用户名: 密码: 验证码:
圆柱齿轮传动齿面形状与非线性特性关联规律分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮传动系统在航空、航天、交通、机械和仪表制造等各个工业部门获得广泛的应用。齿轮系统是由齿轮副、传动轴、轴承、箱体等组成的弹性机械系统。齿轮啮合时轮齿的弹性变形、啮入啮出冲击、齿轮间隙、制造误差、修形、装配误差等都对轮齿静、动力接触特性、系统动态性能、系统传动精度等有很大影响。为了满足各类机械装备性能不断提高的要求,必须考虑这些非线性因素,对齿轮系统的非线性动力学问题进行研究,因此从设计角度,将设计-静态分析-动态分析-实验分析进行系统地研究是齿轮传动的一个重要基础性研究课题。
     论文根据齿轮修形加工原理,推导了标准直齿轮及修形直齿轮的参数化坐标方程,基于TCA理论,给出了考虑三种安装误差时,修形直齿轮的接触轨迹,为齿轮传动几何参数的分析、动态性能分析及实验研究提供分析方法。
     基于Labview和LMS测量系统,搭建了齿轮动(静)态传递误差和振动噪音测量试验平台,给出了基于光栅盘的齿轮动(静)态传递误差测量、计算方法,并测量得到不同安装误差时的静态传递误差及轮齿间隙,分析了安装误差、转速、载荷等对动态传递误差及齿轮系统的冲击振动的影响。
     针对齿轮冲击的能量守恒问题,建立了一种新的考虑时变啮合刚度、摩擦齿轮冲击动力学模型。该模型刚度、摩擦均根据啮合点逐点求解,然后积分动力学方程,得到系统的动态响应。应用数值仿真的方法研究了不同载荷、摩擦对系统的瞬态冲击行为规律。研究表明:(1)轮齿存在脱啮冲击时,传递误差主要是以冲击频率为主,但冲击频率与啮合频率、轴频有差异;(2)载荷的波动对低速时系统的动态传递误差、转速波动等的影响有限,高速时齿频载荷波动使传递误差的啮合频率部分急剧增大,冲击频率基本保持不变;(3)轴频载荷波动对系统的影响更加显著,会引起系统出现脱啮-冲击,甚至双边冲击,系统响应以低频冲击振动为主。(4)低速时摩擦对系统的影响非常明显,摩擦可以遏制轮齿脱啮,但是其对低频振动的影响不可忽视。高速时摩擦对高频分量的影响比较小,但是对低频分量影响比较大。以上现象,在经典动力学模型分析中不可能得到,所以在研究轮齿的拍击特征时,有必要从冲击动力学的角度去分析轮齿的冲击行为,该研究对理解齿轮的冲击特征、齿轮结构优化、可靠性分析提供了一个新的思路。
     论文研究了冲击阻尼参数对系统非线性动力学响应的影响,研究表明:在重载时,参数n不会改变间隙引起的跳跃现象,但是会影响跳跃的长度,同时加剧系统的振动。在轻载时,参数n会使间隙引起的跳跃特征消失,从而使系统具有线性特征。冲击阻尼可以遏制响应的次谐分量的幅值,但是对主要啮合频率及其倍频分量的影响比较小。啮合频率部分的幅值受阻尼的影响比较小,但是次谐分量随着冲击阻尼的增加而明显减小。轮齿直接冲击的速度也不尽然相同,对应的恢复系数也有很大的差别,所以低速的轮齿拍击、启停比较频繁时的轮齿冲击分析必须要考虑恢复系数对系统响应的影响。在低速时,动载荷主要与传递误差的高频分量(啮合频率及其倍频分量)有关,提高齿面的精度、改善齿廓偏差及粗糙度可以有效的遏制传递误差的高频分量幅值从而降低系统的动载荷。在高速时,动载荷主要受传递误差轴频分量的影响。虽然齿轮可能处于啮合频率的共振区域,但是动态传递误差仍然以传递误差的轴频分量为主。
     从工程角度来说,单纯的从提高齿轮材料性能远不及对轮齿进行修形得以改善啮合特征的效果好,虽然目前有学者建议齿轮冲击采用n=1.5的形式,但是精确的齿轮冲击实验验证还没有见到报道,这也是基于参数n的动态修形设计的一个基础条件,必须在实验的基础上准确确定参数n。该研究表明我们除了关心系统的共振区域,避免齿轮传动系统的共振外,还应该考虑在低转速时冲击引起过高的冲击动载荷。
     针对本研究提出的含动态域的非光滑动力学系统,本文首先给出了基于多重打靶方法周期解求解方法,并结合Floquet理论,给出了该类系统余维一和余维二分岔的数值计算求解格式,以经典的倍周期分岔、鞍结分岔为基础,分析了该类系统的切分岔特征,及转速参数ω、间隙参数b0和载荷波动系数f1对系统余维一和余维二分岔的影响。
     在齿轮传动系统的振动噪音研究方面,一般人们把轴频的调制,归结为系统安装误差、轴承误差等因素引起的。动力学分析往往忽略静态传递误差的轴频部分,从而得不到含轴频调制的响应。根据本文提出的建立动力学系统的方法,在动力学方程中,将静态传递误差仍然表示为位移激励,从而避免了位移激励在二次求导时,轴频分量的相对值变小,以致从数学意义上被忽略。本文得到的动态响应物理意义明确,其与实际的齿轮系统的振动信号分析具有可比性。
Gear transmission systems are broadly adopted in the engineering field if aircraft and space, transportation, mechanical engineering and instruments as well. The gear transmission systems are elastic mechanical system included gear pair, shaft, bearing and box. The static and/or dynamics contact characteristic, transmission behaviors and dynamics transmission error are affected by gear mesh elastic deformation, tooth impact, backlash, manufacturing error, tooth modification and assembling error in the mesh process. Therefore, nonlinear dynamics analysis of gear transmission system with these nonlinear factors is an imperative request to improve performance of the mechanical system. From the perspectives of dynamic, it's an important research direction to systematically analyze the gear design, static analysis, dynamics analysis and experimental investigation
     Firstly, parametric equations of standard and modified spur gear are deduced based on gear mesh theory. The contact patterns of modified spur gears are studied with the effect of three kinds of assembling error based on TCA.
     A test rig for measuring the static and/or dynamics transmission error, vibration and noise is built based on Ni.Labview and LMS.test systems. With the help of high precision optical encoder, effects of gear misalignment on unloaded and lightly loaded dynamic transmission errors, which are relative to gear rattle, are investigated. The gear mesh misalignment is introduced by eccentric sleeve assembled on the output shaft. Effects of modification and misalignment on the dynamic transmission error, are studied at different load and driving velocity conditions.
