用户名: 密码: 验证码:
地下能量传输及其传热控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对能源与环境日渐紧张的局面,可再生能源的使用成为解决这一问题的有效手段,地下浅层作为地下蓄能(UTES)与地源热泵(GSHP)的能源库被认为是目前最具清洁环保特征的绿色能源利用技术。它可实现长期或跨季节蓄能,有利于余热、太阳能和电力峰谷错时利用,越来越受到人们关注。
     现有的研究成果表明,地下传热热源模型多以线热源或柱热源的纯导热问题为主导,对地下水渗流流动、管内流动的换热相耦合的研究还很有限,特别是大规模地下换热井群的相关研究更显不足,因此基于渗流、内流动和井群场的地下能量传输的能流特性研究显得尤为必要。另外,无论地下能量蓄存,还是地源热泵,均涉及复杂的地下传热和能量传输问题,其受到诸多因素的制约和影响,除了岩土热物性、地质构造和地下岩土结构等自然条件以外,更主要是运行的主动控制模式,以求更高的地下能流有效控制,在地下蓄能过程中使蓄入、扩散和保持达到高效协同控制。
     针对以上问题,本研究结合国家自然科学基金项目,采用模型分析和模拟计算,结合实验、探索复杂条件地下热源群可变负荷动态传热和热流传输作用机理,揭示季节性地下蓄能时间周期动态传热控制机制,通过对能量传输的热扩散促进与抑制、温度场形态重整主动控制及能流场协同等基本传热特性、特征和规律认识,建立地下蓄能的热传输控制机制,推动我国地下蓄能技术创新与发展。
     在分析地下蓄能换热器的传热机理中,提出套管式地下换热器的管内流动与岩土渗流传热耦合的数学模型,分别在饱和岩土无渗流和有渗流两种状况下,对影响地下热流的主要因素进行系统的传热分析,研究不同影响因素中的时变动态特性。
     对于饱和岩土无渗流过程,研究结果表明当套管式地下换热器外管径达到一定管径(DN100)以上时,埋管单位管长换热率较大,埋管与岩土的换热较充分;当蓄能流体处于紊流态流速为0.2~0.4m/s时,其单位管长换热率较高;超过此范围后,流速的增加对增强换热的效果不再明显。
     对于存在渗流,研究结果表明它将增加地下埋管与岩土的对流换热,提高传热效果,换热率随渗流流速而增加,并且在低流速时,更加明显;此外,岩土孔隙率可有效增加换热效果,使系统平稳运行时间缩短。其中,流速因素较孔隙率因素影响作用更加明显;孔隙率在0.1以下且流速较小时,地下渗流流动对换热效果的增强不明显。
     为进一步验证模型分析和实验研究相关特征,建立大型阵列式多热源岩土热流传输实验系统,开展岩土蓄能传热动态控制研究。提出动态时序控制问题,并着重对三种不同动态时序控制模式进行研究,系统分析温度场时变形态,能量蓄存、扩散及保持各阶段的温变特性和影响规律。实验表明,动态时序控制对蓄能具有显著的功效作用,在相同蓄热总量、蓄能时间和实验运行条件下,通过动态时序负荷控制,可实现明显的蓄能传热能力差异,它不但影响加热期,还影响到保持期,可变相位和幅值将有利提升能量的扩散与保持,为地下蓄能和传热控制最优化提供有效方法。此外,相关实验结果与模拟计算结果比较表明,本研究所建立的计算模型与实验数据获得良好吻合。
     为定量分析和判断地下蓄能过程的能流效应,有效衡量能流传输与扩散,本研究提出地下岩土蓄能的能流通量的概念,进一步弥补以往地下传热分析中的不足,并对垂直式地下换热器井群不同布置形式的能流特性进行了比较分析,同时提出能流通量监测位置选取与确定方法,合适的能流通量监测可以充分反映能量保持与扩散对蓄能效果的影响,研究表明监测位置选择在距离最外层埋管中心以外0.5-2.5倍间距较好。此外,利用能流通量概念,对不同井孔间距的地下换热器进行热流分析,得出载能介质与岩土温差较小、地下水流速较小或孔隙率较小的地区,3-6m间距比较合适;介质温度较高或者地下水流动速度较大的情况下,6m左右的间距较合适,这将有利于能量的进一步蓄存、蓄存中的扩散和间歇期的保持。
     通过对饱和岩土有地下水渗流与无地下水渗流的地下蓄能能量的保持与扩散进行分析,并在无地下渗流的蓄能研究采取四种不同的控制热流传输模式,指出环式负荷温位梯级加载的蓄能模式更加有利于能量的岩土扩散和保持。
     对于渗流旺盛区的蓄能,提出全新的偏置加载控制模式,通过对四种不同的负荷加载控制模式进行研究,指出基于渗流方向的温位偏置加载理念具有重要的能流控制作用,它利用负荷量和温位的双重控制,更加有效提高地下蓄能和传热效率,提升蓄能区域的能量保持能力。正如分析结果所知,偏置加载与环式加载在输入能量基本一直的条件下,有效的偏置加载将比环式加载体现更加明显的蓄能能力和应用潜力。
     因此,负荷温位梯级加载和偏置加载等地下岩土传热控制将为地下蓄能和地下传热的能流控制提供新的控制理念,进一步为实现地下能量高效利用的技术突破奠定基础。通过对蓄能间歇周期的研究,发现短间歇蓄能方式在蓄能数量、平均温升和最高温度方面都比长间歇蓄能方式更有利于能量在埋管区域的蓄存、扩散和保持。
     综合研究表明,能量存入需要高的释放扩散能力,能量保存却需要低扩散,抑制蓄存能量扩散流失,如此导致地下能量存储面临能量传输扩散促进和抑制的矛盾及其协调问题。本文通过研究岩土热源群可变负荷动态传热和热流传输作用影响,通过负荷变动和温度场形态重整主动控制,场波动相位延迟以及能流场协同,实现可控地下传热扩散,提高蓄能利用效率。通过研究热湿迁移下场偏移与控制,大规模热源群负荷多变性控制与协同,探索负荷温位梯级加载和偏置加载等手段的蓄能温位弱化和能量传输缓冲等。该研究将完善地下蓄能和传热控制理论,推动地下蓄能和传热技术的发展和应用。
With the increasing tension of energy and environment problems, renewable energy utilization is an effective way to solve the relative problems, shallow underground is considered as one of the most clean and environmentally friendly green energy technologies which can be used combination with underground storage (UTES) and ground-source heat pump (GSHP). It can achieve long-term and inter-seasonal storage which is conducive to apply waster heat, solar energy and valley electricity.
