dec. 1997, 45(12), 1613~1621
    [35] K. zhong, T. T. Tjhung, F. Adachi, A general SER formula for an OFDM systems with MDPSK in frequency domain over rayleigh fading channel, IEEE Transactions on Communications, Apr. 2004, 52(4), 584~594
    [36] T. May, H. Rohling, and V. Engels, Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals, IEEE Transactions on Communications, Feb. 1998, 46(2), 182~190
    [37] H. Rohling, T. May, K. Bruninghaus and R. Grunheid, Broad~band OFDM transmission for multimedia applications, Proceeding of the IEEE, Oct. 1999, 87(10), 1778~1789
    [38] G. Lee, S. Cho, K. Yang , Y. Hahm, and S. Lee, Development of Terrestrial DMB Transmission System based on Eureka-147 DAB System, IEEE Transactions on Consumer Electronics, Feb. 2005, 51(1), 63~68
    [39] Digital Video Broadcasting (DVB); DVB-H Implementation Guidelines, ETSI TR 102 377 V1.2.1
    [40] Digital Video Broadcasting (DVB); Transmission System for HandheldTerminals (DVB-H), ETSI TR 302 304 V1.1.1, 2004
    [41] Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. Annex: Additional features for DVB Handheld terminals (DVB-H), ETSI Std. EN 300 744 V1.5.5, 2004
    [42] M. Kornfeld, U. Reimers, DVB-H– the emerging standard for mobile data communication, EBU technical Review No. 301, January 2005
    [43] Y. S. Choi, P. J. Voltz, and F. A. Cassara, On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels, IEEE Transactions on Communications, Aug. 2001, 49(8), 1375~1387
    [44] S. Chen and T. Yao, Intercarrier interference suppression and channel estimation for OFDM systems in time-varying frequency-selective fading channels, IEEE Transactions on Consumer Electronics, May 2004, 50(2), 429~435
    [45] Y. Zhao and S. Haggman, Intercarrier interference self-cancellation scheme for OFDM mobile communication systems, IEEE Transactions on Communications, July 2001, 49(7), 1185~1191
    [46] K. A. Seaton and J. Armstrong, Polynomial cancellation coding and finite differences, IEEE Transactions on Information Theory, Jan. 2000, 46(1), 311~313
    [47] H. Kubo, K. Murakami, and T. Fujino, Comparison on Maximum-Likelihood Sequence Estimation Schemes Incorporating Carrier Phase Estimation, IEEE Transactions on Communications, Jan. 1999, 47(1), 14~17
    [48] R. Wei, Decision feedback differential detection for 16 DAPSK using knowledge of signal power, Electronics Letter, April 2007, 37(9), 573~575
    [49] F. Edbauer, Bit error rate of binary and quaternary DPSK signals with multiple differential feedback detection, IEEE Transactions on Communications, Mar. 1992, 40(3), 457~460
    [50] F. Adachi and M. Sawahashi, Decision feedback differential phase detection of M-ary DPSK signals, IEEE Transactions on Vehicular Technology, May 1995, 44(2), 203~210
    [51] E. Haas, S. Kaiser, Two-Dimensional Differential Demodulation for OFDM, IEEE Transactions on Communications, Apr. 2003, 51(4), 580~586
    [52] D. Divsalar and M. K. Simon, Multiple symbol differential detection of MPSK, IEEE Transactions on Communications, Mar. 1990, 38(3), 300~308
    [53] D. Makrakis and K. Feher, Optimal noncoherent detection of PSK signals, Electronics Letter, Mar. 1990, 26(6), 398~400
    [54] H. Rohling and K. Brueninghaus, High rate OFDM modem with quasicoherent DAPSK, in Proceeding IEEE Vehicular Technology Conference (VTC’97), May 1997, 2055~2059
    [55] P. Hoeher and J. Lodge, Turbo DPSK: Iterative differential PSK demodulation and channel decoding, IEEE Transactions on Communications, June 1999, 47(6), 837~843
