用户名: 密码: 验证码:
泡沫金属的动态压溃模型和率敏感性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的金属材料相比,泡沫金属材料由于含有多种多样的细观结构,从而具有超轻、高能量吸收等优良的力学性能和减震、散热、隔热和电磁屏蔽等多功能复合特性。细观结构的随机性和缺陷可能对泡沫金属的宏观力学性能有较大的影响。实验的方法很难讨论细观结构的随机性等特性对泡沫金属宏观力学行为的影响,通过数值模拟的手段可以很方便地揭示这一问题,可以为泡沫金属材料和泡沫金属复合结构在工程中的应用提供理论指导。动态冲击情况下泡沫金属的惯性效应和泡沫金属材料的率效应通常耦合在一起。然而泡沫金属在动态冲击过程中产生的变形局部化导致采用传统的SHPB实验的方法来解耦其惯性效应和作为材料的率效应是非常困难的。本文采用冲击波理论对泡沫金属的动态冲击行为进行了理论分析,然后通过泡沫金属材料应变场的计算方法,给出了泡沫金属材料在冲击过程中的应力-应变状态等力学特性。
     基于三维随机Voronoi技术,我们构建了三维开孔泡沫金属模型和三维闭孔泡沫金属模型。统计了泡沫金属的不规则度与其细观胞元体积分布的相互关系。为保证泡沫金属细观有限元模型计算的正确性,对有限元网格的特征长度进行收敛性分析。研究表明开孔泡沫金属和闭孔泡沫金属在胞元数量很少的时候它们的平台应力均随着胞元数量的增加而增加,最终趋于一个稳定的值。当胞元个数达到一定数量时,模型的尺度效应是可以忽略的。另外,通过数值模拟的方式讨论了细观结构的随机性对于开孔和闭孔泡沫金属模型宏观动静态力学行为的影响。研究表明,细观结构的不规则度对开孔和闭孔泡沫金属模型的宏观动静态力学性能的影响均是不显著的,这种影响也是可以忽略的。
     本文研究了闭孔和开孔两种泡沫金属模型的动态塑性泊松比问题和微惯性效应问题。计算结果表明,无论对于开孔泡沫金属模型还是闭孔泡沫金属模型,泡沫金属的塑性泊松比随着名义应变的增加而下降,塑性泊松比的峰值随着冲击速度的增加而下降,相对密度增加时,泡沫金属塑性泊松比增加。微惯性对平台应力的影响不大。实验中侧向约束情况下,闭孔泡沫金属的压溃应力随着加载速率的提高而下降,这个现象可以由泡沫金属塑性泊松比峰值随着冲击速度的增加而下降和微惯性效应来给出较好的解释。
     本文还研究了准静态压缩条件下闭孔泡沫金属内部气体压强对其宏观力学性能的影响。计算结果表明,在相对密度比较低的泡沫金属模型中,泡沫金属的应力增量是比较显著的,泡沫金属气体压强引起的应力增量也随着名义应变的增大而增大。同时发现,当内部孔穴初始气体压强较大时,气体压强会对泡沫金属的名义泊松比产生一定的影响。最后,通过数值模拟的结果,给出了泡沫金属在内部气体压强影响下的应力增量的估算公式。
     针对泡沫金属模型撞击刚性壁的情形建立了两类动态压溃模型,一维冲击波模型和三维细观有限元模型。以连续介质框架下的应力波理论为基础,并假定了刚性-非线性塑性硬化的加载和刚性卸载的本构关系,建立了一维冲击波模型,给出了冲击波波后应变与冲击时间的隐式表达式。使用有限元软件模拟了闭孔泡沫金属模型的动态压溃过程,并基于最小二乘法计算局部变形梯度和局部应变得到了三维泡沫结构的应变场。通过理论解和数值解的比较,发现该理论模型能够较好的预测泡沫金属杆撞击刚性壁的力学行为。
     我们还对泡沫金属材料在动态冲击情况下的率敏感性进行了探讨。动态冲击过程中泡沫金属产生的局部变形使得实验中解耦其惯性效应和作为材料的率效应是非常困难的。为了研究泡沫金属率效应的影响,泡沫金属细观有限元模型以一定的初始冲击速度直接撞击固定的刚性壁,借助于细观模型的应变场的计算方法,可以获得泡沫金属模型动态冲击下的应变分布。计算结果表明,泡沫金属模型的动态压实应变随着冲击速度的增加而增大,且细观有限元模型的动态压实应变要大于采用准静态本构关系定义的动态压实应变和采用R-P-P-L模型定义的压实应变。根据冲击波理论,反推出冲击波波阵面前方的应力值,发现冲击波波阵面前方的应力值大于准静态情况下的初始压溃应力值。最后得出了泡沫金属模型的动态下的应力-应变状态,并发现动态应力-应变状态和准静态情况下的名义应力-应变关系有显著差异的。通过分析细观模型的变形模式给出了这种差异性的解释,当前的结果表明变形模式的差异是导致泡沫金属材料加载速率敏感性的主要原因。
Compared with traditional metal materials, metallic foams have super light, excellent energy absorption capacity, electromagnetic shielding and novel thermal properties because of the variability of their meso-structures. The irregularity and defects of the metallic foam meso-structures maybe have large influence on the mechanical properties of metallic foams. It is difficult to determine the influence of the irregularity and defects on the mechanical properties of metallic foams in experiment. However, the numerical simulation method can depict the problem conveniently. The relation between the irregularity/defects and the mechanical properties of metallic foams can give theoretical guidance for the application of metallic foams and their composite structures. Under dynamic impact condition, local inertia effects and the definition of the relevant parameters associated with the dynamic response are usually coupled together, and it is hard to decouple them using SHPB experimental equipment because of the deformation localization of the metallic foams. In this paper, using the shock wave theory, we analyse the dynamic impact behaviour of metallic foams. Then, based on the local strain calculation method, the dynamic stress strain states of metallic foams under dynamic impact can be obtained.