     Based on nonlinear Hertz impact damping model, a new impact model of gear transmission system combining with time varying stiffness and friction is developed. The time varying stiffness and friction force functions are obtained at each contact point, which are functions of rotation angles of gear and pinion. The numerical program is constructed to analyze the transient impact dynamics behaviors with different load and friction conditions. The numerical results shown that,(1) the main parts of dynamics transmission error is impact frequency component, which is determined by initial impact velocity.(2) Fluctuation of load is less effect to the dynamics transmission error and output velocity with lower input velocity. But in higher input velocity condition, the fluctuation of load made the meshing frequency component of dynamics transmission error increasing rapidly. And the impact frequency change slightly. However,(3) when the fluctuation of load is formularized with shaft frequency, the system occurs loss contact motions moreover double side impact motion.(4) The friction force can reduce the loss contact impact motion at low input shaft condition. The low frequency vibrations are affected by friction obviously but it has less effect on the high frequency vibration. The main results gotten in this paper is appeared in previous research. The transient impact dynamics behavior analysis is essential step to disclose the gear rattling.
     Effects of impact damping on impact dynamic characteristics of crowned gear transmission system are investigated numerically. The results show that jump induced by backlash are not changed with parameter n, but the length of jump region changes obviously and the system vibration is aggravating at heavy load. Under lightly loaded condition, the jump deduced by backlash disappears with the effect of parameter n. The flank modification applied to gear pairs can vary the parameter n then the relation between modification and vibration behavior can be analyzed directly, which may be a new stratagem for dynamic characteristic design. Moreover, impact damping can suppress the amplitude of sub-harmonic component and slightly affect the main and second meshing frequency component. And the effect of coefficient of restitution, depended on initial impact velocity, should be involved into the analyses of gear impact when the system undergoes gear rattling or intermittent motion. And the process of collision process described by the constant coefficient of constitution method is inappropriate.
     The static transmission error (TE) can be combined with backlash parameter with comparative analysis of experimental dynamic transmission error directly. At low speed condition, the dynamic load is mainly connected with high frequency component of transmission error. The high frequency amplitude of transmission error can be suppressed with the increase of tooth surface accuracy, improvement of tooth profile error and roughness effectively. At high speed condition, the shaft frequency component of transmission error has a dominate influence on dynamic load, though the gear may be in the resonance area. Parameter n is decreasing and dynamic load coefficient is increasing especially in resonance area. When n is1.0, loss contact impact area exists in the system, and the amplitudes of shaft frequency component in dynamic transmission error are almost equal, which indicates that dynamic characteristics are little affected by load and parameter n when there is no loss contact impact condition. It proves that the nonlinear impact model is sufficient to study the rattling process of gear pairs. When n is1.5, loss contact impact do not exist in system, and the ratios of prior three harmonic components are approximate to the linear increase of load.
     The dynamics model considered in this paper are reduced to a new non-smooth dynamics model with varying domain. A multiple shooting method and Floquet theory are developed to get the stable periodic solution. The numerical strategy is performed to analyze the co-dimension one and co-dimension two bifurcations. And the effects of frequency parameter ω and backlash b0and fluctuation load f1on co-dimension two bifurcations are investigated.
引文
[1]Grosberg J. A critical review of gear scoring criteria [J]. Wear,1977,43(1):1-7.
    [2]Martin K F. A review of friction predictions in gear teeth [J]. Wear,1978,49(2): 201-38.
    [3]Abersek B, Flasker J, Glodez S. Review of mathematical and experimental models for determination of service life of gears [J]. Engineering Fracture Mechanics, 2004,71(4-6):439-53.
    [4]Wang J, Li R, Peng X. Survey of nonlinear vibration of gear transmission systems [J]. Applied Mechanics Reviews,2003,56(3):309-29.
    [5]Nevzat Ozguven H, Houser D R. Mathematical models used in gear dynamics-a review [J]. Journal of Sound and Vibration,1988,121(3):383-411.
    [6]王建军等.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51.
    [7]Parey A, Tandon N. Spur gear dynamic models including defects:A review [J]. Shock and Vibration Digest,2003,35(6):465-78.
    [8]Wang A, E1-Bayoumy L, Akbarzadeh S, et al. Crowning Techniques in Aerospace Actuation Gearing Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant [J]. ASME Conference Proceedings,2009,2009(49033): 289-94.
    [9]Litvin F, Zhang J. Topology of modified helical gears and tooth contact analysis (TCA) program [M]. ILLINOIS UNIV AT CHICAGO CIRCLE DEPT OF MECHANICAL ENGINEERING.1989.
    [10]Litvin F, Zhang J. Spur Gears:Optimal Geometry, Methods for Generation and Tooth Contact Analysis (TCA) Program [M]. ILLINOIS UNIV AT CHICAGO CIRCLE DEPT OF MECHANICAL ENGINEERING.1988.
    [11]Litvin F, Handschuh R, Zhang J:National aeronautics and space administration Cleveland oh lewis research center,1988.
    [12]Litvin F, Kim D. Computerized design, generation and simulation of meshing of modified involute spur gears with localized bearing contact and reduced level of transmission errors [J]. J Mech Design,1997,119(96-100.
    [13]Kruszinski B, Nawara L. Model of gear-grinding process [J]. CIRP Annals-Manufacturing Technology,1995,44(1):321-4.
    [14]Pimsarn M, Kazerounian K. Tooth Profile Modifications for Optimum Dynamic Load in Spur Gears Based on Pseudo-Interference Stiffness Estimation Method [J]. ASME Conference Proceedings,2005,2005(47446):141-50.
    [15]Pramono A S. Experimental study of the influence of tooth profile modifications on spur gear dynamic strain and vibration [J]. Fracture and Strength of Solids Vi, Pts 1 and 2,2006,306-308(79-84.
    [16]Imrek H, Diizcukoglu H. Relation between wear and tooth width modification in spur gears [J]. Wear,2007,262(3-4):390-4.
    [17]Lin H H, Oswald F B, Townsend D P. Dynamic loading of spur gears with linear or parabolic tooth profile modifications [J]. Mechanism and Machine Theory,1994, 29(8):1115-29.
    [18]Dejl Z, Moravec V. Modification of an involute gearing and its effect on a loading capacity [J]. Detc2007:Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vo17,2008,217-27.
