用户名: 密码: 验证码:
应急控制中的阻隔控制策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻隔控制作为应急控制的一种非常有效的方法已经在实际中被大量采用,例如传染病控制、网络蠕虫爆发控制和电力系统解列控制等,但关于该策略的系统理论尚未得到充分的探讨。本论文基于最优控制理论给出了动态隔离控制律的设计方法,讨论了最优隔离控制策略在SARS传播控制和蠕虫爆发控制中的应用。此外,利用图论理论也研究了在应急状态下基于大系统分割的阻隔策略。本论文是关于阻隔控制理论的初步研究,其主要内容如下:
     1由于缺乏有效的疫苗和治疗手段,检疫隔离策略是控制SARS传播的最重要手段。本章基于一类SEQIJR传播模型,引入了表示检疫隔离策略的控制变量,讨论了动态检疫隔离策略在SARS传播控制中的应用。分别利用Pontryagin极大值原理和遗传算法给出了最优和次优控制律的设计方法。仿真结果验证了此最优和次优隔离控制的有效性,并且指出在传染病爆发的最初阶段实施最大强度控制具有非常重要的意义。这也解释了SARS爆发期间采取的“早发现,早隔离”这一强有力控制措施的重要性。此外,本章提出的次优控制方法不但其控制效果和代价非常接近于最优控制,而且形式较为简单,适用于实际的传染病控制。
     2相对于第一部分对孤立单区域的研究,本部分重点研究由于人口流动而造成的SARS在多区域之间的传播及其相应的动态检疫隔离策略。建立了一类多区域的SARS传播模型,在模型中引入了表示各区域内检疫隔离策略的控制变量,而后利用Pontryagin极大值原理给出了动态最优隔离控制律的设计方法。结果表明本章提出的多区域传播模型很好地描述了SARS在区域之间的传播过程。此外,仿真结果不仅说明了在传染病爆发初期各区域内实施最大强度隔离控制的重要性而且也指出了区域间对检疫观察流动人口的必要性。同时这也解释了SARS爆发期间采取“早发现,早隔离”和区域间检疫隔离流动人口等防控措施对SARS疾病控制的重要性;
     3基于Two-Factor传播模型讨论了动态隔离策略在网络蠕虫传播控制中的应用。在模型中引入了表示隔离策略的控制变量,分别利用Pontryagin极大值原理和遗传算法给出了最优和次优隔离控制律的设计方法。仿真结果验证了此最优和次优隔离控制的有效性,同时也说明了在蠕虫爆发初期实施最大强度隔离控制的重要性。
     4引入基于系统分割的阻隔控制概念,利用图论理论讨论了在应急状态下大系统的分割问题,得到了可选和可行阻隔控制策略满足的必要条件,给出了阻隔控制策略的具体实施方案,将阻隔控制分为最优代价和时间优先两类,分别讨论了在网络蠕虫爆发控制和电力系统解列中的具体应用。
As a kind of effective emergency control, isolation control has been widely employed in practice, such as epidemics control, Internet worm outbreak control, power system splitting and etc. But the theory of this strategy has not been discussed systemically. In this dissertation, based on optimal control theory, the design of dynamic optimal isolation control laws is proposed. And the applications in SARS epidemics control and Internet worm control are discussed. Furthermore, based on graph theory, the islanding problems of large system under emergency are also investigated. This dissertation gives a pilot study on isolation control theory and the major works are as follows:
     Firstly, in the absence of valid vaccine or medicines, quarantine and isolation strategies are the most important and effective measures against the outbreaks of SARS. Based on a SEQIJR transmission model, a control pair representing the quarantine and isolation strategies is introduced and incorporated in this model. And the application of the dynamic quarantine and isolation control for SARS epidemics control is discussed. The design of dynamic optimal and sub-optimal isolation control laws is proposed via Pontryagin's Maximum Principle and genetic algorithm, respectively. The simulation results illustrate the effectiveness of the optimal and sub-optimal strategies for outbreak control. And the results also demonstrate that the maximum implementations of quarantining and isolation strategies in the early stage of the epidemic are of very critical impacts in the both cases of optimal and sub-optimal control. This gives a theoretical interpretation to the practical experiences that the early quarantine and isolation strategies are critically important to control the outbreaks of epidemics. Furthermore, our results also show that the proposed sub-optimal control can lead to performances close to the optimal control, but with much simpler strategies for epidemics control in practical use.
     Secondly, differed from the research on signal isolated region in first part, this part concerns the spread of disease from region to region by means of traveling population and related dynamic quarantine and isolation strategies. A multigroup SARS transmission model is constructed and pairs of control variables in terms of the quarantine and isolation strategies are introduced in this model. The optimal control laws in each region are obtained via the Pontryagin's Maximum Principle, The simulation results well illustrate how the disease spreads from region to region by means of traveling population. Furthermore, the results not only demonstrate the importance of the early quarantine and isolation strategies but also the necessity of the observation and quarantine of travelers between regions to control the outbreaks of epidemics. This gives theoretical interpretations to the practical experiences that the early quarantine and isolation strategies, as well as the observation and quarantine of travelers between regions, are critically important to contain the epidemic.
     Thirdly, based on the Two-Factor transmission model, the application of the dynamic isolation control for network worm control is discussed. To this end, one control variable representing the isolation strategy is incorporated in the model. The optimal and sub-optimal isolation control laws are obtained via Pontryagin's Maximum Principle and genetic algorithm, respectively. The simulation results illustrate the effectiveness of the optimal and sub-optimal isolation strategies for worm outbreak control. And the results also demonstrate that the maximum implementation of isolation strategy in the early stage during the outbreak is critically important in worm control.
     Finally, based on system islanding, the concept of isolation control is introduced. By graph theory, the islanding problems of large system under emergency are discussed. And necessary conditions of optional isolation strategy and feasible isolation strategy are proposed. Besides, two types of isolation schemes, optimal cost scheme and time primary scheme are proposed and employed in network worm control and power system splitting, respectively.
引文
[1]Brauer F,Castillo-Chavez C.Mathematical Models in Population Biology and Epidemiology[M].Berlin:Springer,2001.
    [2]马知恩.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
    [3]Brookesmith P.Future Plagues:Biohazard,Disease and Pestilence:Mankind's Battle for Survival[M].London:Blandford,1997.
    [4]Boccaccio G.Decameron[M].1348.
    [5]Pistoia.Ordinances for Sanitation in a Time of Mortality[M].1348.
    [6]Knighton H.Chronicler and Canon of St.Mary's Leicester[M].1350s.
    [7]Reville A,Petit-Dutaillis C.Le soulevement des travailleurs d'Angleterre en 1381[M].Paris:A.Picard et ills,1898.
    [8]Venette J d.French friar[M].1359.
    [9]Defoe D.A Journal of the Plague Year[M].1722.
    [10]Taubenberger J K,Reid A H,Krafft A E,Bijwaard K E,Fanning T G.Initial Genetic Characterization of the 1918 "Spanish" Influenza Virus[J].Science,1997,275(5307):1793-1796.
    [11]Taubenberger J K,Reid A H,Lourens R M,Wang R,Jin G,Fanning T G.Characterization of the 1918 influenza virus polymerase genes[J].Nature,2005,437(7060):889-893.
    [12]Tumpey T M,Basler C F,Aguilar P V,Zeng H,Solorzano A,Swayne D E,Cox N J,Katz J M,Taubenberger J K,Palese P.Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus[J].Science,2005,310(5745):77-80.