     Based on the3D Voronoi technique, we construct a3D open-cell metallic foam model and a3D closed-cell metallic foam. The relations between the irregularity of metallic foams and the cell volume distribution are also obtained. In order to guarantee the validity of the finite element models, we analyse the convergence of the characteristic length of the finite elements. The simulation results show that the plateau stress of open-cell/closed-cell metallic foams increases with the increase of the metallic foam cell number, when the number of metallic foam cells is small; then the plateau stress trends to a fixed value. This means that the size effect of the metallic foams is negligible, when the number of cells reaches a certain level. We also use the simulation method to explore the relation between the irregularity of open-cell/closed-cell metallic foams and the mechanical properties of metallic foams. The results show that influence of the irregularity of metallic foams on the mechanical properties of metallic foams is unapparent.
     In this thesis, we investigate the micro-inertia effect and dynamic plastic Poisson's ratio of closed-cell/open-cell metallic foams. The simulation results indicate that the plastic Poisson's ratio varies with the nominal strain, its peak value decreases as the impact velocity increases and the Poisson's ratio increases with the relative density increasing. The micro-inertia effect plays little role in enhancing the plateau stress of metallic foams. A significantly decreasing influence of lateral constraint on the crushing stress with increasing loading rates has been found for a closed-cell metallic foam. This interesting phenomenon can be interpreted by the micro-inertia effect and the decrease of Poisson's ratio in dynamic compression.
     In this thesis, we also explore the relation between the inner gas pressure of closed-cell metallic foams and theirs mechanical properties in quasi-static crushing condition. The simulation results show that the stress increment affected by the inner gas pressure is obviously in low-density closed-cell metallic foams. The stress increment also increases with the increase of the nominal strain. When the inner gas pressure reaches a high level, the gas pressure can affect the Poisson's ratio of the metallic foams. Finally, we give the estimated formula between the inner gas pressure and the stress increment from the simulation results.
     Two models are developed for describing the dynamic crushing of metallic foams striking a rigid wall:a one-dimensional shock model and a3D cell-based finite element model. The shock model is proposed by using the continuum-based stress wave theory and assuming the rigid-nonlinear hardening plastic constitutive relation of foam, and then an implicit expression for determining the relation between local strain behind the shock front and the impact time is obtained. The dynamic crushing process of cell-based finite element model is simulated by using the ABAQUS/Explicit software. The local strain field is obtained by using the least squares method to calculate the deformation gradient and local strain. By comparing with the simulation results, the shock model presents good predictions of the stress and the strain behind the shock front.