    [19]Karpat F, Ekwaro-Osire S. Influence of Tip Relief Modification on the Wear of Spur Gears with Asymmetric Teeth [J]. Tribology Transactions,2008,51(5):581-8.
    [20]Kawalec A, Wiktor J. Simulation of generation and tooth contact analysis of helical gears with crowned flanks [J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2008,222(9):1147-60.
    [21]Liu G, Parker R G. Dynamic Modeling and Analysis of Tooth Profile Modification for Multimesh Gear Vibration [J]. J Mech Design,2008,130(12):
    [22]Yildirim N, Gasparini G, Sartori S. An improvement on helicopter transmission performance through use of high contact ratio spur gears with suitable profile modification design [J]. P I Mech Eng G-J Aer,2008,222(G8):1193-210.
    [23]Liu J H, Chang S L. Research on Gear Plunge Shaving for Gears with Tooth Modifications [J]. Imecs 2009:International Multiconference of Engineers and Computer Scientists, Vols I and Ii,2009,1845-50.
    [24]Mohamad E N, Komori M, Murakami H, et al. Analysis of General Characteristics of Transmission Error of Gears With Convex Modification of Tooth Flank Form Considering Elastic Deformation Under Load [J]. J Mech Design,2009, 131(6):
    [25]魏任之等.关于直齿圆柱齿轮轮齿受载变形量的计算[J].齿轮,1980,4(1-8.
    [26]宋乐民.渐开线鼓形齿的鼓形量[J].齿轮,1981,2(63-8).
    [27]张永忠.关于修形齿轮的计算方法[J].煤矿机械,1984,2):2-6.
    [28]王朝晋,丁玉成.关于齿廓修形的研究(二)[J].齿轮,1986,10(3):8-11.
    [29]唐增宝,钟毅芳,陈久荣.修形齿轮的最佳修形量和修形长度的确定[J].华中理工大学学报,1995,23(2):125-8.
    [30]方宗德,张永才,蔺天存.斜齿轮的齿廓修形的实验研究[J].机械传动,1992,16(4):
    [31]朱传敏,宋孔杰,田志仁.齿轮修形的优化设计与试验研究[J].机械工程学报,1998,34(4):63-8.
    [32]朱传敏,秦慧芳.齿轮传动动态系统辨识及修形研究[J].机械工程学报,1999,35(4):60-3.
    [33]唐进元,陈思雨,钟掘.一种改进的齿轮非线性动力学模型[J].工程力学,2008,25(01):217-23.
    [34]Ozgiiven H N, Houser D R. Mathematical models used in gear dynamics-a review [J]. Journal of Sound and Vibration,1988,121(3):383-411.
    [35]Frolov K, Kosarev O. Vibroexcitation in the meshing of imprecise deformable teeth in a spur gear:A review [J]. Int Appl Mech+,1999,35(11):1081-95.
    [36]Du S. Dynamic modelling and simulation of gear transmission error for gearbox vibration analysis [D]; University of New South Wales. School of Mechanical and Manufacturing Engineering,1997.
    [37]王建军等.齿轮系统参数振动问题研究综述[J].振动与冲击,1997,16(4):69-73.
    [38]王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程,1998,9(12):55-9.
    [39]杨宏斌,邓效忠,高建平,et al齿轮非线性振动研究综述[J].中国机械工程,1999,7(
    [40]申永军,杨绍普,李伟.齿轮系统非线性动力学研究进展及展望[J].石家庄铁道学院学报,2005,4(
    [41]Ozguven H N, Houser D R. Dynamic analysis of high speed gears by using loaded static transmission error [J]. Journal of Sound and Vibration,1988,125(1): 71-83.
    [42]Vinayak H, Singh R, Padmanabhan C. Linear dynamic analysis of multi-mesh transmissions containing external, rigid gears [J]. Journal of Sound and Vibration, 1995,185(1):1-32.
    [43]Tordion G V, Gauvin R. DYNAMIC STABILITY OF A TWO-STAGE GEAR TRAIN UNDER THE INFLUENCE OF VARIABLE MESHING STIFFNESSES [J]. J Eng Ind Trans ASME,1977,99 SerB(3):785-91.
    [44]Cornell R W. COMPLIANCE AND STRESS SENSITIVITY OF SPUR GEAR TEETH [J]. J Mech Design,1981,103(2):447-59.
    [45]David J W, Mitchell L D. LINEAR DYNAMIC COUPLING IN GEARED ROTOR SYSTEMS; proceedings of the American Society of Mechanical Engineers (Paper), F,1985 [C].
    [46]Cornell R W, Westervelt W W. DYNAMIC TOOTH LOADS AND STRESSING FOR HIGH CONTACT RATIO SPUR GEARS [J]. American Society of Mechanical Engineers (Paper),1977,77-DET-101):
    [47]Pimsarn M, Kazerounian K. Efficient evaluation of spur gear tooth mesh load using pseudo-interference stiffness estimation method [J]. Mechanism and Machine Theory,2002,37(8):769-86.
    [48]Zhang J J, Esat I I, Shi Y H. Load analysis with varying mesh stiffness [J]. Computers & Structures,1999,70(3):273-80.
    [49]Wang J, Howard I. Finite Element Analysis of High Contact Ratio Spur Gears in Mesh [J]. Journal of Tribology,2005,127(3):469-83.
    [50]Chaari F, Baccar W, Abbes M S, et al. Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission [J]. European Journal of Mechanics-A/Solids,2008,27(4):691-705.
    [51]Chaari F, Fakhfakh T, Haddar M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness [J]. European Journal of Mechanics-A/Solids, 2009,28(3):461-8.
    [52]Kuang J H, Yang Y T. An estimate of mesh stiffness and load sharing ratio of a spur gear pair [J]. International Power Transmission and Gear Conference,1992, 1(1-9.
    [53]Tordian G V, Geraldin H. Dynamic measurement of the transmission error in gears [J]. Proceedings of JSME Semi-International Symposium,1967,279-87.
    [54]Lin J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation [J]. Journal of Sound and Vibration,2002,249(1):129-45.
    [55]Lin J, Parker R G. Mesh stiffness variation instabilities in two-stage gear systems [J]. Journal of Vibration and Acoustics, Transactions of the ASME,2002,124(1): 68-76.
    [56]Kahraman A, Singh R. Non-linear dynamics of a spur gear pair [J]. Journal of Sound and Vibration,1990,142(1):49-75.
    [57]Kahraman A, Singh R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system [J], Journal of Sound and Vibration,1991, 146(1):135-56.