    [13]Bernoulli D.Essai d'une nouvelle analyse de la mortalite causee par la petite verole et des avantages de l'Inoculation pour la prevenir,in Memoires de Mathematique et de Physique[M].Paris:Academie Royale des Sciences,1760.
    [14]Lucas J.An account of uncommon symptoms succeeding the measles with additional remarks on the infection of measles and smallpox[J].London Med J,1790,11(3):325-331.
    [15]Hamer W H.Epidemic Disease in England:The Evidence of Variability and of Persistency of Type[J].Lancet,1906,1:733-739.
    [16]Ross R.The Prevention of Malaria[M].London:John Murray,1910.
    [17]Ross R.Some quantitative studies in epidemiology[J].Nature,1911,87:466-67.
    [18]World Health Organization.Cumulative Number of Reported Probable Cases of Severe Acute Respiratory Syndrome(SARS)[Z].http://www.who.int/entity/csr/sars/country/en/.2003.
    [19]World Health Organization.Consensus document on the epidemiology of severe acute respiratory syndrome(SARS)[Z]. http://www.who.int/csr/sars/en/. 2003.
    [20] Chowell G, Castillo-Chavez C, Fenimore P W, Kribs-Zaleta C M, Arriola L, Hyman J M. Model parameters and outbreak control for SARS [J]. Emerging Infectious Diseases, 2004, 10(7): 1258-1263.
    [21] Chowell G, Fenimore P W, Castillo-Garsow M A, Castillo-Chavez C. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism [J]. Journal of Theoretical Biology, 2003, 224(1): 1-8.
    [22] Duan Q, Zhu H, Yang Y, Li W, Zhou Y, He J, He K, Zhang H, Zhou T, Song L, Gan Y, Tan H, Jin B, Li H, Zuo T, Chen D, Zhang X. Reovirus, isolated from SARS patients [J]. Chinese Science Bulletin, 2003, 48(13): 1293-1296.
    [23] Dye C, Gay N. Modeling the SARS epidemic [J]. Science, 2003, 300: 1884-1885.
    [24] Gensini G F, Yacoub M H, Conti A A. The concept of quarantine in history. from plague to SARS [J]. Journal of Infection, 2004, 49(4): 257-261.
    [25] Gumel A B, Ruan S G, Day T, Watmough J, Brauer F, van den Driessche P, Gabrielson D, Bowman C, Alexander M E, Ardal S, Wu J H, Sahai B M. Modelling strategies for controlling SARS outbreaks [J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2004, 271(1554): 2223-2232.
    [26] Hsieh Y H, King C C, Chen C W S, Ho M S, Hsu S B, Wu Y C. Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study [J]. Journal of Theoretical Biology, 2007, 244(4): 729-736.
    [27] Hsieh Y H, King C C, Chen C W S, Ho M S, Lee J Y, Liu F C, Wu Y C, JulianWu J S. Quarantine for SARS, Taiwan [J]. Emerging Infectious Diseases, 2005, 11(2): 278-282.
    [28] Jiang C. Optimal control of SARS epidemics based on cybernetics [J]. International Journal of Systems Science, 2007, 38(6): 451-457.
    [29] Lingappa J R, McDonald L C, Simone P, Parashar U D. Wresting SARS from uncertainty [J]. Emerging Infectious Diseases, 2004, 10(2): 167-170.
    [30] Lipsitch M, Cohen T, Cooper B, Robins J M, Ma S, James L, Gopalakrishna G, Chew S K, Tan C C, Samore M H. Transmission Dynamics and Control of Severe Acute Respiratory Syndrome [J]. Science, 2003, 300: 1966-1970.
    [31] Riley S, Fraser C, Donnelly C A, Ghani A C, Abu-Raddad L J, Hedley A J, Leung G M, Ho L M, Lam T H, Thach T Q, Chau P, Chan K P, Leung P Y, Tsang T, Ho W, Lee K H, Lau E M C, Ferguson N M, Anderson R M. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions [J]. Science, 2003, 300(5627): 1961-1966.
    [32] Rothstein M A, Alcalde M G, Elster N R, Majumder M A, Palmer L I, Stone T H, Hoffman R E. Quarantine and Isolation: Lessons Learned from SARS [R]. University of Louisville School of Medicine, Institute for Bioethics, Health Policy and Law, 2003.
    [33]Wang W D,Ruan S G.Simulating the SARS outbreak in Beijing with limited data[J].Journal of Theoretical Biology,2004,227(3):369-379.
    [34]Webb G F,Blaser M J,Zhu H P,Ardal S,Wu J H.Critical role of nosocomial transmission in the Toronto SARS outbreak[J].Mathematical Biosciences and Engineering,2004,1(1):1-13.
    [35]Zhang J,Lou J,Ma Z,Wu J.A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China[J].Applied Mathematics and Computation,2005,162(2):909-924.
    [36]李海龙,任筱钰,刘双.用数学模型分析非典型肺炎预防和隔离措施的有效性[J].生物数学学报,2004,19(1):72-76.
    [37]任筱钰.用数学模型分析非典型肺炎预防和隔离措施的有效性[D].大连:辽宁师范大学,2004.
    [38]王鑫,郭玉翠.用常微分方程模型分析预防和隔离措施对SARS发病率的影响[J].数学的实践与认识,2004,34(12):107-111.
    [39]王行兵,胡燕,吴满琳.隔离措施对北京SARS疫情控制影响的仿真分析[J].计算机仿真.2005.22(11):299-302.
    [40]Ferguson N M,Cummings D A T,Cauchemez S,Fraser C,Riley S,Meeyai A,Iamsirithaworn S,Burke D S.Strategies for containing an emerging influenza pandemic in Southeast Asia[J].Nature,2005,437(7056):209-214.
    [41]Longini I M,Nizam A,Xu S,Ungchusak K,Hanshaoworakul W,Cummings D A T,Halloran M E.Containing Pandemic Influenza at the Source[J].Science,2005,309(5737):1083-1087.
    [42]World Health Organization.WHO global influenza preparedness plan[Z].http://www.who.int/csr/resources/publications/influenza/.2005.
    [43]Shoch J,Hupp J.The "worm" programs-early experiments with a distributed computation[J].Communications of the ACM,1982,22(3):172-180.
    [44]Spafford E H.The Internet Worm Incident[A].In:Proceedings of the 2nd European Software Engineering Conference[C].Coventry,United Kingdom,1989.446-468.
    [45]Qing S,Wen W.A survey and trends on internet worms[J].Computers &Security,2005,24(4):334-346.
    [46]文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(008):1208-1219.
    [47]Moore D,Paxson V,Savage S.Inside the slammer worm[J].IEEE Magazine on Security and Privacy,2003,1(4):33-39.
    [48]张运凯,王方伟,张玉清,马建峰.蠕虫病毒的传播机制研究[J].计算机应用研究,2005,22(4):137-139.
    [49]Staniford S,Paxson V,Weaver N.How to own the Internet in your spare time[A].In:Proceedings of the USENIX Security Symposium[C].2003.149-167.
    [50]Weaver N.Warhol Worms:The Potential for Very Fast Internet Plagues[Z].http://www.cs.berkeley.edu/~nweaver/warhol.html.2002.
    [51]Wen F,David A K.Lessons from Electricity Market Failure in California[J].Automation of Electric Power System,2001,25(5):1-5.
    [52]薛禹胜.综合防御由偶然故障演化为电力灾难一北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-5.
    [53]Sun K,Zheng D,Lu Q.Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods[J].IEEE Transactions on Power Systems,2003,18(2):912-923.
    [54]Sun K,Zheng D,Lu Q.A Simulation Study of OBDD-Based Proper Splitting Strategies for Power Systems Under Consideration of Transient Stability[J].IEEE Transactions on Power Systems,2005,20(1):389-399.