    [56] S. Lijun, T. Youxi, L. Shaoqian, BER performance of differential demodulation OFDM systems in multi-path fading channels, GLOBECOM 2003, 2003, 1~5
    [57] Y. G. Li and L. J. Cimini, Bounds on the interchannel interference of OFDM in time-varying impairments, IEEE Transactions on Communications, Mar. 2001, 49(3), 401~404
    [58] F. Ling, Matched-filter bound for time-discrete multipath Rayleigh fading channels, IEEE Transactions on Communications, Feb.–Apr. 1995, 43(234), 710~713
    [59] P. Robertson and S. Kaiser, The effects of Doppler spreads in OFDM(A) mobile radio systems, in Proceeding VTC-Fall, Amsterdam, The Netherlands, Sep. 1999, 329~333
    [60] M. Russell and G. L. S. Stüber, Interchannel interference analysis of OFDM in a mobile environment, in Proceeding VTC’95, Chicago, IL, July 1995, 820~824
    [61] J. S. Sadowsky and V. Kafedxiski, On the correlation and scattering functions of the WSSUS channel for mobile communications, IEEE Transactions on Vehicular Technology, Feb. 1998, 47(1), 270~282
    [62] M. Russell and G. L. Stüber, Interchannel interference analysis of OFDM in a mobile environment, in Proceeding VTC’95, 1995, 820~824
    [63] Y. Zhao, J. Leclercq, and S. H?ggman, Intercarrier interference compression in OFDM communication systems by using correlative coding, IEEE Communications Letter, Aug. 1998, 2(8), 214~216
    [64] Martin C. C., Winters J. H., Sollenberger N. R., Multiple-input multiple-output (MIMO) radio channel measurements, in Proceeding IEEE Vehicular Technology Conference, 2000, 2, 774~749
    [65] Foschini G. J., Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Technical Journal, Autumn 1996, 41~59
    [66] Foschini G. J., Gans M. J., On limits of wireless communications in a fading environment when using multiple antennas, Wireless Personal Communication, Mar. 1998, 6(4), 311~355
    [67] Raleigh G. G., Cioffi J. M., Spatio-temporal coding for wireless communication, IEEE Transactions on Communications, Mar. 1998, 46(3), 357~366
    [68] Foschini G. J., Golden G. D., Valenzuela R. A., Wolniansky P. W., Simplified processing for high spectral efficiency wireless communication employing multi-element arrays, IEEE Journal on Selected Areas in Communications, Nov. 1999, 17(11), 1841~1852
    [69] Sampath H., Talwar S., A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results, IEEE Communications Magazine, Sep. 2002, 40(9), 143~149
    [70] Tarokh V., Jafarkhani H., Space-time block codes from orthogonal designs, IEEE Transactions on Information Theory, July 1999, 45(5), 1456~1467
    [71] Bello P. A., Characterization of randomly time-variant linear channels, IEEE Transactions on Communications Systems, 1963, 11(12), 360~393.
    [72] Hoeher P., A statistical discrete-time model for the WSSUS multipath channel, IEEE Transactions on Vehicular technology, Nov. 1992, 41(4), 461~468
    [73] Proakis J. G. Digital Communications, 4th ed. New York: McGraw Hill, 2001.
    [74] BS EN50248(2001): "Characteristics of DAB receivers"
    [75] Pollet T., M. Van Bladel, and M. Moeneclaey, BER sensitivity of OFDM systems to Carrier frequency offset and wiener phase noise, IEEE Transactions on Communications, Feb. 1995, 43(234), 191~193
    [76] Armstrong J., Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM, IEEE Transactions on Communications, Mar. 1999, 47(3), 365~369