    [58]Padmanabhan C, Singh R. Spectral coupling issues in a two-degree-of-freedom system with clearance non-linearities [J]. Journal of Sound and Vibration,1992, 155(2):209-30.
    [59]Padmanabhan C, Singh R. Analysis of periodically excited non-linear systems by a parametric continuation technique [J]. Journal of Sound and Vibration,1995,184(1): 35-58.
    [60]Padmanabhan C, Singh R. Dynamics of a piecewise non-linear system subject to dual harmonic excitation using parametric continuation [J]. Journal of Sound and Vibration,1995,184(5):767-99.
    [61]Kim T C, Rook T E, Singh R. Super-and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method [J]. Journal of Sound and Vibration,2005,281(3-5):965-93.
    [62]He S, Cho S, Singh R. Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations [J]. Journal of Sound and Vibration,2008, 309(3-5):843-51.
    [63]He S, Singh R. Dynamic transmission error prediction of helical gear pair under sliding friction using Floquet theory [J]. J Mech Design,2008,130(5):1-9.
    [64]He S, Singh R. Analytical study of helical gear dynamics with sliding friction using floquet theory [J]. Detc2007:Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 7,2008,433-42.
    [65]Bonori G, Barbieri M, Pellicano F. Optimum profile modifications of spur gears by means of genetic algorithms [J]. Journal of Sound and Vibration,2008,313(3-5): 603-16.
    [66]Bonori G, Pellicano F. Non-smooth dynamics of spur gears with manufacturing errors [J]. Journal of Sound and Vibration,2007,306(1-2):271-83.
    [67]Bolotin V V. Stability of Parametrically Disturbed Systems [J]. K USTOICHIVOSTI PARAMETRICHESKI VOZBUZHDAEMYKH SISTEM,1974, 5):83-8.
    [68]Benton M, Seireg A. SIMULATION OF RESONANCES AND INSTABILITY CONDITIONS IN PINION-GEAR SYSTEMS [J]. J Mech Des Trans ASME,1978, 100(1):26-32.
    [69]Benton M, Seireg A. DYNAMIC ABSORBER FOR GEAR SYSTEMS OPERATING IN RESONANCE AND INSTABILITY REGIONS [J]. J Mech Design, 1981,103(2):364-71.
    [70]Benton M, Seireg A. FACTORS INFLUENCING INSTABILITY AND RESONANCES IN GEARED SYSTEMS [J]. J Mech Design,1981,103(2):372-8.
    [71]王建军.参数共振理论及其在齿轮传动动力稳定分析中的应用[M].第一届全国齿轮动力学学术会议论文集上册.1985.
    [72]李继彬等.在动态载荷下齿轮振动方程的稳定性分析[J].昆明工学院学报,1986,1):
    [73]唐进元,陈思雨.阻尼和刚度项含时变参数的强非线性振动系统周期解研究[J].振动与冲击,2007,26(10):96-100.
    [74]王建军,洪涛,吴仁智,et al齿轮系统参数振动问题研究综述[J].振动与冲击,1997,4(
    [75]Kahraman A, Singh R. Non-linear dynamics of a geared rotor-bearing system with multiple clearances [J]. Journal of Sound and Vibration,1991,144(3):469-506.
    [76]唐进元,颜海燕.线外啮合齿轮传动啮合刚度计算[J].机械传动2002,26(4):
    [77]唐进元,肖利民.齿轮齿顶修缘时啮合冲击速度的计算[J].长沙铁道学院学报1995,13(1):26-30.
    [78]Natsiavas S, Theodossiades S, Goudas I. Dynamic analysis of piecewise linear oscillators with time periodic coefficients [J]. Int J Nonlinear Mech,2000,35(1): 53-68.
    [79]Theodossiades S, Natsiavas S. NON-LINEAR DYNAMICS OF GEAR-PAIR SYSTEMS WITH PERIODIC STIFFNESS AND BACKLASH [J]. Journal of Sound and Vibration,2000,229(2):287-310.
    [80]Theodossiades S, Natsiavas S. On geared rotordynamic systems with oil journal bearings [J]. Journal of Sound and Vibration,2001,243(4):721-45.
    [81]Giagopulos D, Salpistis C, Natsiavas S. Effect of non-linearities in the identification and fault detection of gear-pair systems [J]. Int J Nonlinear Mech,2006, 41(2):213-30.
    [82]Pfeiffer F. Seltsame Attraktoren in Zahnradgetrieben [J]. Archive of Applied Mechanics (Ingenieur Archiv),1988,58(2):113-25.
    [83]Pfeiffer F, Kunert A. Rattling models from deterministic to stochastic processes [J]. Nonlinear Dynam,1990,1(1):63-74.
    [84]Karagiannis K, Pfeiffer F. Theoretical and experimental investigations of gear-rattling [J]. Nonlinear Dynam,1991,2(5):367-87.
    [85]Kunert A, Pfeiffer F. Description of chaotic motion by an invariant probability density [J]. Nonlinear Dynam,1991,2(4):291-304.
    [86]Feng Q, Pfeiffer F. Stochastic model on a rattling system [J]. Journal of Sound and Vibration,1998,215(3):439-53.
    [87]Natsiavas S. Periodic response and stability of oscillators with symmetric trilinear restoring force [J]. Journal of Sound and Vibration,1989,134(2):315-31.
    [88]Natsiavas S. Stability and bifurcation analysis for oscillators with motion limiting constraints [J]. Journal of Sound and Vibration,1990,141(1):97-102.
    [89]Natsiavas S. On the dynamics of oscillators with bi-linear damping and stiffness [J]. Int J Nonlinear Mech,1990,25(5):535-54.
    [90]Luo A C J. Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems [J].2005 IEEE Intelligent Vehicles Symposium Proceedings,2005,674-81 905.
    [91]Luo A C J, Chen L D. Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts [J]. Chaos Soliton Fract,2005,24(2):567-78.
    [92]Luo A C J, Chen L D. Grazing bifurcation and periodic motion switching in a piecewise linear, impacting oscillator under a periodical excitation [J]. Proceedings of the ASME Design Engineering Division 2005, Pts A and B,2005,913-24.
    [93]Luo A C J, Chen L. Grazing phenomena and fragmented strange attractors in a harmonically forced, piecewise, linear system with impacts [J]. P I Mech Eng K-J Mul,2006,220(1):35-51.
    [94]Luo A C J, Chen L D. Arbitrary periodic motions and grazing switching of a forced piecewise linear, impacting oscillator [J]. J Vib Acoust,2007,129(3):276-84.