    [55]Zhao Q,Sun K,Zheng D,Ma J,Lu Q.A study of system splitting strategies for island operation of power system:A two-phase method based on OBDDs [J].IEEE Transactions on Power Systems,2003,18(4):1556-1565.
    [56]孙凯.大型电网灾变下基于OBDD的搜索解列策略的三阶段方法[D].北京:清华大学,2.004.
    [57]Moore D,Shannon C,Voelker G,Savage S.Internet quarantine:Requirements for containing self-propagating code[A].In:Proceedings of IEEE INFOCOM 2003[C].San Francisco,CA,2003.
    [58]Wong C,Wang C,Song D,Bielski S,Ganger G R.Dynamic quarantine of Internet worms[A].In:Proceedings of the International Conference on Dependable Systems and Networks(DSN-2004)[C].Florence,Italy,2004.73-82.
    [59]Zou C C,Gong W,Towsley D.Worm propagation modeling and analysis under dynamic quarantine defense[A].In:Proceedings of ACM CCS Workshop on Rapid Malcode(WORM'03)[C].Washington DC,USA,2003.51-60.
    [60]张运凯,王方伟,马建峰,张玉清.基于隔离策略的蠕虫传播模型及分析[J].计算机科学,2005,32(3):62-65.
    [61]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [62]韩晓娜.SARS流行病学传播动力模型研究[D].北京:中国人民解放军军事医学科学院,2006.
    [63]韩晓娜,李承毅,方立群,曹务春.‘传染病模型在SARS防制中的应用[J].中华流行病学杂志,2005,26(3):169-171.
    [64]Kermack W O,McKendrick A G.A Contribution to the Mathematical Theory of Epidemics[J].Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,1927,115(772):700-721.
    [65]Kermack W O,McKendrick A G.Contribution to the Mathematical Theory of Epidemics.Ⅱ.The Problem of Endemicity[J].Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character,1932,138(1):55-83.
    [66]Donnelly C A,Ghani A C,Leung G M,Hedley A J,Fraser C,Riley S,Abu-Raddad L J,Ho L M,Thach T Q,Chau P.Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong[J].The Lancet,2003,361(9371):1761-1766.
    [67]McLeod R G,Brewster J F,Gumel A B,Slonowsky D A.Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs[J].Mathematical Biosciences and Engineering,2006,3(3):527-544.
    [68]Ruan S G,Wang W D,Levin S A.The effect of global travel on the spread of SARS[J].Mathematical Biosciences and Engineering,2006,3(1):205-218.
    [69]Brauer F.The Kermack-McKendrick epidemic model revisited[J].Mathematical Biosciences,2005,198(2):119-131.
    [70]Brauer F.Some simple epidemic models[J].Mathematical Biosciences and Engineering,2006,3(1):1-15.
    [71]Choi B C K,Pak A W P.A simple approximate mathematical model to predict the number of severe acute respiratory syndrome cases and deaths [J].Journal of EpidemioIogy and Community Health,2003,57(10):831-835.
    [72]Ding G H,Liu C,Gong J Q,Wang L,Cheng K,Zhang D.SARS epidemical forecast research in mathematical model[J].Chinese Science Bulletin,2004,49(21):2332-2338.
    [73]Fang H,Chen J,Hu J.Modelling the SARS epidemic by a lattice-based Monte-Carlo simulation[A].In:Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference[C].Shanghai,China,2005.7470-7473.
    [74]Fang H P,Chen J X,Hu J,Xu L X.On the origin of the super-spreading events in the SARS epidemic[J].Europhysics Letters,2004,68(1):147-152.
    [75]Fujie R,Odagaki T.Effects of superspreaders in spread of epidemic[J].Physica A-Statistical Mechanics and Its Applications,2007,374(2):843-852.
    [76]Massad E,Burattini M N,Lopez L F,Coutinho F A B.Forecasting versus projection models in epidemiology:The case of the SARS epidemics[J].Medical Hypotheses,2005,65(1):17-22.
    [77]Zhang S D,Hao H.Analysis on stability of an autonomous dynamics system for SARS epidemic[J].Applied Mathematics and Mechanics(English Edition),2005,26(7/:914-920.
    [78]蔡全才,姜庆五,徐勤丰,程翔,郭强,孙庆文,赵根明.定量评价SARS干预措施效果的传播动力学模型[J].中华流行病学杂志,2005,26(3):153-158.
    [79]陈庚,王远军.一个新的非典型性肺炎模型及其分析[J].高校应用数学学报A辑(中文版),2006,21(3):253-263.
    [80]陈吉荣,杨方廷,战守义,侯立华,魏明,韩军,李伟.北京SARS仿真模型的参数和初始值的处理[J].系统仿真学报,2003,15(7):995-998.
    [81]刘畅,丁光宏,龚剑秋,王凌程,珂张迪.SARS爆发预测和预警的数学 模型研究[J1.科学通报,2004,48(21):2245-2251.
    [82]刘颖,陈禹.复杂适应系统理论对控制SARS疫情的模拟分析[J].复杂系统与复杂性科学,2004,1(2):74-79.
    [83]吕巍,李海龙.北京市SARS数学模型的建立与拟合[J].辽宁师范大学学报(自然科学版),2004,27(3):279-281.
    [84]谭旭辉,柳青,何剑峰,罗惠明.广东省SARS传播模型实证研究[J].疾病控制杂志,2006,10(6):560-563.
    [85]王铎,赵晓飞.SARS疫情的实证分析和预测[J].北京大学学报(医学版),2003,35(S):72-74.
    [86]王议锋,田一,杨倩,尚寿亭.非典数学模型的建立与分析[J].工程数学学报,2003,20(7):45-62.
    [87]徐恭贤,冯恩民,王宗涛,谭欣欣,修志龙.SARS流行病的SEIR动力学模型及其参数辨识[J].黑龙江大学自然科学学报,2005,22(4):459-462,467.
    [88]杨方廷,侯立华,韩军,陈吉荣,魏明,李伟.北京SARS疫情过程的仿真分析[J].系统仿真学报,2003,15(7):991-994.
    [89]赵楠楠,谢文艺,魏诚.SARS传播的数学模型[J].大连海事大学学报,2005,30(1):110-112.
    [90]Hsu S B,Roeger L I W.The final size of a SARS epidemic model without quarantine[J].Journal of Mathematical Analysis and Applications,2007,333(2):557-566.
    [91]Ng T W,Turinici G,Danchin A.A double epidemic model for the SARS propagation[J].BMC Infectious Diseases,2003,3:19.
    [92]Hawryluck L,Gold W L,Robinson S,Pogorski S,Galea S,Styra R.SARS control and psychological effects of quarantine,Toronto,Canada[J].Emerging Infectious Diseases,2004,10(7):1206-1212.
    [93]Castillo-Chavez C,Castillo-Garsow C W,Yakubu A A.Mathematical Models of Isolation and Quarantine[J].JAMA,2003,290(21):2876-2877.
    [94]Liu Z,He K,Yang L,Bian C,Wang Z.Characterizing transmission and control of the SARS epidemic:Novel stochastic spatio-temporal models[A].In:Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference[C].Shanghai,China,2005.7463-7469.
    [95]Lloyd-Smith J O,Galvani A P,Getz W M.Curtailing transmission of severe acute respiratory syndrome within a community and its hospital[J].Proceedings of the Royal Society of London Series B-Biological Sciences,2003,270(1528):1979-1989.