    [77] Zhao Y.and Haggman S. G., Sensitivity to Doppler shift and carrier frequency errors in OFDM systems-the consequences and solutions, in Proceeding 46th IEEE Vehicular Technology Conference., Apr. 1996, 1564~1568
    [78] Seo B. S., Lee J. H. and Lee C. W., Blind Algorithm for Desion Feedback Equalizer, IEICE Transactions on Communications, Jan. 1997, 80(1), 200~204
    [79] Hsieh M. H., Wei C. H., Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels, IEEE Transactions on Consumer Electronics, Feb. 1998, 44(1), 217~225
    [80] Moon J. K., Choi S., Performance of channel estimation methods for OFDM systems in a multipath fading channels, IEEE Transactions on Consumer Electronics, Feb. 2000, 46(1), 161~170
    [81] H?her P., Kaiser S., and Robertson P., Two-dimensoinal pilot-symbol-aided channel estimation by Wiener filtering, in Proceeding IEEE ICASSP’97, Munich, Germany, Apr. 1997, 1845~1848
    [82] Ahmad B., Yiyan W., et al., Filtered decision feedback channel estimation for OFDM based DTV terrestrial broadcasting system, IEEE Transactions on Broadcasting, 1998, 44(1), 2~10
    [83] Dieter S., Mz Gerald and Franz H., Predictive equalization of time-varying Channels for Coded OFDM/BFDM systems, GLOBECOM 2000, 2000, 2, 721~725
    [84] Lott M., Comparison of frequency and time domain differential modulation in an OFDM systems for wireless ATM, in Proceeding IEEE Vehicular Technology Conference, 1999, 2, 877~883
    [85] Shu F., Lee J., Wu L. N.and Zhao G. L., Time-frequency channel estimation for digital amplitude modulation broadcasting systems based on OFDM, IEE proceedings Communications, Aug. 2003, 150(4), 259~264
    [86] Russel M. and Stuber G. L., Terrestrial digital video broadcasting for mobile reception using OFDM, IEEE Global Telecommunications Conference, Nov. 1995, 3, 2049~2053
    [87] Steendam H.and Moeneclaey M., Analysis and optimization of the performance of OFDM on frequency-selective time-selective fading channels, IEEE Transactions on Communications, Dec. 1999, 47(12), 1811~1819
    [88] Tufvesson F.and Maseng T., Optimization of sub-channel bandwidth for mobile OFDM systems, in Proceeding Multiaccess, Mobility and Teletraffic—Advances in Wireless Networks (MMT), 1998, 103~114
    [89] Kurpiers A. F., Improved channel estimation and demodulation for OFDM HF ionospheric channels, in Proceedings of Eighth IEE HF radio system and techniques, 2000, 65~69
    [90] Xu S., Yang H., and Wang H., An application of DAPSK in HF communication, IEEE Communications Letters, July 2005, 9(7), 613~615
    [91] Moeneclaey M. and G. de Jonghe, ML-oriented NDA carrier synchronization for general rotationally symmetric signal constellations, IEEE Transactions on Communications, Aug. 1994, 42(8), 2531~2533
    [92] Forward Link Only Air Interface Specification for Terrestrial Mobile Multimedia Multicast, TIA-1099, 2006
    [93] Kang S. G., Ha Y. M., and Joo E. K., A Comparative Investigation on Channel Estimation Algorithms for OFDM in Mobile Communications, IEEE Transactions on Broadcasting, June 2003, 49(2), 142~149
    [94]温标荣,浅析移动通信的分集技术,中国无线电管理,2002,4:30~33
    [95]赵爱民,张淑芳,分集技术及在联通移动网中的应用,电信科学,1999,11:51~52
    [96]伍裕江,聂在平,多天线系统中的多维极化分集性能分析,电波科学学报,2007,22(3):365~369
    [97]黄丘林,郭万有,史小卫,极化分集时MIMO系统的信道容量,电子与信息学报,2006,28(8):1443~1446
    [98]王莉,孙炼,双极化天线及其下倾技术,电信技术,1999,7:18~19
    [99]赵爱民,张继顺,王力生,移动通信中的天线技术,电讯技术,2002,6:8~12
    [100]杨可忠,极化分集接收天线,无线电工程,1998,28(6):1~4
    [101]杨可忠,分集天线,无线电工程,1999,25(6):1~3
    [102]黄丘林,史小卫:室内MIMO系统采用极化分集时的信道容量,电路与系统学报,2007,12(2):106~109