     Most of the studies about underground heat exchangers are based on the line heat source theory and cylindrical heat source theory which are almost about heat conduction while few of them take into account groundwater flow which always exists in underground heat transfer and pipe flow coupling of heat transfer. Particularly in large-scale underground heat exchangers researches are more insufficient. In addition, both the UTES and GSHP are involved in complex underground heat transfer and energy transfer which are influenced by many factors, such as thermal properties of soil, geological structure and natural conditions and underground geological structure, while the more important factor is the active control mode in the process of energy storage to more effectively control energy flow, and to make the energy transfer, diffusion and maintenance harmonious.
     Variable load conditions, dynamic group of underground heat transfer, heat transfer mechanism and dynamic control mechanism of seasonal underground storage are studied in this paper on the basis of numerical method of finite volume and combining with experiments in the field of National Science funded project of China-No. 50806028. By way of promotion and restrain of the thermal energy transfer, active control of temperature field profile control and energy flow control, underground thermal energy transfer control mechanism is established to promote the underground storage technology innovation and development.
     Heat transfer characteristics and performance of coaxial tubes underground heat exchanger were analyzed. A heat transfer mode coupling heat transfer of flow in pipe with heat transfer about groundwater seepage flow is advanced. Under the condition of groundwater seepage flow and no groundwater seepage flow in saturated soil, some primary influences on heat transfer, such as the size of buried tubes, the velocity of flow in the tube are analyzed to explore the varying-time characteristics.
     In the case of non-groundwater seepage in saturated soil, the results show that the pipe heat transfer rate per unit length is greater when the outer diameter of coaxial underground heat exchanger above a certain diameter, and the heat transfer between boreholes and soil is sufficient. Heat transfer rate per unit length is higher when the storage fluid velocity is in the range of 0.2 ~ 0.4m / s. If the velocity is higher than this range, the effect of enhanced heat transfer is no longer obvious.