    [96]Shi Y L.Stochastic dynamic model of SARS spreading[J].Chinese Science Bulletin,2003,48(13):1287-1292.
    [97]陈奇志.随机模型在非典型肺炎预测及疫情分析中的应用[J].北京大学学报(医学版),2003,35(S):75-80.
    [98]Zhou Y C,Ma Z,Brauer F.A discrete epidemic model for SARS ransmission and control in China[J].Mathematical and Computer Modelling,2004,40(13):1491-1506.
    [99]Bogaards J A,Putter H,Jan Weverling G,ter Meulen J,Goudsmit J.The potential of targeted antibody prophylaxis in SARS outbreak control:A mathematic analysis[J].Travel Medicine and Infectious Disease,2007,5(2):70-78.
    [100]Zhang Z.The outbreak pattern of SARS cases in China as revealed by a mathematical model[J].Ecological Modelling,2007,204(3-4):420-426.
    [101]刘双.北京2003年SARS疫情的数值模拟[D].大连:辽宁师范大学,2004.
    [102]刘双,李海龙.用差分方程模型模拟北京2003年SARS疫情[J].生物数学学报,2006,21(1):1-8.
    [103]Roberts M G.Modelling strategies for minimizing the impact of an imported exotic infection[J].Proceedings of the Royal Society of London Series B-Biological Sciences,.2004,271(1555):2411-2415.
    [104]Roberts M G.Modeling strategies for containing an invading infection[J].Mathematical Population Studies,2006,13(4):205-214.
    [105]Ahmed E,Elgazzar A S.On fractional order differential equations model for nonlocal epidemics[J].Physica A:Statistical Mechanics and its Applications,2007,379(2):607-614.
    [106]Gjorgjieva J,Smith K,Chowell G,Sanchez F,Snyder J,Castillo-Chavez C.The role of vaccination in the control of SARS[J].Mathematical Biosciences and Engineering,2005,2(4):753-769.
    [107]Gumel A B,McCluskey C C,Watmough J.An sveir model for assessing potential impact of an imperfoct anti-sars vaccine[J].Mathematical Biosciences and Engineering,2006,3(3):485-512.
    [108]James A,Pitchford J W,Plank M J.An event-based model of superspreading in epidemics[J].Proceedings of the Royal Society B-Biological Sciences,2007,274(1610):741-747.
    [109]Kwok K O,Leung G M,Lain W Y,Riley S.Using models to identify routes of nosocomial infection:a large hospital outbreak of SARS in Hong Kong [J].Proceedings of the Royal Society B-Biological Sciences,2007,274(1610):611-618.
    [110]Lloyd-Smith J O,Schreiber S J,Kopp P E,Getz W M.Superspreading and the effect of individual variation on disease emergence[J].Nature,2005,438(7066):355-359.
    [111]黄德生,关鹏,周宝森.SIR模型对北京市SARS疫情流行规律的拟合研究[J].疾病控制杂志,2004,8(5):399-400.
    [112]Zhang Z B,Sheng C F,Ma Z F,Li D M.The outbreak pattern of the SARS cases in Asia[J].Chinese Science Bulletin,2004,49(17):1819-1823.
    [113]Li Z,Chen X,Teng H,Xiu Z L,Sun L H,Feng E M.Infectious kinetics of SARS[J].Progress in Biochemistry and Biophysics,2004,31(2):167-171.
    [114]崔恒建,李仲来,杨华.SARS疫情预测预报中的分段非线性回归方法[J].遥感学报,2003,7(4):245-250.
    [115]Zhou G F,Yan G Y.Severe acute respiratory syndrome epidemic in Asia[J].Emerging Infectious Diseases,2003,9(12):1608-1610.
    [116]李仲来,崔恒建,杨华,李小文.SARS预测的SI模型和分段SI模型[J]. 遥感学报,2003,7(5):345-349.
    [117]Hirose H.The mixed trunsored model with applications to SARS[J].Mathematics and Computers in Simulation,2007,74(6):443-453.
    [118]Chan J S K,Yu P L H,Lam Y,Ho A P K.Modelling SARS data using threshold geometric process[J].Statistics in Medicine,2006,25(11):1826-1839.
    [119]Masuda N,Konno N,Aihara K.Transmission of severe acute respiratory syndrome in dynamical small:world networks[J].Physical Review E,2004,69(3):031917.
    [120]林国基,贾殉,欧阳颀.用小世界网络模型研究SARS病毒的传播[J].北京大学学报(医学版),2003,35(S):66-69.
    [121]Small M,Shi P L,Tse C K.Plausible models for propagation of the SARS virus[J].Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences,2004,E87A(9):2379-2386.
    [122]Small M,Tse C K.Small world and scale free model of transmission of SARS[J].International Journal of Bifurcation and Chaos,2005,15(5):1745-1755.
    [123]Small M,Tse C K.Clustering model for transmission of the SARS virus:application to epidemic control and risk assessment[J].Physica A-Statistical Mechanics and Its Applications,2005,351(2-4):499-511.
    [124]Small M,Tse C K,Walker D M.Super-spreaders and the rate of transmission of the SARS virus[J].Physica D-Nonlinear Phenomena,2006,215(2):146-158.
    [125]Meyers L A,Pourbohloul B,Newman M E J,Skowronski D M,Brunham R C.Network theory and SARS:predicting outbreak diversity[J].Journal of Theoretical Biology,2005,232(1):71-81.
    [126]Bombardt J N.Congruent epidemic models for unstructured and structured populations:Analytical reconstruction of a 2003 SARS outbreak[J].Mathematical Biosciences,2006,203(2):171-203.
    [127]Xie Z L,YangN,Huang B X,Guo X B,Shen C J,Wei X J.Simulation research of SARS control strategy in China:Prevention and control measure's effect comparison[J].Xitong Fangzhen Xuebao / Journal of System Simulation,2004,16(12):2667-2672.
    [128]Xie Z L,YangN,SunCY,KanPX,WeiXJ,GuoXB,ShenCJ,Zhang Z C.Simulation research of SARS control strategy:SARS control strategy and basic parameter[J].Xitong Fangzhen Xuebao / Journal of System Simulation,2005,17(4):990-992.
    [129]龚建华,周洁萍,徐珊,王卫红.SARS传播动力学模型及其多智能体模拟研究[J].遥感学报,2006,10(6):829-835.
    [130]ReVelle C S,Lynn W R,Feldmann F.Mathematical models for the economic allocation of tuberculosis control activities in developing nations [J].American Review of Respiratory Disease,1967,96(5):893-909.
    [131]Taylor H M.Some models in epidemic control[J].Mathematical Biosciences,1968,3:383-398.
    [132] Jaquette D L. A stochastic model for the optimum control of epidemics and pest populations [J]. Mathematical Biosciences, 1970, 8: 343-354.
    [133] Gupta N K, Rink R E. A model for communicable disease control [A]. In: Proceedings of 24th Annual Conference on Engineering in Medicine and Biology [C]. Las Vegas, USA, 1971.
    [134] Gupta N K, Rink R E. Optimum control of epidemics [J]. Mathematical Biosciences, 1973, 18(3-4): 383-396.
    [135] Abakuks A. An Optimal Isolation Policy for an Epidemic [J]. Journal of Applied Probability, 1973, 10(2): 247-262.
    [136] Abakuks A. Optimal Immunisation Policies for Epidemics [J]. Advances in Applied Probability, 1974, 6(3): 494-511.
    [137] Hethcote H W, Waltman P. Optimal vaccination schedules in a deterministic epidemic model [J]. Mathematical Biosciences, 1973, 18(3-4): 365-381.