    [95]Luo A C J, O'Connor D. Nonlinear dynamics of a gear transmission system part II: Periodic impacting chatter and stick [J]. Proceedings of the Asme International Mechanical Enginering Congress and Exposition 2007, Vol 9, Pts a-C,2008, 1987-2001.
    [96]Luo A C J, O'Connor D. Nonlinear dynamics of a gear transmission system-Part 1:Mechanism of impacting chatter with stick [J]. Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2007, Vol 5, Pts a-C,2008,251-9.
    [97]Litak G, Friswell M I. Vibration in gear systems [J]. Chaos Soliton Fract,2003, 16(5):795-800.
    [98]Szabelski K, Warminski J. SELF-EXCITED SYSTEM VIBRATIONS WITH PARAMETRIC AND EXTERNAL EXCITATIONS [J]. Journal of Sound and Vibration,1995,187(4):595-607.
    [99]Litak G, Spuz-Szpos G, Szabelski K, et al. Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness [J]. Int J Bifurcat Chaos,1999, 9(3):493-504.
    [100]陈思雨,唐进元.隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[J].机械工程学报,2009,4):
    [101]Kahraman A, Singh R. Dynamics of an oscillator with both clearance and continuous non-linearities [J]. Journal of Sound and Vibration,1992,153(1):180-5.
    [102]Blankenship G W, Singh R. Analytical solution for modulation sidebands associated with a class of mechanical oscillators [J]. Journal of Sound and Vibration, 1995,179(1):13-36.
    [103]Blankenship G W, Kahraman A. Gear dynamics experiments, part-Ⅰ: Characterization of forced response [J]. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE,1996,88(373-6.
    [104]Kahraman A, Blankenship G W. Gear dynamics experiments, Part-Ⅲ:Effect of involute tip relief [J]. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE,1996,88(389-91.
    [105]Kahraman A, Blankenship G W. Gear dynamics experiments, Part-Ⅱ:Effect of involute contact ratio [J]. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE,1996,88(381-4.
    [106]Raghothama A, Narayanan S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method [J]. Journal of Sound and Vibration, 1999,226(3):469-92.
    [107]Sato K, Yamamoto S, kawakami T. Bifurcation sets and chaotic states of a gear system subjected to harmonic excitation [J]. Computational Mechanics,1991, 7(3):173-82.
    [108]Ma Q, Kahraman A. Subharmonic resonances of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness [J]. Journal of Sound and Vibration,2006,294(3):624-36.
    [109]Ma Q L, Kahraman A. Period-one motions of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness [J]. Journal of Sound and Vibration,2005,284(3-5):893-914.
    [110]Ma Q L, Kahraman A, Perret-Liaudet J, et al. An Investigation of Steady-State Dynamic Response of a Sphere-Plane Contact Interface With Contact Loss [J]. Journal of applied mechanics,2007,74(2):249-55.
    [111]孙智民等.星形齿轮传动系统的分岔与混沌的研究[J].机械工程学报,2001,37(12):11-5.
    [112]邵忍平等.齿轮减速器系统可辨固有特性动力学研究[J].航空学报,2001,22(1):64-8.
    [113]孙涛,胡海岩.基于离散博里叶变化与谐波平衡法的行星齿轮系统非线性动力学分析[J].机械工程学报,2002,38(11):58-61.
    [114]王玉新,柳杨,王仪明.考虑啮合时变刚度和传递误差的齿轮振动分析[J].机械传动2002,26(1):5-8.
    [115]李素有等.含间隙的斜齿轮副扭振分析与试验研究[J].机械传动,2002,26(2):1-5.
    [116]王立华等.齿轮系统时变刚度和间隙非线性振动特性研究[J].中国机械工程,2003,14(13):1143-6.
    [117]张锁怀,沈允文,董海军,et al单级齿轮系统的拍击振动模型[J].机械工程学报,2002,38(12):16-20.
    [118]张锁怀,沈允文,董海军,et al齿轮拍击系统的动力响应[J].振动工程学报,2003,16(1):6-66.
    [119]张锁怀,沈允文,董海军,et al单级齿轮系统拍击特性研究[J].机械工程学报,2003,16(3):28-31,6.
    [120]李华等.用Lyapunov指数研究单对齿轮间隙非线性系统的动力学行为[J].中国机械工程,2002,13(12):1040-4.
    [121]王三民,沈允文,董海军.含摩擦和间隙直齿轮副的混沌与分叉研究[J].机械工程学报,Chinese Journal of Mechanical Engineering,,2003,38(9):8-11.
    [122]董海军,陈乾堂,沈允文.齿轮系统拍击振动中的高速碰撞和低速接触[J].中国机械工程,2006,10):
    [123]董海军,沈允文,郜志英,et a1.转速激励下齿轮系统拍击振动的分岔特性[J].机械工程学报,2006,02):
    [124]申永军等.参外联合激励下直齿轮副的非线性动力学[J].北京交通大学 学报,2005,29(1):69-73.
    [125]唐进元,陈思雨,钟掘.一种改进的齿轮非线性动力学模型[J].工程力学,2008,01):
    [126]Tang J Y, Chen S Y, Zhou C J, et al. An improved nonlinear dynamic model of gear transmission; proceedings of the ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Las Vegas, NV, F Sep 04-07,2007 [C].
    [127]Brach R M. Mechanical impact dynamics:rigid body collisions [M]. New York:Wiley,1991.
    [128]Brach R M. Formulation of rigid body impact problems using generalized coecients [J]. International Journal of Engineering Science,1998,36(1):61-71.
    [129]S.W.Kim. Contact Dynamics and Force Control of Flexible Multi-Body Systems [D]. Montreal; McGill University,1999.
    [130]Y. A. Khulief, A.Shabana A. Danamics of analysis of constrained system of rigid flexible body with intermittent motion [J]. Jounal of Mechanism,Transmission and Automation in Design ASME,1986,108(38-45.
    [131]丁遂亮,洪嘉振.柔性多体系统接触碰撞动力学研究[J].上海交通大学学报,2003,
    [132]郭安萍,洪嘉振.柔性多体系统碰撞子结构动力学模型[J].中国科学,2002,
    [133]K.L.Johnson. Contact Mechanics [M]. Cambridge:Cambridge University Press,1985.
    [134]Hunt K H, Crossley F R E. Coefficient of restitution interpreted as damping in vibroimpact [J]. ASME Journal of Applied Mechanics,1975,42(440-5.