     Under the condition of groundwater seepage flow in saturated soil, results show that the speed of groundwater seepage flow of groundwater is benefit for the heat transfer between underground heat exchanger and soil. Groundwater seepage flow of groundwater in saturated soil can increase the heat convection and improve the heat transfer effect. With the increase of speed of groundwater seepage, the unit heat transfer quantity of boreholes increases. At a certain speed of groundwater seepage, the increase of soil porosity can enhance the heat transfer between underground heat exchanger and soil, and with the increase of soil porosity, the effect of heat transfer enhances, also the time of system running smoothly is shorter. At the same time have the same quantity flow of groundwater through the pipe, the increase of speed of groundwater seepage flow is more effective than the increase of porosity in soil. If the soil porosity is smaller than 0.1 and the speed of groundwater seepage flow is very small, the heat transfer enhancement leading of groundwater is small.
     To further validate the numerical simulation model, the establishment of a large array of multi-heat sources experimental system is established to study dynamic control of heat transfer in energy storage process. A dynamic timing control, and focus on the dynamic sequence of three different dynamic control modes are studied to analyze temperature time-varying field. Temperature characteristics and effect law is also analyzed in the process of energy storage, energy diffusion and energy maintenance. Experiments show that the dynamic timing control of the storage has significant effect to energy storage. Under the condition of the same energy storage quantity, storage time and the experimental operating conditions, load dynamic timing control can achieve significant differences of heat storage capacity. It not only affects the energy storage period, but also affect energy maintenance period. Variable phase and amplitude will be beneficial to enhance the energy diffusion and energy maintenance, and provide effective method for optimizations of underground storage and heat transfer control. By comparison of experiment with simulation, simulation date agree with the experimental data well.
     According to the investigation of the heat transfer of energy diffusion and transport during the process of energy input, storage and extraction in UTES, a new conception, the energy flux was presented to evaluating the effect of thermal energy storage. Through scaling parameters and comparing the energy flux, by mean of the degree of heat diffusion the energy flow characteristics of a UTES system can be quantitatively analyzed and it leads to use UTES technology rationally by controlling heat diffusion. The different configuration of multi-borehole underground heat exchangers was calculated numerically, and the energy flow intensity in the period of maintaining energy stored in soil was compared by using the energy flux parameter as a criterion. Results show that the configuration of multi-borehole affects underground temperature distribution and it plays an important role in energy diffusion and transport during the process of energy input, storage and extraction. Monitoring position on energy flux can be selected form the outer bolehole center of 0.5 to 2.5 times spacing where the energy flux can fully reflect the effect of the energy storage and energy diffusion. Also research shows that 3m to 6m spacing between boreholes is appropriate when the temperature difference between flow in borehole and soil is small, otherwise when the temperature is high or the speed of groundwater seepage flow is large, around 6m spacing is appropriate to energy storage, diffusion and maintenance.
     The control strategies about the multi-borehole underground heat exchangers are discussed in the cases of groundwater seepage and non-groundwater seepage flow in saturated ground soil, and different heat source distribution and different load configuration in these cases were studied to evaluate the energy preservation and diffusion effect. Four control modes were studied under non-seepage. Results show that energy storage based on ring and hierarchical load mode about temperature is more conductive to energy diffuse and maintenance.
     On the condition of strong groundwater seepage flow, a new offset load control mode which contributes load of different temperature in the direction of groundwater seepage flow is put forward, and four different offset load control modes were studied. Researches show that offset load control mode is important to energy flow and underground storage. It is more efficient to enhance energy maintenance capacity. As the analysis show that offset load control mode and ring load control mode has the same input quantity of energy storage, but offset load control mode has more capacity of energy maintenance and energy extraction.
     Therefore, temperature and hierarchical loading mode based on fluid temperature and offset loading control could provide a new control concept of energy flow for heat transfer and UTES. It would give technological breakthroughs for underground energy utilization. Studies for intermittent periods of energy storage show that shorter interval of off-set heat source model is better for energy storage and energy maintenance than longer interval of offset heat source mode in the energy storage quantity, average temperature and maximum temperature..
     Comprehensive studies have shown that the splendid energy diffusion capacity is essential for high energy storage efficiency, but good energy maintenance capacity requires low energy diffuse to far boundary. This causes the conflicts and coordination problems of promotion and inhibition of energy diffusion in the process of underground energy storage. Load changes, load distribution of different temperature, offset load method and other means can achieve actively control of underground heat diffusion and enhance energy storage efficiency by studying the effect of dynamic heat transfer and energy flow of variable heat loads. Storage temperature weakened, energy transmission buffer, phase fluctuations delay of temperature field, relationships of period of storage time in process of hierarchical and offset energy storage mode are also searched by studied problems of the control and offset of temperature field, variability control and synergy of load of large-scale heat sources. The research will improve the control theory of underground storage and heat transfer, and promote the development and application of underground energy storage and heat transfer technology.