     We also explore rate sensitivity of metallic foams under dynamic impact. Current experimental techniques make it difficult to obtain the dynamic constitutive relations of cellular metals since local inertia effects are not easily decoupled from the definition of the relevant parameters associated with the dynamic response. In order to study this effect, a cell-based metallic foam is considered in which the foam specimen impinges normally with an initial velocity, Vo, on a stationary rigid wall. Using the local engineering strain calculation method, we can obtain the local strain distribution of the metallic foam under dynamic impact. The simulation results show that the dynamic densification strain increases with the increase of impact velocity and is larger than the quasi-static densification strain used in the R-P-P-L shock model. According to the shock wave theory, the stress ahead of the shock front can be obtained, which is found to be larger than the initial crush stress in the quasi-static compression. Finally, it is found that the dynamic stress-strain states are obviously below the quasi-static stress-strain relation. This difference is explained by analysing the deformation modes at the cell level. The present results reveal that the difference of deformation modes is the main reason of the loading-rate sensitivity of metallic foams.
引文
[1]Ashby MF, Medalist RM.1983. The mechanical properties of cellular solids. Metallurgical Transactions A,14(9):1755-1769.
    [2]Lauriks W.1994. Acoustic characteristics of low density foams. Low density cellular plastics, Springer, p.319-361.
    [3]Mills N, Zhu H.1999. The high strain compression of closed-cell polymer foams. Journal of the Mechanics and Physics of Solids,47(3):669-695.
    [4]Sun H, Xu Z, Gao C.2013. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials, DOI:10.1002/adma.201204576.
    [5]Gibson LJ, Ashby MF.1997. Cellular solids:structure and properties. UK:Cambridge university press.
    [6]Wang X. Lu TJ.1999. Optimized acoustic properties of cellular solids. The Journal of the Acoustical Society of America,106(2):756-765.
    [7]Gu S, Lu TJ, Evans AG. 2001. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. International Journal of Heat and Mass Transfer,44(11):2163-2175.
    [8]Kim T, Zhao C, Lu TJ, Hodson H.2004. Convective heat dissipation with lattice-frame materials. Mechanics of Materials,36(8):767-780.
    [9]Lu TJ, Hess A, Ashby M.1999. Sound absorption in metallic foams. Journal of Applied Physics,85(11):7528-7539.
    [10]刘培生.2004.多孔材料引论.北京:清华大学出版社.
    [11]Pachavis RH.1998. Porous and cellular materials for structural applications. Porous and Cellular Materials for Structural Applications. Materials Research Society, Symposium Proceedings,521:3-13.
    [12]Seeliger HW.1997. Complex shaped aluminium foam sandwich panels for automotive applications. In:Proc. Symp. Metal Foams, Stanton. pp.8-10.
    [13]Seeliger HW, Banhart J.1999. Metal foams and porous metal structures. In:Int. Conf., Bremen, Germany, pp.14-16.
    [14]Lu GX, Yu TX.2003. Energy absorption of structures and materials. Cambridge:Woodhead Publishing.
    [15]Wallach JC, Gibson LJ.2001. Mechanical behavior of a three-dimensional truss material. International Journal of Solids and Structures,38(40-41):7181-7196.
    [16]Wallach JC, Gibson LJ.2001. Defect sensitivity of a 3D truss material. Scripta Materialia, 45(6):639-644.
    [17]Deshpande VS, Fleck NA, Ashby MR 2001. Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids,49(8):1747-1769.
    [18]Ashby MF, Lu TJ.2003. Metal foams:A survey. Science in China Series B:Chemistry, 46(6):521-532.
    [19]Kim H-S, Wierzbicki T.2000. Numerical and analytical study on deep biaxial bending collapse of thin-walled beams. International journal of mechanical sciences,42(10): 1947-1970.
    [20]Wu C, Sun C.1996. Low velocity impact damage in composite sandwich beams. Composite Structures,34(1):21-27.
    [21]Sokolinsky VS, Shen H, Vaikhanski L, Nutt SR.2003. Experimental and analytical study of nonlinear bending response of sandwich beams. Composite Structures,60(2):219-229.
    [22]Fleck N, Deshpande V.2004. The resistance of clamped sandwich beams to shock loading. Transactions-american society of mechanical engineers journal of applied mechanics,71: 386-401.
    [23]Yu JL, Wang EH, Li JR, Zheng ZJ.2008. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending. International Journal of Impact Engineering,35(8):885-894.
    [24]Shim V, Yap K.1997. Modelling impact deformation of foam-plate sandwich systems. International journal of impact engineering,19(7):615-636.