    [135]Marhefka D W, Orin D E. A compliant contact model with nonlinear damping for simulation of robotic systems [J]. IEEE Transactions on Systems,man,and Cybernetics--Part A:Systemsand Humans,1999,29(6):566-72.
    [136]H.M.Lankarani, P.E.Nikravesh. A contact force model with hysteresis damping for impact analysis of multi-body systems [J]. J Mech Design,1990,112(
    [137]Yigit A S, Ulsoy A G, A.Scott R. Dynamics of a radially rotating beam with impact,part2:experimental and simulation results [J]. Jof Vibration and Acoustics, 1990,
    [138]Comparin R J, Singh R. A study of the frequency response of impact pairs with application to automotive gear rattle /--by Robert Joseph Comparin [M].1988.
    [139]Dubowsky S, Freudenstein F. Dynamics Analysis of Mechanical Systems with Clearances, Part 1:Formulation of Dynamic Model [J]. ASME Transactions, Journal of Engineering for Industry,1971,93(1):305-9.
    [140]Dubowsky S, Freudenstein F. Dynamics Analysis of Mechanical Systems with Clearances, Part 2:Dynamic Response [J]. ASME Transactions, Journal of Engineering for Industry,1971,93(1):310-3.
    [141]Veluswami M A, Crossley F R E. Multiple impacts of a ball between tow plates Part 1:some experimental observations [J]. ASME Journal of Engineering for industry,1975,97(820-7.
    [142]Veluswami M A, Crossley F R E. Multiple impacts of a ball between tow plates Part 2:mathematical modeling [J]. ASME Journal of Engineering for industry, 1975,97(828-35.
    [143]Azar R C, Crossley F R E. EXPERIMENTAL INVESTIGATION OF IMPACT PHENOMENON IN SPUR GEAR SYSTEMS [J]. World Congr on the Theory of Mach and Mech,4th,1975,157-61.
    [144]Yang D C H, Lin J Y. Hertzian damping, tooth friction and bending elasticity in gear impact dynamics [J]. Journal of Mechanisms, Transmissions, and Automation in Design,1987,109(2):189-96.
    [145]Herbert R G, McWhannell D C. SHAPE AND FREQUENCY COMPOSITION OF PULSES FROM AN IMPACT PAIR [J]. J Eng Ind Trans ASME, 1977,99 SerB(3):513-8.
    [146]Palej R, Niziol J. On a direct method of analyzing impacting mechanical systems [J]. Journal of Sound and Vibration,1986,108(2):191-8.
    [147]Yang D C H, Sun Z S. A rotary model for spur gear dynamics [J]. ASME Journal of Mechanisms,Transmissions and Automation in Design,1985,107(529-35.
    [148]Tustin A. The effects of backlash and of speed dependent friction on the stability of closed-cycle control systems [J]. Journal of the Institution of Electrical Engineers,1947,94(11):143-51.
    [149]Gerdes J C, Kumar V. An impact model of mechanical backlash for control system analysis; proceedings of the American Control Conference,1995 Proceedings of the, F,1995 [C].
    [150]Sarkar N, Ellis R E, Moore T N. Backlash detection in geared mechanisms: modeling, simulation,and experimentation [J]. Mechanical Systems and Signal Processing,1997,11(3):391-408.
    [151]Kim T C, Rook T E, Singh R. Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity [J]. Journal of Sound and Vibration,2003,263(3):665-78.
    [152]Kim T C, Rook T E, Singh R. Effect of nonlinear impact damping on the frequency response of a torsional system with clearance [J]. Journal of Sound and Vibration,2005,281(3-5):995-1021.
    [153]Kim T C, Singh R. Dynamic interactions between loaded and unloaded gear pairs under rattle conditions [J]. SAE transactions,2001, no.2001-01-1553(
    [154]Gao Q, Tanabe M, Nishihara K. Contact-impact analysis of geared rotor systems [J]. Journal of Sound and Vibration,2009,319(1-2):463-75.
    [155]Barbosa R S, Machado J A T. Describing Function Analysis of Systems with Impacts and Backlash [J]. Nonlinear Dynam,2002,29(1):235-50.
    [156]Singh R, Xie H, Comparin R J. Analysis of automotive neutral grear rattle [J]. Journal of Sound and Vibration,1989,131(2):177-96.
    [157]Comparin R J, Singh R. An analytical study of automotive neutral gear rattle [J]. J Mech Design,1990,112(237-45.
    [158]Szadkowski A. Mathematical Model and Computer Simulation of Idle Gear Rattle [J]. SAE transactions 910641,1991,
    [159]Natsiavas S, Gonzalez H. Vibration of harmonically excited oscillators with asymmetric constraints [J]. transactions of the American Society of Mechanical Engineers International Journal of Control,1992,59(
    [160]Padmanabhan C, Rook T E, Singh R. Modeling of automotive gear rattle phenomenon:state of the art [J]. SAE transactions,1995,104(2):2332-43
    [161]Wang M Y, Manoj R, Zhao W. Gear rattle modelling and analysis for automotive manual transmissions [J]. PI Mech Eng D-J Aut,2001,215(D2):241-58.
    [162]Wang M Y, Zhao W J, Manoj R. Numerical modelling and analysis of automotive transmission rattle [J]. J Vib Control,2002,8(7):921-43.
    [163]Ottewill J, Neild S, Wilson R. Intermittent gear rattle due to interactions between forcing and manufacturing errors [J].2008,
    [164]Ottewill J R, Wilson R E, Neild S A. An experimental analysis of the dynamics of lightly damped subcritically excited gear pairs [J]. Detc2007: Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 7,2008,585-94.
    [165]Li T Y, Yorke J A. Period three implies chaos [J]. The American Mathematical Monthly,1975,82(10):985.
    [166]Shaw S W, Holmes P J. Periodically forced impact oscillator with large dissipation [J]. Journal of Applied Mechanics, Transactions ASME,1983,50(4 a): 849-57.
    [167]J. Awrejcewicz, Lamarque C-H. Bifurcation and Chaos in Nonsmooth Mechanical Systems [M]. World Scientific Series on Nonlinear Science,2003.
    [168]Whiston G S. Global dynamics of a vibro-impacting linear oscillator [J]. Journal of Sound and Vibration,1987,118(3):395-424.
    [169]Whiston G S. The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator [J]. Journal of Sound and Vibration,1987, 115(2):303-19.
    [170]Whiston G S. Singularities in vibro-impact dynamics [J]. Journal of Sound and Vibration,1992,152(3):427-60.