    [138] Morton R, Wickwire K H. On the Optimal Control of a Deterministic Epidemic [J]. Advances in Applied Probability, 1974, 6(4): 622-635.
    [139] Bahrami K, Kim M. Optimal control of multiplicative control systems arising from cancer therapy [J]. IEEE Transactions on Automatic Control, 1975,20(4): 537-542.
    [140] Bobisud L E. Optimal control of a deterministic epidemic [J]. Mathematical Biosciences, 1977, 35(1-2): 165-174.
    [141] Swan G W, Vincent T L. Optimal control analysis in the chemotherapy of IgG multiple myeloma [J]. Mathematical Medicine and Biology-, 1977, 39(3): 317-337.
    [142] Pontryagin L S, Boltyanskii V G, Gamkrelidze R V, Mishchenko E F. The Mathematical Theory of Optimal Processes [M]. New York: Wiley, 1962.
    [143] Bellman R E. Dynamic Programming [M]. New York: Courier Dover Publications, 2003.
    [144] ReVelle C S, Lynn W R, Feldmann F. Mathematical models for the economic allocation of tuberculosis control activities in developing nations [J]. Amer. Rev. Resp. Dis., 1967, 96: 893-909.
    [145] Jung E, Lenhart S, Feng Z. Optimal control of treatments in a two-strain tuberculosis model [J]. Discrete and Continuous Dynamical Systems-Series B, 2002, 2: 473-482.
    [146] Zietz S, Nicolini C. Mathematical approaches to optimization of cancer chemotherapy [J]. Bulletin of Mathematical Biology, 1979, 41(3): 305-324.
    [147] Swan G W. Optimal control in some cancer chemotherapy problems [J]. International Journal of Systems Science, 1980, 11: 223-237.
    [148] Sundareshan M, Fundakowski R. Stability and control of a class of compartmental systems with application to cell proliferation and cancer therapy [J]. IEEE Transactions on Automatic Control, 1986, 31(11): 1022-1032.
    [149] Swan G W. Cancer chemotherapy: Optimal control using the Verhulst-Pearl equation [J]. Bulletin of Mathematical Biology, 1986, 48(3): 381-404.
    [150] Swan G W. Optimal Control Analysis of a Cancer Chemotherapy Problem [J]. Mathematical Medicine and Biology, 1987, 4(2): 171.
    [151] Swierniak A, Polanski A, Kimmel M. Optimal control problems arising in cell-cycle-specific cancer chemotherapy [J]. Cell Proliferation, 1996, 29(3): 117-139.
    [152] Coldman A J, Murray J M. Optimal control for a stochastic model of cancer chemotherapy [J]. Mathematical Biosciences, 2000, 168(2): 187-200.
    [153] Fister K R, Panetta J C. Optimal Control Applied to Cell-Cycle-Specific Cancer Chemotherapy [J]. SIAM Journal on Applied Mathematics, 2000, 60(3): 1059-1072.
    [154] Ledzewicz U, Schattler H. On a synthesis of controls for a mathematical model of cancerchemotherapy [A]. In: Proceedings of the 39th IEEE Conference on Decision and Control (CDC) [C]. Sydney, Australia, 2000. 4845-4850.
    [155] Ledzewicz U, Schattler H. Optimal Bang-Bang Controls for a Two-Compartment Model in Cancer Chemotherapy [J]. Journal of Optimization Theory and Applications, 2002, 114(3): 609-637.
    [156] Ledzewicz U, Schattler H. Analysis of a cell-cycle specific model for cancer chemotherapy [J]. Journal of Biological Systems, 2002, 10(3): 183-206.
    [157] Ledzewicz U, Schattler H. Optimal controls for a 2-compartment model for cancer chemotherapy with quadratic objective [A]. In: Proceedings of the 5th Portuguese Conference on Automatic Control (Controlo 2002) [C]. Aveiro, Portugal, 2002. 241-247.
    [158] Ledzewicz U, Schattler H. Analysis of a class of optimal control problems arising in cancer chemotherapy [A]. In: Proceedings of the American Control Conference (ACC) [C]. 2002. 3460-3465.
    [159] Ledzewicz U, Schattler H. Optimal control for 3-compartment model for cancer chemotherapy with quadratic objective [A]. In: Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations [C]. Wilmington, NC, 2002.. 544-553.
    [160] Ledzewicz U, Schattler H. Sufficient conditions for optimality of controls in biomedical systems [A]. In: Proceedings of the 41st IEEE Conference on Decision and Control (CDC) [C]. Las Vegas, Nevada, USA, 2002. 3524-3529.
    [161] Ledzewicz U, Schattler H. Optimal control for a bilinear model with recruiting agent in cancer chemotherapy [A]. In: Proceedings of the 42nd IEEE Conference on Decision and Control (CDC) [C]. Maui, Hawaii, 2003. 2762-2767.
    [162] Swierniak A, Ledzewicz U, Schattler H. Optimal control for a class of compartmental models in cancer chemotherapy [J]. International Journal of Applied Mathematics and Computer Science, 2003, 13(3): 357-368.
    [163] Burden T, Ernstberger J, Fister K R. Optimal control applied to immunotherapy [J]. Discrete and Continuous Dynamical Systems-Series B, 2004,4: 135-48.
    [164] Ledzewicz U, Brown T, Schattler H. A comparison of optimal controls for a model in cancer chemotherapy with L1-and L2-type objectives [J]. Optimization Methods and Software, 2004, 19(3-4): 351-359.
    [165] Ledzewicz U, Schattler H. Structure of optimal controls for a cancer chemotherapy model with PK/PD [A]. In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC) [C]. Nassau, Bahamas, 2004. 1376-1381.
    [166] Ledzewicz U, Schattler H. Controlling the Bone Marrow Dynamics in Cancer Chemotherapy [J]. Dynamic Systems and Applications, 2004, 4: 328-335.
    [167] Ledzewicz U, Schattler H. Controlling a model for bone marrow dynamics in cancer chemotherapy [J]. Mathematical Biosciences and Engineering, 2004, 1(1): 95-110.
    [168] Fister K R, Donnelly J H. Immunotherapy: An optimal control theory approach [J]. Mathematical Biosciences and Engineering, 2005, 2(3): 499-510.
    [169] Ledzewicz U, de Pinho M, Ferreira M M, Schattler H. A model for cancer chemotherapy with state space constraints [J]. Nonlinear Analysis, 2005, 63(5): 2591-2602.
    [170] Ledzewicz U, Schattler H. The influence of PK/PD on the structure of optimal control in cancer chemotherapy models [J]. Mathematical Biosciences and Engineering, 2005, 2(3): 1-17.
    [171] Swierniak A, Smieja J. Analysis and optimization of drug resistant and phase-specific cancer chemotherapy models [J]. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670.
    [172] Castiglione F, Piccoli B. Optimal Control in a Model of Dendritic Cell Transfection Cancer Immunotherapy [J]. Bulletin of Mathematical Biology, 2006, 68(2): 255-274.
    [173] Ledzewicz U, Schattler H. Optimal Control for a System Modelling Tumor Anti-Angiogenesis [J]. International Journal on Automatic Control and System Engineering, 2006, 6: 33-39.
    [174] Ledzewicz U, Schattler H. Drug resistance in cancer chemotherapy as an optimal control problem [J]. Discrete and Continuous Dynamical Systems, series B, 2006, 6(1): 129-150.
    [175] Ledzewicz U, Schattler H. Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy [J]. Mathematical Biosciences, 2007, 206(2): 320-342.
    [176] Murray J M. Some optimal control problems in cancer chemotherapy with a toxicity limit [J]. Mathematical Biosciences, 1990, 100(1): 49-67.