    [25]Meunier M, Shenoi R.2001. Dynamic analysis of composite sandwich plates with damping modelled using high-order shear deformation theory. Composite Structures, 54(2):243-254.
    [26]Bart-Smith H, Hutchinson JW, Evans AG. 2001. Measurement and analysis of the structural performance of cellular metal sandwich construction. International Journal of Mechanical Sciences,43(8):1945-1963.
    [27]Pokharel N, Mahendran M.2004. Finite element analysis and design of sandwich panels subject to local buckling effects. Thin-walled structures,42(4):589-611.
    [28]Radford DD, McShane GJ, Deshpande VS, Fleck NA.2006. The response of clamped sandwich plates with metallic foam cores to simulated blast loading. International Journal of Solids and Structures,43(7-8):2243-2259.
    [29]Seitzberger M, Rammerstorfer FG, Degischer HP, Gradinger R.1997. Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mechanica,125(1-4):93-105.
    [30]Santosa SP, Wierzbicki T. Hanssen AG, Langseth M.2000. Experimental and numerical studies of foam-filled sections. International Journal of Impact Engineering,24(5): 509-534.
    [31]Mantena PR, Mann R.2003. Impact and dynamic response of high-density structural foams used as filler inside circular steel tube. Composite structures,61(4):291-302.
    [32]Aktay L, Toksoy A, Guden M.2006. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes:experimental and numerical analysis. Materials & design,27(7):556-565.
    [33]Zhang X, Cheng G 2007. A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. International journal of impact engineering, 34(11):1739-1752.
    [34]Mirfendereski L, Salimi M, Ziaei-Rad S.2008. Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings. International Journal of Mechanical Sciences,50(6):1042-1057.
    [35]Wubben T, Stanzick H, Banhart J, Odenbach S.2003. Stability of metallic foams studied under microgravity. Journal of Physics:Condensed Matter,15(1):S427.
    [36]Banhart J, Baumeister J, Weber M.1995. Powder metallurgical technology for the production of metallic foams. Euro Powder Metallurgy,95:201-208.
    [37]Banhart J.2001. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science,46(6):559-U3.
    [38]Evans AG, Hutchinson JW, Ashby MF. 1998. Multifunctionality of cellular metal systems. Progress in Materials Science,43(3):171-221.
    [39]Lu TJ, Valdevit L, Evans AG.2005. Active cooling by metallic sandwich structures with periodic cores. Progress in Materials Science,50(7):789-815.
    [40]Ashby MF, Evans T, Fleck NA, Hutchinson J, Wadley H, Gibson L.2000. Metal Foams: A Design Guide. Boston:Butterworth-Heinemann.
    [41]Degischer H-P, Kriszt B.2002. Handbook of cellular metals:Production, Processing, Applications. weinheim:wiley.
    [42]Zhu HX, Knott JF, Mills NJ.1997. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. Journal of the Mechanics and Physics of Solids,45(3): 319-&.
    [43]Zhu HX, Mills NJ, Knott JF.1997. Analysis of the high strain compression of open-cell foams. Journal of the Mechanics and Physics of Solids,45(11-12):1875-1904.
    [44]Roberts AP, Garboczi EJ.2002. Elastic properties of model random three-dimensional open-cell solids. Journal of the Mechanics and Physics of Solids,50(1):33-55.
    [45]Grenestedt JL, Tanaka K.1998. Influence of cell shape variations on elastic stiffness of closed cell cellular solids. Scripta Materialia,40(1):71-77.
    [46]Grenestedt JL.1998. Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. Journal of the Mechanics and Physics of Solids,46(1):29-50.
    [47]Gan Y, Chen C, Shen Y.2005. Three-dimensional modeling of the mechanical property of linearly elastic open cell foams. International journal of solids and structures,42(26): 6628-6642.
    [48]Gong L, Kyriakides S, Jang W-Y.2005. Compressive response of open-cell foams. Part I: Morphology and elastic properties. International Journal of Solids and Structures,42(5): 1355-1379.
    [49]Gong L, Kyriakides S.2005. Compressive response of open cell foams Part II:Initiation and evolution of crushing. International Journal of Solids and Structures,42(5): 1381-1399.
    [50]Mills NJ, Zhu HX.1999. The high strain compression of closed-cell polymer foams. Journal of the Mechanics and Physics of Solids,47(3):669-695.