引文
[1]李哲冒,泗农,张淑英,世界石油资源现状、供需状况预测分析和对策[J] ,技术经济与管理研究,2007.12(6):105—107.
    [2]何金祥,2007年世界不同发达程度国家能源利用效率的比较[J],国土资源情报,2008(10),10-12
    [3]李元晋,L.Gebert,李秀果,美国土—气型地源热泵技术在中国的应用推广[J],节能与环保,2002(12):20—23.
    [4]寿青云,陈汝东,高效节能的空调—地源热泵[J],节能,2002(1):41—43.
    [5]刘冬生,孙友宏,浅层地能利用新技术—地源热泵技术[J],岩土工程技术,2003(1):57—59.
    [6]赵军,袁伟峰,朱强,地源热泵系统[J],太阳能,2001(1):26—27.
    [7]陈焕新等,地源热泵技术在我国的应用前景[J],建筑热能通风空调,2002.4:10~13.
    [8]刘畅,地源热泵在中国的发展与前景展望[J],供热制冷,2008.5,16-17.
    [9] R. Curtis1 , J. Lund2, B. Sanner3, L. Rybach4, G. Hellstr?m5,Ground Source Heat Pumps - Geothermal Energy for Anyone, Anywhere:Current Worldwide Activity[C],Proceedings World Geothermal Congress 2005Antalya, Turkey, 2005.4:24—29.
    [10]孙友宏,促崇梅,王庆华,中国地源热泵技术应用及进展[J] ,探矿工程,2010.Vol37.No.10,30-34.
    [11] R.L.D.Cane, D.A.Forgas, Modeling of Gshp Performance[J]. ASHRAE Transaxtions,1991,NY-91-17-5:909—925.
    [12]徐邦裕,陆亚俊,马最良,热泵[M],中国建筑工业出版社,2005,63-66.
    [13]王委,冰蓄冷空调[J/OL],豆丁网,http://www.docin.com/p-49664342.html.
    [14]曾梦妤,分类用刻峰谷电价研究[D]华北电力大学硕士论文,2006.1:3—5.
    [15]太阳能人才网[J/OL],http://wenku.baidu.com/view/e1f4042e453610661ed9f4d2.html.
    [16]廉士欢,靳英华,彭聪,吉林省太阳辐射变化规律及太阳能资源利用研究[J],气象与环境学报,2009.6,Vol.25,No.3:30—34.
    [17] Aristodimos J. Philippacopoulos, Marita L. Benrdt. Influence of Debonding in Ground Heat Exchangers Used with Geothermal Heat Pumps[J]. Geothermics 2001:527—545.
    [18]周训,刘东林,欧洲地下蓄能的发展现状[C],地温资源与地源热泵技术应用论文集(第三集),2009:56—64.
    [19]周亚素,张旭,土壤源热泵系统的研究现状与发展前景[J],新能源,1999,Vol.21,No.12:37~42.
    [20] Committee on Energy Research and Technology End-use Working Party,Annual Report 2003-Implementing Agreement on Energy Conservation Through Energy Storage[M],Public Document, OECD/IEA,2004.4.
    [21] Lemmeke,L.Seasonal Storage of Solar Heat With Large-Scale Heat Pumps[J],Underground Space, 1985,Vol.9:16—22.
    [22] Breger,D.s, C.A.Bandston, J.E.Sunderland. Central Solar Heating Plants With Seasonal Storage[J],ASHRAE Journal ,1992.5,Vol.34:27—33.
    [23] Padsoy H.O , Andersson O,Abaci S,etal.Heating and Coolig of a Hospital Using Solar Energy Coupled with Seasonal Thermal Energy Storage in Aquifer[J], Renewable Energy, 2000,Vol.19:117—122.
    [24] C.Midkif, C.E.Brett, Balaji,et a1. Long-term Performance of an Air-conditioning System Based on Seasonal Aquifer Chill Energy Storage[C] . In 27th Intersociety Energy Conversion Engineering Conference Proceedings[R].San Diego,1992:49~54.
    [25] F.gabus,P.Semt. Aquifer Thermal Energy Storage for the Berlin Reichstag Building New Seat of the German Parliament[M] . International Proceedings World Geothermal Congress 2000 [C]. Kyushu-Tohoku,Japan,2000:3611~3615.