    [177] Murray J M. Optimal control for a cancer chemotheraphy problem with general growth and loss functions [J]. Mathematical Biosciences, 1990, 98(2): 273-287.
    [178] Pedreira C E, Vila V B. Optimal schedule for cancer chemotherapy [J]. Mathematical Programming, 1991, 52(1): 11-17.
    [179] Martin R B. Optimal control drug scheduling of cancer chemotherapy [J]. Automatica, 1992,28(6): 1113-1123.
    [180] Wickwire K. A Note on the Optimal Control of Carrier-Borne Epidemics [J]. Journal of Applied Probability, 1975, 12(3): 565-568.
    [181] Swan G W. Optimal Control Applications in the Chemotherapy of Multiple Myeloma [J]. Mathematical Medicine and Biology, 1985, 2(3): 139.
    [182] Dayananda P W A, Hogarth W L. Control for some approximations to chain-binomial epidemic models [J]. Mathematical Biosciences, 1977, 35(1-2): 151-163.
    [183] Dayananda P W A, Hogarth W L. Optimal Health Programs of Immunization and Isolation For Some Approximations to Chain-Binomial Epidemic Models [J]. Mathematical Biosciences, 1978, 41(3-4): 241-251.
    [184] Gonzalez-Guzman J. A mixed program for parasitic disease control [J]. Journal of Mathematical Biology, 1980, 10(1): 53-64.
    [185] Lefevre C L. Optimal Immunization and Isolation Policies for the GREENWOOD Chain-Binomial Epidemic Model [J]. Biometrical Journal, 1981, 23(1): 55-67.
    [186] Swan G W. An optimal control model of diabetes mellitus [J]. Bulletin of Mathematical Biology, 1982, 44(6): 793-808.
    [187] Hethcote H W. Optimal ages of vaccination for measles [J]. Mathematical Biosciences, 1988, 89(1): 29-52.
    [188] Felippe de Souza J A M, Yoneyama T. Optimization of investment policies in the control of mosquito-borne diseases [A]. In: Proceedings of the American Control Conference [C]. Chicago, Illinois, USA, 1992. 681-682.
    [189] Felippe de Souza J A M, Yoneyama T. Optimization of the investment in educational campaigns in the control of insect transmited diseases [A]. In: Proceedings of the 3rd IEEE Conference on Control Applications [C]. Glasgow, Scotland, 1994. 1689-1694.
    [190] Butler S, Kirschner D, Lenhart S. Optimal control of chemotherapy affecting the infectivity of HIV [J]. Advances in Mathematical Population Dynamics: Molecules, Cells, Man. World Scientific Publishing, 1997: 104-120.
    [191] Kirschner D, Lenhart S, Serbin S. Optimal control of the chemotherapy of HIV [J]. Journal of Mathematical Biology, 1997, 35(7): 775-792.
    [192] Wein L M, Zenios S A, Nowak M A. Dynamic multidrug therapies for HIV: A control theoretic approach [J]. Journal of Theoretical Biology, 1997, 185(1): 15-29.
    [193] Fister K R, Lenhart S, McNally J S. Optimizing Chemotherapy in an HIV model [J]. Electronic Journal of Differential Equations, 1998, 1998(32): 1-12.
    [194] Felippe de Souza J A M, Caetano M A L, Yoneyama T. Optimal control theory applied to the anti-viral treatment of AIDS [A]. In: Proceedings of the 39th IEEE Conference on Decision and Control (CDC) [C]. Sydney, Australia, 2000. 4839-4844.
    [195] Felippe de Souza J A M, Caetano M A L, Yoneyama T. Numerical Optimization Applied to the Treatment of AIDS in the Presence of Mutant HIV Virus [A]. In: Proceedings of the 4th IFAC Symposium on Modelling and Control in Biomedical Systems [C]. Greifswald, Germany, 2000. 91-96.
    [196] Felippe de Souza J A M, Caetano M A L, Yoneyama T. Simulation Analysis of Dose Response in the Treatment of AIDS [A]. In: Proceedings of the International Conference on Health Science Simulation [C]. Phoenix, USA, 2001. S402-S407.
    [197] Caetano M A L, Yoneyama T. Short and long period optimization of drug doses in the treatment of AIDS [J]. Anais da Academia Brasileira de Cincias, 2002, 74: 379-392.
    [198] Jeffrey A M, Xia X, Craig I K. Controllability analysis of the chemotherapy of HIV/AIDS [A]. In: Proceedings of 15th IFAC Triennial World Congress Automatic Control [C]. Barcelona, Spain, 2002. 127-132.
    [199] Kutch J J, Gurfil P. Optimal control of HIV infection with a continuously-mutating viral population [A]. In: Proceedings of the American Control Conference (ACC) [C]. Anchorage, Alaska, USA, 2002. 4033-4038.
    [200] Ledzewicz U, Schattler H. On optimal controls for a general mathematical model for chemotherapy of HIV [A]. In: Proceedings of the American Control Conference (ACC) [C]. Anchorage, Alaska, USA, 2002. 3454-3459.
    [201] Caetano M A L, de Souza J, Yoneyama T. A Model Based Analysis Of AIDS Treatment [A]. In: Proceedings of the 2003 SCS Western Multi-Conference [C]. Orlando, FL, USA, 2003. 65-70.
    [202] Felippe de Souza J A M, Caetano M A L, Yoneyama T. Analysis of a sub-optimal scheme of drug dosage in the AIDS treatment [A]. In: Proceedings of American Control Conference (ACC) [C]. Denver, Colorado, USA, 2003. 1188-1193.
    [203] Felippe de Souza J A M, Caetano M A L, Yoneyama T. Control of drug dosage in the AIDS treatment [A]. In: Proceedings of the 7th Portuguese Conference on Biomedical Engineering (BioEng 2003) [C]. Lisboa, Portugal, 2003.
    [204] Jeffrey A M, Xia X, Craig I K. When to initiate HIV therapy: a control theoretic approach [J]. IEEE Transactions on Biomedical Engineering, 2003, 50(11): 1213-1220.
    [205] Shim H, Han C C, Chung S W, Nam W S, Seo H J. Optimal scheduling of drug treatment for HIV infection: continuous dose control and receding horizon control [J]. International Journal of Control, Automation, and Systems, 2003, 1: 401-407.
    [206] Adams B M, Banks H T, Kwon H D, Tran H T. Dynamic multidrug therapies for HIV: Optimal and STI control approaches [J]. Mathematical Biosciences and Engineering, 2004, 1: 223-241.
    [207] Culshaw R V, Ruan S, Spiteri R J. Optimal HIV treatment by maximising immune response [J]. Journal of Mathematical Biology, 2004, 48(5): 545-562.
    [208] Huh Y H, Ko J H, Kim J Y, Chung C C, Nam S W, Shim H. A study on drug scheduling using HIV dynamics and optimal control [J]. Journal of Control, Automation and Systems Engineering, 2004, 10(6): 475-486.
    [209] Adams B M, Banks H T, Davidian M, Kwon H D, Tran H T, Wynne S N, Rosenberg E S. HIV dynamics: Modeling, data analysis, and optimal treatment protocols [J]. Journal of Computational and Applied Mathematics, 2005, 184(1): 10-49.
    [210] Garira W, Musekwa S D, Shiri T. Optimal control of combined therapy in a single strain HIV-1 model [J]. Electronic Journal of Differential Equations, 2005, 2005(52): 1-22.
    [211] Myburgh C, Wong K H. Computational Control of an HIV Model [J]. Annals of Operations Research, 2005, 133(1): 277-283.