    [51]Jang WY, Kraynik AM, Kyriakides S.2008. On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures,45(7-8): 1845-1875.
    [52]Jang WY, Kyriakides S.2009. On the crushing of aluminum open-cell foams:Part Ⅱ analysis. International Journal of Solids and Structures,46(3-4):635-650.
    [53]Jang WY, Kyriakides S.2009. On the crushing of aluminum open-cell foams:Part Ⅰ. Experiments. International Journal of Solids and Structures,46(3-4):617-634.
    [54]Sugimura Y, Meyer J, He MY, BartSmith H, Grenstedt J, Evans AG 1997. On the mechanical performance of closed cell Al alloy foams. Acta Materialia,45(12): 5245-5259.
    [55]Banhart J, Baumeister J.1998. Deformation characteristics of metal foams. Journal of materials science,33(6):1431-1440.
    [56]Andrews E, Sanders W, Gibson LJ.1999. Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,270(2):113-124.
    [57]Beatls J, Thompson M.1997. Density gradient effects on aluminum foam compression behavior. Journal of Materials Science,32(3):595-3.
    [58]Simone AE, Gibson LJ.1998. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia,46(6):2139-2150.
    [59]Avalle M. Belingardi G, Montanini R.2001. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. International Journal of Impact Engineering,25(5):455-472.
    [60]Hanssen A. Hopperstad O, Langseth M, Ilstad H.2002. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences,44(2): 359-406.
    [61]Liu QL, Subhash G, 2004. A phenomenological constitutive model for foams under large deformations. Polymer Engineering and Science,44(3):463-473.
    [62]Avalle M, Belingardi G, Ibba A.2007. Mechanical models of cellular solids:Parameters identification from experimental tests. International Journal of Impact Engineering,34(1): 3-27.
    [63]Gioux G, McCormack TM, Gibson LJ.2000. Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences,42(6):1097-1117.
    [64]Doyoyo M, Wierzbicki T.2003. Experimental studies on the yield behavior of ductile and brittle aluminum foams. International Journal of Plasticity,19(8):1195-1214.
    [65]Sridhar I, Fleck NA.2005. The multiaxial yield behaviour of an aluminium alloy foam. Journal of Materials Science,40(15):4005-4008.
    [66]Deshpande VS, Fleck NA.2000. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids,48(6-7):1253-1283.
    [67]Miller RE.2000. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. International Journal of Mechanical Sciences,42(4): 729-754.
    [68]Chen C, Lu TJ.2000. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids. International Journal of Solids and Structures,37(52):7769-7786.
    [69]Chen C, Lu TJ, Fleck NA.1999. Effect of imperfections on the yielding of two-dimensional foams. Journal of the Mechanics and Physics of Solids,47(11): 2235-2272.
    [70]Silva MJ, Hayes WC, Gibson LJ.1995. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. International Journal of Mechanical Sciences,37(11):1161-1177.
    [71]Silva MJ, Gibson LJ.1997. The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. International Journal of Mechanical Sciences,39(5):549-563.
    [72]Lu TJ, Chen C.1999. Thermal transport and fire retardance properties of cellular aluminium alloys. Acta Materialia,47(5):1469-1485.
    [73]Shulmeister V, Van der Burg MWD, Van der Giessen E, Marissen R.1998. A numerical study of large deformations of low-density elastomeric open-cell foams. Mechanics of Materials,30(2):125-140.
    [74]Zhu HX, Hobdell JR, Windle AH.2000. Effects of cell irregularity on the elastic properties of open-cell foams. Acta Materialia,48(20):4893-4900.
    [75]Zhu HX, Windle AH.2002. Effects of cell irregularity on the high strain compression of open-cell foams. Acta Materialia,50(5):1041-1052.
    [76]Elmoutaouakkil A, Salvo L, Maire E, Peix G. 2002.2D and 3D characterization of metal foams using X-ray tomography. Advanced Engineering Materials,4(10):803-807.
    [77]Olurin OB, Arnold M, Korner C, Singer RE 2002. The investigation of morphometric parameters of aluminium foams using micro-computed tomography. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 328(1-2):334-343.
    [78]Saadatfar M, Garcia-Moreno F, Hutzler S, Sheppard AP, Knackstedt MA, Banhart J, Weaire D.2009. Imaging of metallic foams using X-ray micro-CT. Colloids and Surfaces a-Physicochemical and Engineering Aspects,344(1-3):107-112.