    [26] S.S.Papadopulos,S.P.Larson.Aquifer Storage of Heated Water:part II-Numerical Simulation of Field Results[J].Ground Water,1978, Vol.16,No.4:242—248.
    [27] J.F.Sykes, R.B.Lantz, S.B.Pahwa et al. Numerical Simulation of Thermal Energy Storage Experiment Conducted by Auburn University[J]. Ground Water, 1982,Vol.20,No.5:569—576.
    [28] C.Doughty, G.Hellstrom, C.Fu Tsang. A Dimensionless Parameter Approach to the Thermal Behavior of an Aquifer Thermal Energy Storage System[J]. Water Resource Research,1982, Vol.18,No.3:571—587.
    [29] Reuss.M, J.mueller. Solar District Heating with Seasonal Storage in Attenkirchen[C]. TERRASTOCK 2000, Proceeding,Vol.1:221—226.
    [30] Soderberg E W,J W Leach. Test of an Earth-Coupled Heat Pump with Aboveground Water Storage[J], ASHRAE Transaction,2001,Vol.107,Pt.2 CI-01-7-2:1—8.
    [31]倪龙,荣莉,马最良.含水层储能的研究历史及未来[J].建筑热能通风空调, 2007,26(1):18~24.
    [32] Kavanaugh.S.P, Allan.M.L. Testing of Thermally Enhanced Cement Ground Heat Exchanger Grouts[J]. ASHRAE Trans,1999,105(1):446一450.
    [33] Hiassonad, Spitler.J.D, Reess.J et al. A Model for Simulating the Performance of a PavementHeating System as a Supplement Heat Rejecter with Closed一loop Ground Source Heat Pump Systems[J]. A SME J of Solar Energy Eng,2000,122(4):183一191.
    [34] Zwarycz.K, Nowak.K. Various Mathematical Models of Heat Transfer Process in Ground Energy Storage Bin[C]. 9th International Conference on Thermal Energy Storage,Warsaw,2003.l:698一703.
    [35] Nakahara.N, Zheng.M, Pan.S et al. Load Prediction for Optimal Thermal Storage: Comparison of Three Kinds of Model Application[C]. Proc of Building Simulation 99,Kyoto: Int. Building Performance simulation Association,1999.1:519一526.
    [36] K.sakai, O.Ishihara, K.Sasaguchi etal. A Simulation of an Underground Heat Storage System Using Mmidnight Electric Power at Park Dome Kumamoto[C]. Proc of Building Simulation’99,Kyoto: Int Building Performance Simulation Association,1999.l:507—512.
    [37] Drown,David,C, Den Braven, Karen,R. Effect of Thermal Conductivity on Heat Transfer in Ground Pumps, ASME-JSES-KSES International Solor Energy Conference[C],Proceeding of the 1992.
    [38] M .REUSS, M .BECK, J .P.MULLER. Designo of a Seasonal Thermal Energy Storage in the Ground[J]. Solar Energy, 1997,5 .9(4-6):247—257.
    [39] Dalenba.ck.J, G.Hellstro.m, S.Lundin, B.Nordell, J.Dahm. Borehole Heat Storage for the Anneberg Solar Heated Residential District in Daderyd[C], Sweden TERRASTOCK2000,Proceeding, Vol.1:201—206.
    [40] Anderssono,Rydell,Llgotssont. Industrial Energy Conservation with UTES a Cass Study from ITT Flygt Emmaboda in Sweden[C].9th Int Conf on Therma1 Energy Storage,Warsaw,2003,Vol.1:359一366.
    [41] S.Lundin, B.Eriksson, T.Borrteknik ,B.Brinck. Drilling in Hard Rock and Borehole Heat Exehangers for Seasonal Stores[C],9th International Conference on Thermal Energy Storage,Warsaw,2003.1:399一404.
    [42] Dincer.I,Rosena.A. Exergy as a Driver for Achieving Sustainability.International Journal Green Energy,2002.1(1):1-19.
    [43] Eugster.W.J, Sanner.B, Technological Status of Shallow Geothermal Energy in Europe[C].Proceedings European Geothermal Congress, Unterhaching Germany, 5.30-6.1, 2007.
    [44] Walter.V.Jones, Beard J.T, Ribando.R.J etal. Thermal Performance of Horizontal Closed-loop Ground-coupled Heat Pump Systems Using Flowable-fill[C], Proceedings of the Intersociety Engineering Conference,1996,Vol.2:748—754.