    [171]Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator [J]. Journal of Sound and Vibration,1991,145(2):279-97.
    [172]Kleczka M, Kreuzer E, Schiehlen W. Local and Global Stability of a Piecewise Linear Oscillator [J]. Philosophical Transactions:Physical Sciences and Engineering,1992,338(1651):533-46.
    [173]Leine R I, Van Campen D H, Van De Vrande B L. Bifurcations in nonlinear discontinuous systems [J]. Nonlinear Dynam,2000,23(2):105-64.
    [174]Leine R I, van Campen D H. Discontinuous bifurcations of periodic solutions [J]. Mathematical and Computer Modelling,2002,36(3):259-73.
    [175]Leine R I, van Campen D H. Discontinuous fold bifurcations in mechanical systems [J]. Arch Appl Mech,2002,72(2-3):138-46.
    [176]Luo A C J, Menon S. Global chaos in a periodically forced, linear system with a dead-zone restoring force [J]. Chaos, Solitons & Fractals,2004,19(5): 1189-99.
    [177]Menon S, Luo A C J. A global period-1 motion of a periodically excited, piecewise-linear system [J]. Int J Bifurcat Chaos,2005,15(6):1945-57.
    [178]di Bernardo M. Normal forms of border collisions in high-dimensional nonsmooth maps [J]. Proceedings of the 2003 Ieee International Symposium on Circuits and Systems, Vol Iii,2003,76-9.
    [179]di Bernardo M, Budd C J, Champneys A R. Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems [J]. Physica D, 2001,160(3-4):222-54.
    [180]di Bernardo M, Kowalczyk P, Nordmark A. Bifurcations of dynamical systems with sliding:derivation of normal-form mappings [J]. Physica D,2002, 170(3-4):175-205.
    [181]Kunze M. Non-smooth dynamical systems [M]. Berlin; Springer.2000.
    [182]Popp K. Non-smooth mechanical systems-An overview [J]. Forschung im Ingenieurwesen/Engineering Research,1998,64(9):223-9.
    [183]Filippov A F. Differential equations with discontinous righthand sides [M]. Netherlands Dordrecht:Kluwer Academic 1988.
    [184]Luo A C J. A theory for non-smooth dynamic systems on the connectable domains [J]. Communications in Nonlinear Science and Numerical Simulation,2005, 10(1):1-55.
    [185]Luo A C J, Gegg B C. On the mechanism of stick and nonstick, periodic motions in a periodically forced, linear oscillator with dry friction [J]. J Vib Acoust, 2006,128(1):97-105.
    [186]Luo A C J, Gegg B C. Stick and non-stick periodic motions in periodically forced oscillators with dry friction [J]. Journal of Sound and Vibration,2006,291(1-2): 132-68.
    [187]Luo A C J, Gegg B C. Grazing phenomena in a periodically forced, friction-induced, linear oscillator [J]. Communications in Nonlinear Science and Numerical Simulation,2006,11(7):777-802.
    [188]Luo A C J, Gegg B C. Periodic motions in a periodically forced oscillator moving on an oscillating belt with dry friction [J]. Journal of Computational and Nonlinear Dynamics,2006,1(3):212-20.
    [189]Luo A C J. Grazing and chaos in a periodically forced, piecewise linear system [J]. J Vib Acoust,2006,128(1):28-34.
    [190]Bernardo M d, Budd C J, Champneys A R, et al. Bifurcations in Nonsmooth Dynamical Systems [J]. SIAM Review,2008,50(4):629-701.
    [191]di Bernardo M, Budd C J, Champneys A R, et al. Piecewise-smooth Dynamical Systems:Theory and Applications [M]. London:Springer 2008.
    [192]Luo A C J. Singularity and Dynamics on Discontinuous Vector Fields [M]. Monograph Series on Nonlinear Science and Complexity. Elsevier.2006:ⅰ-ⅹ,1-300.
    [193]Han R P S, Luo A C J, Deng W. Chaotic motion of a horizontal impact pair [J]. Journal of Sound and Vibration,1995,181(2):231-50.
    [194]李万祥等.车辆板簧系统的动力学研究[J].振动与冲击,2007,26(2):18-20.
    [195]李万祥等.一类非光滑机械系统的Hopf分岔与混沌[J].振动与冲击,2005,24(6):114-6.
    [196]Luo A C J. A periodically forced, piecewise linear system, Part II:The fragmentation mechanism of strange attractors and grazing [J]. Communications in Nonlinear Science and Numerical Simulation,2007,12(6):986-1004.
    [197]Luo A C J. A periodically forced, piecewise linear system. Part I:Local singularity and grazing bifurcation [J]. Communications in Nonlinear Science and Numerical Simulation,2007,12(3):379-96.
    [198]Mason J, Homer M, Eddie Wilson R. Mathematical models of gear rattle in Roots blower vacuum pumps [J]. Journal of Sound and Vibration,2007,308(3-5): 431-40.
    [199]Halse C K, Eddie Wilson R, di Bernardo M, et al. Coexisting solutions and bifurcations in mechanical oscillators with backlash [J]. Journal of Sound and Vibration,2007,305(4-5):854-85.
    [200]Litvin F, Fuentes A. Gear geometry and applied theory [M]. Cambridge Univ Pr,2004.
    [201]Rafiee J, Arvani F, Harifi A, et al. Intelligent condition monitoring of a gearbox using artificial neural network [J]. Mechanical Systems and Signal Processing,2007,21(4):1746-54.
    [202]Smith J D. Gears and their vibration:a basic approach to understanding gear noise [M]. New York: M. Dekker,1983.
    [203]周增建,王海,郑胜峰,et al一种基于希尔伯特变换的相位差测量方法[J].测试测量技术,2009,19(9):18-22.
    [204]McFadden P D, Toozhy M M. Application of synchronous averaging to vibration monitoring of rolling element bearings [J]. Mechanical Systems and Signal Processing,2000,14(6):891-906.
    [205]Wright Z H. Loaded Transmission Error Measurement System for Spur and Helical Gears [D]; The Ohio State University,2009.
    [206]Sweeney P J, Randall R B. Gear transmission error measurement using phase demodulation [J]. ARCHIVE:Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science 1989-1996 (vols 203-210),1996, 210(33):201-13.
    [207]Boresi A, Sidebottom O. Advanced mechanics of materials [M]. John Wiley & Sons,2003.
    [208]Acary V, Brogliato B. Numerical Methods for Nonsmooth Dynamical Systems [M]. Berlin Heidelberg:Springer-Verlag,2008.
    [209]Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika,1994,81(3):425-55.