    [79]Salvo L, Suery M, Marmottant A, Limodin N, Bernard D.2010.3D imaging in material science:Application of X-ray tomography. Comptes Rendus Physique,11(9-10):641-649.
    [80]Dillard T, N'Guyen F, Maire E, Salvo L, Forest S, Bienvenu Y, Bartout JD, Croset M, Dendievel R, Cloetens P.2005.3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography. Philosophical Magazine,85(19):2147-2175.
    [81]McDonald SA, Mummery PM, Johnson G, Withers PJ.2006. Characterization of the three-dimensional structure of a metallic foam during compressive deformation. Journal of Microscopy-Oxford,223:150-158.
    [82]Saadatfar M, Mukherjee M, Madadi M, Schroder-Turk GE, Garcia-Moreno F, Schaller FM, Hutzler S, Sheppard AP, Banhart J, Ramamurty U.2012. Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression. Acta Materialia,60(8):3604-3615.
    [83]Abdul-Aziz A, Abumeri G, Garg M, Young PG. 2008. Structural evaluation of a nickel base super alloy metal foam via NDE and finite element. Behavior and Mechanics of Multifunctional and Composite Materials 2008,69291.
    [84]Rakow JF, Waas AM.2005. Size effects and the shear response of aluminum foam. Mechanics of Materials,37(1):69-82.
    [85]Rakow JF, Waas AM.2004. Size effects in metal foam cores for sandwich structures. Aiaa Journal,42(7):1331-1337.
    [86]Andrews EW, Gioux G, Onck P, Gibson LJ.2001. Size effects in ductile cellular solids. Part Ⅱ:experimental results. International Journal of Mechanical Sciences,43(3): 701-713.
    [87]Gibson LJ.2000. Mechanical behavior of metallic foams. Annual Review of Materials Science,30:191-227.
    [88]Onck PR, Andrews EW, Gibson LJ.2001. Size effects in ductile cellular solids. Part Ⅰ: modeling. International Journal of Mechanical Sciences,43(3):681-699.
    [89]Chen C, Fleck NA.2002. Size effects in the constrained deformation of metallic foams. Journal of the Mechanics and Physics of Solids,50(5):955-977.
    [90]Mukai T, Kanahashi H, Miyoshi T, Mabuchi M, Nieh TG, Higashi K.1999. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scripta Materialia,40(8):921-927.
    [91]Paul A, Ramamurty U.2000. Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,281(1-2):1-7.
    [92]Kumar PS, Ramachandra S, Ramamurty U.2003. Effect of displacement-rate on the indentation behavior of an aluminum foam. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,347(1-2):330-337.
    [93]Ramachandra S, Kumar PS, Ramamurty U.2003. Impact energy absorption in an A1 foam at low velocities. Scripta Materialia,49(8):741-745.
    [94]Dannemann KA, Lankford J.2000. High strain rate compression of closed-cell aluminium foams. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,293(1-2):157-164.
    [95]Yi F, Zhu ZG, Zu FQ, Hu SS, Yi P.2001. Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Materials Characterization, 47(5):417-422.
    [96]胡时胜,王悟,潘艺,周璟.2003泡沫材料的应变率效应.爆炸与冲击,23(1):13-18.
    [97]Kanahashi H, Mukai T, Yamada Y, Shimojima K, Mabuchi M, Nieh TG, Higashi K.2000. Dynamic compression of an ultra-low density aluminium foam. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,280(2): 349-353.
    [98]Montanini R.2005. Measurement of strain rate sensitivity of aluminium foams for energy dissipation. International Journal of Mechanical Sciences,47(1):26-42.
    [99]Kenny LD.1996. Mechanical properties of particle stabilized aluminum foam. In:5th International Conference on Aluminium Alloys-Their Physical and Mechanical Properties (ICAA5), Grenoble, France, pp.1883-1889.
    [100]Lankford J, Dannemann KA.1998. Strain rate effects in porous materials. In: Materials-Research-Society Symposium on Porous and Cellular Materials for Structural Applications, San Francisco, Ca, pp.103-108.
    [101]Hall IW, Guden M, Yu CJ.2000. Crushing of aluminum closed cell foams:Density and strain rate effects. Scripta Materialia,43(6):515-521.