    [45] F.J.Lenarduzzi, C.B.H.Cragg, H.S.Radhkrishna. The Importance of Grouting to Enhance thePerformance of Earth Energy Systems[J],ASHRAE Transactions,2000,106(1):424—434.
    [46] Bose.J.E, Smith.M.D, Spitler.J.D, Advances in Ground Source Heat Pump Systems-- An International Overview [C], Proc of the7th Energy Agency Heat Pump Conf, Beijing, 2002.1: 313—324.
    [47] Sanner.B, Karytsas.C, Mendrinos.D etal. Current Status of Ground Source Heat Pumps and Underground Thermal Energy Storage in Europe [J].Geothermics, 2003,3(2):579-588.
    [48] Khan. M.H, Varanasi.A, Spitler J.D etal. Hybrid GSHP System Simulation Using Visual Modeling Tool for HVACSIM [C], 8th Int IBPSA Conf, Eindhoven, 2003:641—648.
    [49]王恩宇,齐承英,杨华等,太阳能跨季节储热建筑供热系统及土壤储热实验分析[C],中国制冷学会2007学术年会,创新与发展,2007:347—351.
    [50]刘雪玲,朱家玲,刘立伟,热泵耦合含水层储能技术研究[J],太阳能学报,2009.8,vol.30,No.8:1023—1027.
    [51]崔俊奎,赵军,李新国等,跨季节蓄热地源热泵地下蓄热特性的理论研究[J],太阳能学报2008.8,Vol.29, No.8:920—926.
    [52]赵军,陈雁,李新国,基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J],华北电力大学学报,2007.3,Vol.34, No.2:74—77.
    [53]韩敏霞,太阳能土壤跨季节蓄热—地源热泵组合理论与实验研究[D],硕士论文,天津大学,2007.
    [54]张文雍,郑茂余,王潇等,严寒地区太阳能土壤源热泵季节性土壤蓄热[J],煤气与热力,2009.8,Vol.29,No.8:21—24.
    [55]余延顺,马最良,姚杨,土壤蓄冷与土壤耦合热泵集成系统中土壤蓄冷与释冷过程的特性研究[J].暖通空调,2004,Vol.34,No.5:1—6.
    [56]余延顺,马最良,姚杨,土壤蓄冷与土壤耦合热泵集成系统的模拟研究[J],暖通空调,2005, Vol.35,No.6:1—5.
    [57]高青,李明,马纯强等,地下岩土蓄能过程控制模式[J],吉林大学学报(工学报),2009.5,Vol.39,No.3:593—597.
    [58]高青,李明,江彦等,地下换热器回填传热模拟分析[C],全国暖通空调制冷2006年学术会议文集,2006,229.
    [59]高青,于鸣,乔广等,地热利用中的地温可恢复特性及其传热的增强[J],吉林大学学报(工学报),2004.1,Vol.34,No.1:107—111.
    [60] L.R.Ingersoll, H.J.Plass. Theory of the Ground Pipe Heat Source for the Heat Pump[J].Heating Piping and Air conditioning.1948.20(7):319—336,119—122.
    [61] R. W. Lewis, K. Morgan, W. G. Haba. Numerical Methods in Thermal Problem, [C], Proceedings of The Second International Conference,Swansea, 1979, Vol.2.
    [62] Hart.D.P, Couvillion.R, Earth Coupled Heat Transfer,[M] Publication of the National Water Well Association. 1986.
    [63]中华人民共和国建设部,地源热泵系统工程技术规范GB50366—2005, [M].北京,中国出版社,2005.
    [64] Kavanaugh, S.P. Simulation and Experimental Verification of Vertical Ground-coupled Heat Pump Systems[D]. PH.D. dissertation. Stillwater, Oklahoma Oklahoma State University. 1985.
    [65] V.C.Mei. New Approach for Analysis of Ground Coil Design for Applied Heat Pump Systems[J].ASHRAE Transactions.1985 (2):1216—1224.
    [66] A.D.Kafadar, I.Fidldhouse, R.A.Budenholzer. Influence of Freezing of Heat Pump Ground Coil Capacity[C].Proceedings of Midwest Power Conference.1951:477—487.
    [67] Hellstrom.G. Ground Heat Storage:Thermal Analysis of Duct Storage Systems Theory[D]. Doctor thesis University of Lund, Department of Mathematical Physics. Lund. 1991:.80—83.