    [212] Karrakchou J, Rachik M, Gourari S. Optimal control and infectiology: Application to an HIV/AIDS model [J]. Applied Mathematics and Computation, 2006, 177(2): 807-818.
    [213] Ko J H, Kim W H, Chung C C. Optimized Structured Treatment Interruption for HIV Therapy and Its Performance Analysis on Controllability [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(3): 380-386.
    [214] Yadav V, Balakrishnan S N. Optimal impulse control of systems with control constraints and application to HIV treatment [A]. In: Proceedings of the 2006 American Control Conference (ACC) [C]. Minneapolis, Minnesota, USA, 2006. 4824-4829.
    [215] Kwon H-D. Optimal treatment strategies derived from a HIV model with drug-resistant mutants [J]. Applied Mathematics and Computation, 2007, 188(2): 1193-1204.
    [216] Neri F, Toivanen J, Cascella G L, Ong Y S. An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2007, 4(2): 264-278.
    [217] Joshi H R. Optimal control of an HIV immunology model [J]. Optimal Control Applications and Methods, 2002, 23(4): 199-213.
    [218] de Pillis L, Radunskaya A. A mathematical tumor model with immune resistance and drug therapy: An optimal control approach [J]. Journal of Theoretical Medicine, 2001, 3: 79-100.
    [219] Behrens D A, Caulkins J P, Tragler G, Feichtinger G. Optimal control of drug epidemics: prevent and treat-but not at the same time? [J]. Management Science, 2000, 46(3): 333-347.
    [220] Kaya C Y. Time-optimal switching control for the US cocaine epidemic [J]. Socio-Economic Planning Sciences, 2004, 38(1): 57-72.
    [221] Caulkins J P, Feichtinger G, Gavrila C, Greiner A, Haunschmied J L, Kort P M, Tragler G. Dynamic cost-benefit analysis of drug substitution programs [J]. Journal of Optimization Theory and Applications, 2006, 128(2): 279-294.
    [222] Ogren P, Martin C F. Optimal vaccination strategies for the control of epidemics in highly mobile populations [A]. In: Proceedings of the IEEE Conference on Decision and Control (CDC) [C]. Sydney, NSW, 2000. 1782-1787.
    [223] Ogren P, Martin C F. Vaccination strategies for epidemics in highly mobile populations [J]. Applied Mathematics and Computation, 2002, 127(2-3): 261-276.
    [224] Wu J T, Wein L M, Perelson A S. Optimization of influenza vaccine selection [J]. Operations Research, 2005, 53(3): 456-476.
    [225] Caetano M A L, Yoneyama T. Optimal and sub-optimal control in Dengue epidemics [J]. Optimal Control Applications and Methods, 2001, 22(2): 63-73.
    [226] El-Gohary A. Optimal control of the genital herpes epidemic [J]. Chaos, Solitons and Fractals, 2001, 12(10): 1817-1822.
    [227] El-Gohary A, Bukhari F A. Optimal stabilization of steady-states of the genital herpes epidemic during infinite and finite time intervals [J]. Applied Mathematics and Computation, 2003, 137(1): 33-47.
    [228] Jiang C, Dong M. Optimal measures for SARS epidemics outbreaks [A]. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA) [C]. Dalian, China, 2006. 9331-9336.
    [229] Rosen R. On control and optimal control in biodynamic systems [J]. Bulletin of Mathematical Biology, 1980, 42(6): 889-897.
    [230] Swan G W. Optimal control applications in biomedical engineering - A survey [J]. Optimal Control Applications and Methods, 1981, 2(4): 311-334.
    [231] Brokate M. Pontryagin's principle for control problems in age-dependent population dynamics [J]. Journal of Mathematical Biology, 1985, 23(1): 75-101.
    [232] Greenhalgh D. Optimal control of an epidemic by ring vaccination [J]. Communications in Statistics: Stochastic Models, 1986, 2: 339-363.
    [233] Greenhalgh D. Some results on optimal control applied to epidemics [J]. Mathematical Biosciences, 1988, 88(2): 125-158.
    [234] Arnautu V, Barbu V, Capasso V. Controlling the spread of a class of epidemics [J]. Applied Mathematics and Optimization, 1989, 20(1): 297-317.
    [235] Becker N G, Starczak D N. Optimal vaccination strategies for a community of households [J]. Mathematical Biosciences, 1997, 139(2): 117-132.
    [236] Blount S, Galambosi A, Yakowitz S. Nonlinear and dynamic programming for epidemic intervention [J]. Applied Mathematics and Computation, 1997, 86(2-3): 123-136.
    [237] Clancy D. Optimal intervention for epidemic models with general infection and removal rate functions [J]. Journal of Mathematical Biology, 1999, 39(4): 309-331.
    [238] Behncke H. Optimal control of deterministic epidemics [J]. Optimal Control Applications and Methods, 2000, 21(6): 269-285.
    [239] Stengel R F, Ghigliazza R, Kulkarni N, Laplace O. Optimal control of a viral disease [A]. In: Proceedings of the American Control Conference (ACC) [C]. Arlington, VA, USA, 2001. 3795-3800.
    [240] Ball F G, Lyne O D. Optimal vaccination policies for stochastic epidemics among a population of households [J]. Mathematical Biosciences, 2002, 177:333-354.
    [241] Stengel R F, Ghigliazza R, Kulkarni N, Laplace O. Optimal control of innate immune response [J]. Optimal Control Applications and Methods, 2002,23(2): 91-104.
    [242] Brandeau M L, Zaric G S, Richter A. Optimal resource allocation for epidemic control among multiple independent populations: Beyond cost effectiveness analysis [J]. Journal of Health Economics, 2003, 22(4): 575-598.
    [243] El-Gohary A, Al-Ruzaiza A S. Optimal control of non-homogenous prey-predator models during infinite and finite time intervals [J]. Applied Mathematics and Computation, 2003, 146(2-3): 495-508.
    [244] Verriest E I. Regularization Method for Optimally Switched and Impulsive Systems with Biomedical Applications [A]. In: Proceedings of the IEEE Conference on Decision and Control (CDC) [C]. Maui, HI, USA, 2003. " 2156-2161.
    [245] Andreeva E A, Semykina N A. Optimal Control of the Spread of an Infectious Disease with Allowance for an Incubation Period [J]. Computational Mathematics and Mathematical Physics, 2005, 45(7): 1133-1139.
    [246] Clancy D, Piunovskiy A B. An explicit optimal isolation policy for a deterministic epidemic model [J]. Applied Mathematics and Computation, 2005, 163(3): 1109-1121.
    [247] El-Gohary A. Optimal control of stochastic lattice of prey-predator models [J]. Applied Mathematics and Computation, 2005, 160(1): 15-28.
    [248] Tang S, Xiao Y, Clancy D. New modelling approach concerning integrated disease control and cost-effectivity [J]. Nonlinear Analysis-Theory Methods & Applications, 2005, 63(3): 439-471.
    [249] Verriest E, Delmotte F, Egerstedt M. Control of epidemics by vaccination [A]. In: Proceedings of the American Control Conference (ACC) [C]. Portland, OR, United States, 2005. 985-990.
    [250] Castilho C. Optimal control of an epidemic through educational campaigns [J]. Electronic Journal of Differential Equations, 2006, 2006(125): 1-11.
    [251] Clancy D, Green N. Optimal intervention for an epidemic model under parameter uncertainty [J]. Mathematical Biosciences, 2007, 205(2): 297-314.