    [103] Juan F., Valenzuela-Valdés, Miguel, A. García-Fernández, Antonio M. Martínez-González, David Sánchez-Hernández, The role of polarization diversity for MIMO systems under Raleigh-Fading environments, IEEE Antennas and Wireless Propagation Letter, 2006, 5, 534~536
    [104] Tim W. C. Brown, Simon R. Saunders, Stavros Stavrou, Mauro Fiacco: Characterization of Polarization Diversity at the Mobile, IEEE Transaction On Vehicular Technical., 2007, 56(5), 2440~2446
    [105] Glendon C. McCormick, The theory of polarization diversity systems: the partially polarized case, IEEE Transaction on Antennas Propagation, 1996, 44(4), 425~433
    [106]伍裕江,聂在平,移动终端应用极化分集时的性能评估,电波科学学报,2007,20(4):491-493
    [107] Zhengdao Wang, Giannakis G. B., A simple and general parameterization quantifying performance in fading channels, IEEE Transactions on Communications, Aug. 2003, 51(8), 1389~1398
    [108] Telatar I. E., Capacity of multi-antenna Gaussian channels, Technical Memorandum, AT&T Bell Laboratories, Oct. 1995
    [109] Zheng L. and D. Tse, Optimal diversity-multiplexing tradeoff in multi-antenna channes, in Proc. Of 39th Allertion Conference, Moticello, IL, Oct. 3~5, 2001
    [110]肖尚彬,四元数矩阵的乘法及其可易性,力学学报,1984,(2)
    [111]肖尚彬,多刚体开链系统运动的四元数算法,固体力学学报,1985,(4)
    [112]张劲夫,蔡泰信,对偶四元数及其在刚体定位中的应用,黄淮学刊,1993,9(4):27~30
    [113]王庆贵,四元数变换及其在空间机构位移分析中的应用,力学学报,1983,(1):54~55
    [114]王庆贵,四元数矩阵在研究多刚体相对运动中的应用,北方交通大学学报,1987,(1):52~62
    [115]王庆贵,四元数乘法及其在空间机构位移分析中的应用,力学学报,1983,(1):54~55
    [116]丁光涛,偏振光的四元数表示,黄淮学刊,1993,9(1):43~48
    [117]丁光涛,偏振器件的四元数表示,黄淮学刊,1993,9(2):23~30
    [118] Shocmake K., A nimating rotation with quartemion curves, Computer Gaphics, 1985,19 (3)
    [119]施开达,马利庄,试论四元数与旋转矩阵的关系及其在计算机图形学中的应用,舟山师专学报(自然科学版),1997,(1):7~13
    [120]张国良,曾静,邓方林,用四元数法提取加速度计三轴转台测试中的动态误差量,中国惯性技术学报,2000,8(3):70~73
    [121]陈万春,肖业伦,矢阵雨四元数的关系及其在飞行力学中的应用,宇航学报,1997,(1):23~30
    [122]陈万春,肖业伦,赵丽红,邹辉,四元数的核心矩阵及其在航天器姿态控制中的应用,航空学报,2000,21(5):389~392
    [123] Anderson, Inrariant nonnal models, Auu Statist, 1975,(3):132~154
    [124]滕成业,李绍明,四元数矩阵微分及其在精确分布上的应用,中山大学学报(自然科学版),1999,38(3):12~16
    [125]李绍明,滕成业,王琪,四元数矩阵变元的带状多项式及其性质,中山大学学报(自然科学版),2000,39(4):19~22
    [126]吴光磊,陈维恒,一个矩阵不等式及其几何应用,数学学报,1988,31(3):348~355
    [127]邓辉,若干矩阵不等式及Riemann对称空间界面曲率估计,数学学报,1991,34(3):299~308
    [128] Tarokh V, et al. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 1998, 44(2): 744~765
    [129] Alamouti S. M. A simple transmit diversity technique for wireless communications, IEEE Journal on Selected Areas in Communications, 1998, 16(8):1451~1458
    [130] Tarokh V, et al, Space-time block codes from orthogonal designs , IEEE Transactions on Information Theory, 1999, 45(5):1456~1467
    [131] Tarokh V, et al, Space-time block coding for wireless communications: Performance results , IEEE Journal on Selected Areas in Communications, 1999, 17(3):451~460
    [132] Jafarkhani H., A quasi-orthogonal space-time block code , IEEE Transactions on Communications, 2001, 49(1):1~4
    [133] Seberry J., et al, The theory of quaternion orthogonal designs , IEEE Transactions on Signal Processing, 2008, 56(1):256~265
    [134] Altmann S. L, Rotations, quaternions, and double groups , Oxford, UK: Clarendon, 1986
    [135] Wang Z G, et al, A orthogonal space time polarization block code (OSTPBC) based on quaternion orthogonal designs , Journal of Yangzhou University (Natural Science Edition), 2008, 11(4)4:57~60
    [136] Jafarkhani H., Space-time coding: theory and practice , Cambridge: Cambridge University Press, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700