    [68] Gu.Y, O’Neal.D.L. Development of an Equivalent Diameter Expression for Vertical U-tubes Used in Ground-coupled Heat Pumps[J].ASHRAE Trans,1998.104(2):347~355.
    [69]柳晓雷,王德林,方肇洪,垂直埋管地源热泵的圆柱面传热模型及简化计算[J],山东建筑工程学院学报,2001.3,Vol.16,No.1:47—51.
    [70]方肇洪,刁乃仁,地热换热器的传热分析[J],建筑热能通风空调查,2004,23(1):11—20.
    [71]刁乃仁,李琴云,方肇洪,有渗流时地热换热器温度响应解析解[J],山东建筑工程学院学报,2003.9,Vol.18,No.3:1—5.
    [72] D.P.Hart, R.Couvillion. Earth Coupled Heat Transfer.1986.
    [73] S.P. Kavanaugh. Simulation and Experimental Verification of Vertical Ground Coupled Heat Pump Systems[D].Oklahoma State University Ph D dissertation.1985.
    [74]陈卫翠,崔萍,方肇洪,倾斜埋管地热换热器稳态温度场分析[J],山东建筑工程学院学报,2005.12,Vol20,No5:30—34.
    [75]吴永华,何雪冰,刘宪英等,U型垂直换热器地源热泵夏季供冷测试及传热模型[J],建筑热能通风空调,2003.1,1-4.
    [76]孔祥谦,有限元法在传热学中的应用[M],第三版,科学出版社.
    [77]殷平,地源热泵在中国[J],现代空调,2001(8):1~10.
    [78] Mei.V. C, C.J Emerson. New Approach for Analysis of Ground-Coil Design for Applied Heat Pump Systems[J]. ASHRAE Transactions 1985.91(2):1216~1224.
    [79] Esilson. Thermal Analysis of Heat Extraction Boreholes[D], Doctoral thesis, University of Lund, Department of Mathematical Physics, Lund.
    [80] Yavuzturk.Cenk, Performance Anaysis of U-tube, Concentric Tube, and Standing Column Well Ground Heat Exchangers Using A System Simulation Approach[J], ASHRAE Trans,2002,108(1):925~938.
    [81] Hellstrom,G. Duct Ground Heat Storage Model[M]. Manual for Computer Code. University of Lund, Department of Mathematical Physics. Lund. 1989.
    [82] Hellstrom, G. 1991. Ground heat storage. Thermal Analysis of Duct Storage Systems[M]. Part I Theory. Lund, Sweden, University of Lund, Department of Mathematical Physics.
    [83] Thornton,J.W, T.P.Mcdowell, J.A.Shonder, P.J.Hughes, D.Pahud, G.Hellstrom . Residerntial Vertical Geothemal Heat Pump System Models: Calibration to Data[J]. ASHRAE Transactions 103(2):660—674.
    [84] Nuraya,N.K. Numerical Modeling of the Transient Thermal Interference of Vertical U-tube Heat Exchangers[D]. Ph.D.Theses, Texas A&M Uneversity,College Station,TX.1995.
    [85] S.P.Rottmayer, W.A.Beckman, J.W.Mitchell. Simulation of a Single Vertical U-tube Ground Heat Exchanger in an Infinite Medium[J].ASHRAE Transactions .1997,103(2):651—659.
    [86] Shonder J, Beck J. Determining Effective Soil Formation Properties from Field Data Using a Parameter Estimation Technique[J], ASHRAE Trans.1999, Vol.105,No.1: 458–466.
    [87] Bernier,M.A. Ground-coupled Heat Pump System Simulation[J]. ASHRAE Transactions , 2001.8.3, Vol.107:1—12.
    [88] Yavuzturk, C, J. D. Spitler. A Short Time Step Response Factors Model for Vertical Ground Loop Heat Exchangers. ASHRAE Transactions 1999.105(2): 475—485.
    [89] Yavuzturk, C., J. D. Spitler, S. J. Rees. A Transient two-dimensional Finite Volume Model for the Simulation of Vertical U-Tube Ground Heat Exchangers. ASHRAE Transactions 1999.105(2): 465—474.
    [90] Kavanaugh,S.P. Impact of Operating Hours on Long-Term Heat Storage and the Design of Ground Heat Exchangers[J].ASHRAE Transactions Vol.109 2003,46(18):1—5.