    [102]Ruan D, Lu G, Chen FL, Siores E.2001. Compressive behaviour of aluminium foams at low and medium strain rates. In:11th International Conference on Composite Structures (ICCS 11), Melbourne, Australia, pp.331-336.
    [103]Zhao H, Elnasri I, Abdennadher S.2005. An experimental study on the behaviour under impact loading of metallic cellular materials. International Journal of Mechanical Sciences,47(4-5):757-774.
    [104]Zhang YF, Tang YZ, Zhou G, Wei JN, Han FS.2002. Dynamic compression properties of porous aluminum. Materials Letters,56(5):728-731.
    [105]Radford DD, Deshpande VS, Fleck NA.2005. The use of metal foam projectiles to simulate shock loading on a structure. International Journal of Impact Engineering,31(9): 1152-1171.
    [106]Tan PJ, Reid SR, Harrigan JJ, Zou Z, Li S.2005. Dynamic compressive strength properties of aluminium foams. Part Ⅰ-experimental data and observations. Journal of the Mechanics and Physics of Solids,53(10):2174-2205.
    [107]Tan PJ, Reid SR, Harrigan JJ, Zou Z, Li S.2005. Dynamic compressive strength properties of aluminium foams. Part Ⅱ-'shock' theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids,53(10): 2206-2230.
    [108]Liu YD, Yu JL, Zheng ZJ, Li JR.2009. A numerical study on the rate sensitivity of cellular metals. International Journal of Solids and Structures,46(22-23):3988-3998.
    [109]Kolsky H.1949. An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading. Proc. Phys. Soc., B,62:676-700.
    [110]Deshpande VS, Fleck NA.2000. High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering,24(3):277-298.
    [111]Reid S, Peng C.1997. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering,19(5-6):531-570.
    [112]Zheng Z, Liu Y, Yu J. Reid SR.2012. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes. International Journal of Impact Engineering,42:66-79.
    [113]Lopatnikov SL, Gama BA, Haque MJ, Krauthauser C, Gillespie JW, Guden M, Hall IW. 2003. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment. Composite Structures,61(1-2):61-71.
    [114]Lopatnikov SL, Gama BA. Gillespie JW.2007. Modeling the progressive collapse behavior of metal foams. International Journal of Impact Engineering,34(3):587-595.
    [115]Lopatnikov SL, Gama BA, Haque MJ, Krauthauser C, Gillespie JW.2004. High-velocity plate impact of metal foams. International Journal of Impact Engineering,30(4):421-445.
    [116]Harrigan JJ, Reid SR, Yaghoubi AS.2010. The correct analysis of shocks in a cellular material. International Journal of Impact Engineering,37(8):918-927.
    [117]Harrigan JJ, Reid SR, Tan PJ, Reddy TY.2005. High rate crushing of wood along the grain. International Journal of Mechanical Sciences,47(4-5):521-544.
    [118]Pattofatto S, Elnasri I, Zhao H, Tsitsiris H, Hild F, Girard Y.2007. Shock enhancement of cellular structures under impact loading:Part II analysis. Journal of the Mechanics and Physics of Solids,55(12):2672-2686.
    [119]Elnasri I, Pattofatto S, Zhao H, Tsitsiris H, Hild F, Girard Y.2007. Shock enhancement of cellular structures under impact loading:Part I experiments. Journal of the Mechanics and Physics of Solids,55(12):2652-2671.
    [120]Zou Z, Reid SR, Tan PJ, Li S, Harrigan JJ.2009. Dynamic crushing of honeycombs and features of shock fronts. International Journal of Impact Engineering,36(1):165-176.
    [121]Tan PJ, Reid SR, Harrigan JJ.2012. On the dynamic mechanical properties of open-cell metal foams-A re-assessment of the'simple-shock theory". International Journal of Solids and Structures,49(19-20):2744-2753.
    [122]Zheng ZJ, Yu JL, Li JR.2005. Dynamic crushing of 2D cellular structures:A finite element study. International Journal of Impact Engineering,32(1-4):650-664.
    [123]Li K, Gao XL, Wang J.2007. Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness. International Journal of Solids and Structures,44(14-15):5003-5026.
    [124]Ma GW, Ye ZQ, Shao ZS.2009. Modeling loading rate effect on crushing stress of metallic cellular materials. International Journal of Impact Engineering,36(6):775-782.