    [252] Hadeler K P, Muller J. Optimal harvesting and optimal vaccination [J]. Mathematical Biosciences, 2007, 206(2): 249-272.
    [253] Wickwire K H. Optimal isolation policies for deterministic and stochastic epidemics [J]. Mathematical Biosciences, 1975, 26(3-4): 325-346.
    [254] Perelson A S, Mirmirani M, Oster G F. Optimal strategies in immunology [J]. Journal of Mathematical Biology, 1976, 3(3): 325-367.
    [255] Wickwire K H. Optimal control policies for reducing the maximum size of a closed epidemic— I. deterministic dynamics [J]. Mathematical Biosciences, 1976,30(1-2): 129-137.
    [256] Wickwire K. Control policies for epidemics spread solely by carriers [J]. International Journal of Control, 1977, 26(3): 473-490.
    [257] Perelson A S, Mirmirani M, Oster G F. Optimal strategies in immunology [J]. Journal of Mathematical Biology, 1978, 5(3): 213-256.
    [258] Sethi S P. Optimal Quarantine Programmes for Controlling an Epidemic Spread [J]. The Journal of the Operational Research Society, 1978, 29(3): 265-268.
    [259] Sethi S P, Staats P W. Optimal Control of Some Simple Deterministic Epidemic Models [J]. The Journal of the Operational Research Society, 1978,29(2): 129-136.
    [260] Wickwire K. Optimal immunization rules for an epidemic with recovery [J]. Journal of Optimization Theory and Applications, 1979, 27(4): 549-570.
    [261] Perelson A S, Goldstein B, Rocklin S. Optimal strategies in immunology III. The IgM-IgG switch [J]. Journal of Mathematical Biology, 1980, 10(3): 209-256.
    [262] Chen Z, Gao L, Kwiat K. Modeling the spread of active worms [A]. In: Proceeding of Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies [C]. Francisco, USA, 2003. 1890-1900.
    [263] Streftaris G, Gibson G J. Statistical inference for stochastic epidemic models [A]. In: Proceedings of 17th Int'l Workshop on Statistical Modelling [C]. Chania, 2002. 609-616.
    [264] Frauenthal J C. Mathematical modeling in epidemiology [M]. Berlin: Springer-Verlag, 1980.
    [265] Wang Y, Wang C. Modeling the effects of timing parameters on virus propagation [A]. In: Proceedings of the 2003 ACM workshop on Rapid Malcode (WORM'03) [C]. Washington DC, USA, 2003. 61-66.
    [266] Zou C C, Gong W, Towsley D. Code red worm propagation modeling and analysis [A]. In: Proceedings of the 9th ACM conference on Computer and communications security [C]. Washington DC, USA, 2002. 138-147.
    [267] Kephart J O, White S R. Directed-graph epidemiological models of computer viruses [A]. In: Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy [C]. Oakland ,California, 1991. 343-359.
    [268] Kim J, Radhakrishnan S, Dhall S K. Measurement and analysis of worm propagation on Internet network topology [A]. In: Proceedings of the 13th International Conference on Computer Communications and Networks (ICCCN 2004)[C].Chicago,IL,USA,2004.495-500.
    [269]Williamson M M,Leveille J.An epidemiological model of virus spread and cleanup[R].Information Infrastructure Laboratory,HP Laboratories Bristol,2003.
    [270]Xing L I.Modeling and analyzing of the interaction between worms and antiworms during network worm propagation[J].Science in China Series F -Information Sciences,2005,48(1):91-106.
    [271]Mishra B K,Chandra Sekhar C,Naidu G M S,Reddy S R K,Vasireddy V G,Nidumolu V P,Gollapalli V,Kumar V.Differential susceptibility-infectiousness epidemic model of propagation of malicious agents with self replication in a computer network[J].Applied Mathematics and Computation,2007:doi:10.1016/j.amc.2007.03.052x.
    [272]Mishra B K,Saini D K.SEIRS epidemic model with delay for transmission of malicious objects in computer network[J].Applied Mathematics and Computation,2007,188(2):1476-1482.
    [273]Staniford S,Paxson V,Weaver N.How to own the Internet in your spare time[A].In:Proceedings of the l lth USENIX Security Symposium[C].San Francisco,USA,2002.149-167.
    [274]Serazzi G,Zanero S.Computer virus propagation models[A].In:Proceedings of the 1 lth IEEE/ACM Symposium on Modeling,Analysis and Simulation of Computer and Telecommunication Systems(MASCOTS)[C].Orlando,Florida,USA,2003.26-50.
    [275]Dantu R,Cangussu J,Yelimeli A.Dynamic control of worm propagation [A].In:Proceedings of the International Conference on Information Technology:Coding and Computing(ITCC'04)[C].Las Vegas,Nevada,USA,2004.419-423.
    [276]Kim J,Radhakrishnan S,Dhall S K.Optimal Control of Treatment Costs for Internet Worm[A].In:Proceedings of the 2004 ACM workshop on Rapid Malcode(WORM'04)[C].Washington,DC,USA,2004.
    [277]Kim J,Radhakrishnan S,Jang J.Cost optimization in SIS model of worm infection[J].ETRI Journal,2006,28(5):692-695.
    [278]段振国,高曙,杨以涵,卢强.基于图论理论的电力系统解列策略生成方法[J].中国电力,1998,3(31):7-9.
    [279]Zhang P,Ding S X,Wang G Z,Zhou D H.Fault detection of linear discrete-time periodic systems[J].IEEE Transactions on Automatic Control,2005,50(2):239-244.
    [280]邱志鹏.恒化器系统的建模与稳定性分析[D].南京:南京理工大学,2003.
    [281]Hethcote H W.The mathematics of infectious diseases[J].SIAM Review,2000,42:599-653.
    [282]Fleming W H,Rishel R.Deterministic and Stochastic Optimal Control[M].New York:Springer-Verlag,1975.
    [283]胡寿松,王执铨,胡维礼.最优控制理论与系统(第二版)[M].北京:科学出版社,2006.
    [284]Davis L.Genetic Algorithms and Simulated Annealing[M].London:Pitman,1987.
    [285]Stoer J,Bulirsch R.Introduction to Numerical Analysis[M].Berlin:Springer,2002.
    [286]Pesch H J.Real-time computation of feedback controls for constrained optimal control problems.Part 2:A correction method based on multiple shooting[J].Optimal Control Applications and Methods,1989,10(2):147-171.
    [287]Pesch H J.Real-time computation of feedback controls for constrained optimal control problems.Part 1:Neighbouring extremals[J].Optimal Control Applications and Methods,1989,10(2):129-145.
    [288]宫锡芳.最优控制问题的计算方法[M].北京:科学出版社,1979.
    [289]王肇明,叶庆凯.优化与最优控制中的计算方法[M].北京:科学出版社,1986.
    [290]张光澄.最优控制计算方法[M].成都:成都科技大学出版社,1991.
    [291]Ferguson N M,Cummings D A,Fraser C,Cajka J C,Cooley P C,Burke D S.Strategies for mitigating an influenza pandemic[J].Nature,2006,442(7101):448-452.
    [292]Intriligator M D.Mathematical Optimization and Economic Theory[M].Englewo.od Cliffs:Prentice-Hall,1971.
    [293]Sethi S P,Thompson G L.Optimal Control Theory-Applications to management Science[M].Boston:Martinus Nijhoff Publishing,1981.
    [294]邹云.非常状态下应急控制稳定评估理论[J].江苏大学学报(自然科学版),2004,25(2):132-136.
    [295]陈西颖,李卫星,郭志忠.电力系统失步解列研究[J].继电器,2006,34(8):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700