    [210]Stronge W. Impact mechanics [M]. Cambridge Univ Pr,2004.
    [211]Pashah S, Massenzio M, Jacquelin E. Prediction of structural response for low velocity impact [J]. Int J Impact Eng,2008,35(2):119-32.
    [212]Lankarani H M, Nikravesh P E. A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems [J]. J Mech Design,1990,112(3): 369-76.
    [213]Zhang Y, Sharf I. Compliant force modelling for impact analysis; proceedings of the Proceedings of the ASME Design Engineering Technical Conference, F,2004 [C].
    [214]Zhang Y, Sharf I. Validation of Nonlinear Viscoelastic Contact Force Models for Low Speed Impact [J]. Journal of applied mechanics,2009,76(5):051002-12.
    [215]Tian Q, Zhang Y, Chen L, et al. Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints [J]. Computers & Structures, 2009,87(13-14):913-29.
    [216]Herbert R G, McWhannell D C. Shape and frequency composition of pulses from an inpact pair [J]. ASME Journal of Engineering for industry,1977,99(513-8.
    [217]Lee T W, Wang A C. On the dynamics of intermittent-motion mechanisms-Part 1:Dynamic model and response [J]. ASME Journal of Mechanisms,Transmissions and Automation in Design,1983,105(534-40.
    [218]Gonthier Y, McPhee J, Lange C, et al. A regularized contact model with asymmetric damping and dwell-time dependent friction [M]. Forum 2002 SCGM Queen's University, Kingston,ON.2002.
    [219]Yang D, Sun Z. A rotary model of spur gear dynamics [J]. Journal of Mechanisms, Transmissions, and Automation in Design,1985,107(4):529-35.
    [220]Cheng H H. Derivation of the Explicit Solution of the Inverse Involute Function and Its Applications in Gear Tooth Geometry Calculations [J]. Journal of Applied Mechanims & Robotics,1996,3(2):13-23.
    [221]Vahid O, Golnaraghi F. Friction-induced vibration in lead screw drives [M]. Springer Verlag,2010.
    [222]Rigaud E, Perret-Liaudet J. Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact. Part 1:harmonic excitation [J]. Journal of Sound and Vibration,2003,265(2):289-307.
    [223]Perret-Liaudet J, Rigaud E. Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact. Part 2:random excitation [J]. Journal of Sound and Vibration,2003,265(2):309-27.
    [224]Azar R C, Crossley F R E. DIGITAL SIMULATION OF IMPACT PHENOMENON IN SPUR GEAR SYSTEMS [J]. J Eng Ind Trans ASME,1977,99 Ser B(3):792-8.
    [225]Smith J D. Energy loss in gear tooth impact [J]. ARCHIVE:Proceedings of the Institution of Mechanical Engineers, Part C:Mechanical Engineering Science 1983-1988 (vols 197-202),1984,198(12):205-8.
    [226]Kahraman A, Blankenship G W. Effect of involute contact ratio on spur gear dynamics [J]. J Mech Design,1999,121(1):112-8.
    [227]Gill-Jeong C. Nonlinear behavior analysis of spur gear pairs with a one-way clutch [J]. Journal of Sound and Vibration,2007,301(3-5):760-76.
    [228]ISO.6336-1:2006 Calculation of load capacity of spur and helical gears-Part 1:Basic principles, introduction and general influence factors [M]. International Organization for Standardization.1996.
    [229]Tamminana V K, Kahraman A, Vijayakar S. A study of the relationship between the dynamic factors and the dynamic transmission error of spur gear pairs [J]. J Mech Design,2007,129(1):75-84.
    [230]Mason J F, Piiroinen P T. The Effect of Codimension-Two Bifurcations on the Global Dynamics of a Gear Model [J]. Siam J Appl Dyn Syst,2009,8(1694-711.
    [231]Luo A C J, SpringerLink. Discontinuous dynamical systems on time-varying domains [M]. Higher Education Press,2009.
    [232]陈思雨,唐进元,谢耀东.齿轮传动系统的非线性冲击动力学行为分析[J].振动与冲击,2009,28(004):70-5.
    [233]Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. Wiley,1995.
    [234]Bittanti S, Colaneri P. Periodic Systems:Filtering and Control [M]. London: Springer-Verlag,2009.
    [235]Sinha S C, Wu D-H, Juneja V, et al. Analysis of dynamic systems with periodically varying parameters via chebyshev polynomials; proceedings of the American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, F,1991 [C].
    [236]Wolf H, Kodvanj J, Bjelovucic-Kopilovic S. Effect of smoothing piecewise-linear oscillators on their stability predictions [J]. Journal of Sound and Vibration,2004,270(4-5):917-32.
    [237]Thota P, Zhao X, Dankowicz H. Co-dimension-Two Grazing Bifurcations in Single-Degree-of-Freedom Impact Oscillators [J]. Journal of Computational and Nonlinear Dynamics,2006,1(4):328-35.
    [238]Siyu C, Jinyuan T, Caiwang L, et al. Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction [J]. Mechanism and Machine Theory,2011,46(4):466-78.
    [239]Tang J Y, C. S. Chen, J. Zhong. An improved nonlinear model of a spur gear pair system [J]. Engineering Mechanics,2008,25(1):217-23.
    [240]Siyu C, Jinyuan T, Caiwang L, et al. Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction [J]. Mechanism and Machine Theory, In Press, Corrected Proof(
    [241]陈思雨,唐进元.间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[J].机械工程学报,2009,45(8):119-24.
    [242]Lin A-D, Kuang J-H. Dynamic interaction between contact loads and tooth wear of engaged plastic gear pairs [J]. Int J Mech Sci,2008,50(2):205-13.
    [243]Tjahjowidodo T, Al-Bender F, Van Brussel H. Quantifying chaotic responses of mechanical systems with backlash component [J]. Mechanical Systems and Signal Processing,2007,21(2):973-93.
    [244]Tjahjowidodo T, Al-Bender F, Van Brussel H. Experimental dynamic identification of backlash using skeleton methods [J]. Mechanical Systems and Signal Processing,2007,21(2):959-72.
    [245]Trendafilova I, Van Brussel H. Non-linear dynamics tools for the motion analysis and condition monitoring of robot joints [J]. Mechanical Systems and Signal Processing,2001,15(6):1141-64.
    [246]Houser D R. Gear mesh misalignment [M]. Gear Solutions Magazine.2006: 32-43.
    [247]Smith J D. Gear noise and vibration [M]. New York:Marcel Dekker,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700