    [125]Bowyer A.1981. Computing Dirichlet Tessellations. Computer Journal,24(2):162-166.
    [126]Watson DF.1981. Computing the N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes. Computer Journal,24(2):167-172.
    [127]Okabe A, Boots B, Sugihara K.1992. Spatial tessellations:concepts and applications of Voronoi diagrams. Chichester:Wiley.
    [128]Pineda E, Bruna P, Crespo D.2004. Cell size distribution in random tessellations of space. Physical Review E,70(6):066119.
    [129]Zuyev SA.1992. Estimates for Distributions of the Voronoi Polygons Geometric Characteristics. Random Structures & Algorithms,3(2):149-162.
    [130]Kumar VS, Kumaran V.2005. Voronoi cell volume distribution and configurational entropy of hard-spheres. Journal of Chemical Physics,123(11):114501.
    [131]廖剑晖 庄由.2009.基于 ABAQUS 的有限元分析和应用.北京:清华大学出版社.
    [132]Zhu HX, Hobdell JR, Windle AH.2001. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. Journal of the Mechanics and Physics of Solids, 49(4):857-870.
    [133]Borovinsek M, Ren Z.2008. Computational modelling of irregular open-cell foam behaviour under impact loading. Materialwissenschaft Und Werkstofftechnik,39(2): 114-120.
    [134]Song YZ, Wang ZH, Zhao LM, Luo JA.2010. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Materials & Design,31(9): 4281-4289.
    [135]Yu JL, Wang EH, Li JR.2008. An experimental study on the quasi-static and dynamic behavior of aluminum foams under multi-axial compression. Advances in Heterogeneous Material Mechanics 2008 eds. JH Fan, HB Chen. DEStech Publications, Lancaster (2008), pp.879-882.
    [136]Raj RE, Parameswaran V, Daniel BSS.2009. Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,526(1-2):11-15.
    [137]Vesenjak M, Veyhl C, Fiedler T.2012. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,541:105-109.
    [138]Shim VPW, Tay BY, Stronge WJ.1990. Dynamic Crushing of Strain-Softening Cellular Structures-a One-Dimensional Analysis. Journal of Engineering Materials and Technology-Transactions of the Asme,112(4):398-405.
    [139]Li QM, Meng H.2002. Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering,27(10):1049-1065.
    [140]王志华,张铱纷,任会兰,赵隆茂.2009.冲击波在泡沫金属材料中传播特性的研究.中国科学:G辑,(009):1258-1267.
    [141]张铱鈖,赵隆茂.2006.非均匀泡沫金属材料在冲击载荷下的变形模拟.爆炸与冲击,26(001):33-38.
    [142]宋延泽,李志强,赵隆茂.2009.基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析.爆炸与冲击,29(1):49-55.
    [143]王礼立.2005.应力波基础.北京:国防工业出版社.
    [144]Wadell H.1933. Sphericity and roundness of rock particles. Journal of Geology,41(3): 310-331.
    [145]Li J, Shimizu F.2005. Least-square atomic strain. Report, http://mt.seas.upenn.edu/ Archive/Graphics/A/annotate_atomic_strain/Doc/main.pdf.
    [146]Zheng ZJ, Yu JL, Wang CF. Liao SF, Liu YD.2013. Dynamic crushing of cellular materials:A unified framework of shock models. The 3rd International Conference on Impact Loading of Lightweight Structures (ICILLS'2011) June 28-July 1,2011, Valenciennes, France. International Journal of Impact Engineering,53:29-43.
    [147]Liao SF, Zheng ZJ, Yu JL.2013. Dynamic crushing of 2D cellular structures:Local strain field and shock wave velocity. International Journal of Impact Engineering,57:7-16.
    [148]Wang CF, Zheng ZJ, Yu JL. Micro-inertia effect and dynamic poisson's ratio of closed-cell metallic foams under compression.3rd International Conference on Heterogeneous Material Mechanics (ICHMM-2011) May 22-26,2011, Shanghai, China, in:J.H. Fan, J.Q. Zhang, H.B. Chen and Z.H. Jin (Eds.), Advances in Heterogeneous Material Mechanics, DEStech Publications, Lancaster,2011, pp.266-269.
    [149]Wang LL.2007. Foundations of stress waves. Amsterdam:Elsevier Science Ltd.
    [150]Meyers MA.1994 Dynamic behavior of materials. New York:Wiley.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700