    [91]吕灿仁,马一太,运用热泵提高低温地热采暖系统能源利用率的分析[J],天津大学学报,1982(4):1—8.
    [92]高祖锟,用于供暖的土壤—水热泵系统[J],暖通空调1995(4):9~12.
    [93]李芃、于立强,张晶明,U型垂直埋管式土壤源热泵制冷性能的实验研究[J],建筑热能通风空调,2000.vol.3,14-17
    [94]张开黎,垂直埋管土壤源热泵(U-TUBE)的供热供冷研究[D],硕士论文,青岛建筑工程学院,2000.
    [95]刘宪英,丁勇,胡鸣明,浅埋竖管换热器地热源热泵夏季供冷试验研究[J],暖通空调HVAC,2000.8:1-4.
    [96]王勇,付祥钊,地源热泵的套管式地下换热器研究[J] ,重庆建筑大学学报,1997.10,Vol.19,No.5:13—17.
    [97]魏唐棣,胡鸣明,丁勇等,地源热泵冬季供暖测试及传热模型,暖通空调HVAC,2000,Vol.30,No.1:12—14.
    [98]孙纯武,张素云,刘宪英,水平埋管换热器地热源热泵实验研究及传热模型,重庆建筑大学学报,2001.12,Vol.26,no.6:49—55.
    [99]李元旦,魏先勋,水平埋地管换热器夏季瞬态工况的实验与数值模拟[J],湖南大学学报(自然科学版)1999.4:58—63.
    [100]陈友明,王宇航,莫志娇等,竖直U型埋管地下换热器的传热模型[J],太阳能学报,2008.10,Vol.29No.10:1211—1217.
    [101]周亚素,土壤热源热泵动态特性与能耗分析研究[D] ,博士论文,同济大学,2001.
    [102]黄俊惠,时晓燕,唐志伟,地源热泵U型管地下换热器的准三维模型[J],中国农业大学学报,2004.9(5):51~54.
    [103]高青,李明,闫燕,群井地下换热系统初温和构造因素影响传热的研究[J],热科学与技术, 2005.4:34~40.
    [104]江彦,高青,李明等,套管式地下换热器传热模型及其传热分析[J],吉林大学学报,2007.9,Vol.37,No.5:1034—1038.
    [105]张欢,土壤蓄冷与耦合热泵地下埋管结构及运行模式优化[D],硕士论文,哈尔滨工业大学,2006.
    [106]范蕊,马最良,热渗耦合作用下地下埋管换热器的传热分析,暖通空调HVAC,2006,Vol.36,No.2:6—10.
    [107]杨卫波,施明恒,基于垂直U型埋管换热器的圆柱源理论及其应用研究[J],制冷学报,2006.10, Vol.27,No.5: 51—57.
    [108]罗苏瑜,土壤蓄能与土壤源热泵集成系统地埋管换热特性研究[D],硕士论文,中南大学,2007.
    [109]李恺渊,基于管群换热器温度场分析的土壤源热泵运行特性研究[D],硕士论文,河北工程大学,2007.
    [110]李义昌,地下水动力学[M],中国矿业大学出版社(第一版),1995,15—16.
    [111]地下水的概述[J/OL], http://celiang.tongji.edu.cn/gcdzx/subject/gongchengdizhi/myweb4/2yanshi/right1.htm.
    [112]陶文铨,数值传热学(第2版)[M],西安交通大学出版社,2001,420—437.
    [113]陶文铨,数值传热学(第1版)[M],西安交通大学出版社,1988,160—162.
    [114] Witte.H.J.L, Gelder.A.J.V, Serrao.M, Comparison of Design and Operation of a Commercial UK Ground Source Heat Pump Project[C],1st International Conference on Sustainable EnergyTechnologies,2002.
    [115] Stevens James W. Coupled Conduction and Intermittent Convective Heat Transfer from a Buried Pipe. Heat Transfer Engineering 2002,23(4):34—43.
    [116] Fredrik Karlsson, Per Fahlen.Capacity-controlled Ground Source Heat Pumps in Hydronic Heating Systems.International Journal of Refrigeration,2007,30 (2):221—229.
    [117] Qing Gao,Ming Li,Ming Yu.Experiment and Simulation of Temperature Characteristics of Intermittently-controlled Ground Heat Exchangers.Renewable Energy,2010,35(6):1169—1174.
    [118]徐伟译,地源热泵工程技术指南[M],中国建筑工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700