用户名: 密码: 验证码:
船舶复杂推进轴系耦合振动理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶推进系统作为船舶的心脏,是船舶动力装置最重要组成部分之一,其对船舶营运的经济性、机动性、安全可靠性等起着至关重要的作用。随着造船行业对造船技术、造船工艺与质量要求的提高以及全球“低碳经济”的提出,船舶推进系统的性能需满足更高的要求,使得其在结构、功能以及性能上变得更加复杂,由此造成原有的轴系振动计算方法在某些场合中因误差过大而不再适用。同时,由于国际规范的加强,船舶轴系振动计算中还存在大量未解决或值得考虑的问题,因此需要对船舶复杂轴系的振动进行更深入的研究。本文围绕自行设计的多机并车联合动力装置综合试验台,针对目前船舶推进装置的研究热点,综合采用数学推导、数值计算、动力学仿真和试验等手段,进行了从梁单元的耦合振动到关键零部件的计算分析直至系统的整体研究分析。论文的主要工作如下:
     1)分析了目前耦合振动研究中存在的不足,从材料力学和弹性力学的基本原理入手,分析了耦合振动产生的原因;总结了圆截面梁的轴向-横向以及扭转-横向耦合振动方程,并推导了圆截面梁的扭转-轴向耦合振动方程,分析了其振动耦合固有频率的变化规律;并根据三种振动形式下的两两耦合振动方程,导出了圆截面梁的轴向-横向-扭转耦合振动方程。
     2)由于船用齿轮箱是造成轴系结构和功能复杂化的根本条件,因此以齿轮系统为研究对象,总结了目前求解齿轮啮合刚度和啮合阻尼的常用方法,建立了船用齿轮箱考虑齿轮啮合传动计算方法下的扭振方程。通过理论计算和建模仿真分析了系统的固有频率以及齿轮啮合误差对扭振的影响;通过斜齿轮的受力分析,解释了斜齿轮副产生耦合振动的原因,推导得出了斜齿轮副啮合耦合振动模型;通过实船测试数据与各种理论计算结果的对比,认为在忽略齿轮啮合误差的情况下,考虑齿轮啮合刚度的推进轴系扭振计算比传统的计算方法更精确,与实测结果更一致。
     3)联轴器的使用使得轴系的性能更加复杂,因此以目前船舶推进轴系中应用较多的十字轴万向联轴器为研究对象,通过坐标变换的方法,推导了主动轴、从动轴和夹角之间的运动规律,得到了十字轴的运动方程;利用第一类拉格朗日方程推导出最基本的万向联轴器的扭转振动的基本的非线性方程,通过仿真分析了夹角对万向联轴器系统的固有频率的影响,得到夹角在小范围内变化时,可忽略因为夹角变化引起的扭矩波动的结论;在其运动学的的基础上,利用拉格朗日方程推导出了考虑十字轴的万向联轴器的扭转振动方程,发现分析得出无论主动轴、中间轴和从动轴之间的夹角如何变化,该系统均是稳定的。同时,随着中间轴和从动轴之间的夹角依次逐渐增大,系统达到稳定的时间依次相应延长,但振幅依次不断降低,同时与最大峰值处对应的频率依次减小。
     4)以所建立的试验台为原型,利用所开发的复杂轴系的扭振计算软件,计算分析了三缸柴油机带测功机工作、四缸柴油机带测功机工作以及双机并车带测功机工作时系统扭转振动的固有频率。同时,考虑了双机并车时柴油机相位差对振动响应的影响,建立了系统的三维模型,并利用动力学仿真软件,综合考虑了齿轮系统以及耦合振动的影响,分析了不同转速下中间轴的角速度变化情况。
     5)设计并建立了多机并车联合动力装置综合试验台,对其硬件组成和监控系统进行了简要说明;概述了三种不同工况下的测试方案,通过测试数据验证了前述相关理论的正确性。
Serving as the heart of ship, marine propulsion system is one of the most important components of marine power plant. It plays a vital role on aspects of marine's economy, mobility, safety and reliability. Due to the higher requirements on the process and technology in shipbuilding industry and the put-forward of global low-carbon economy concept, marine propulsion system is required to meet higher requirements like more complex structure, function and performance. As a result, the former method for shaft vibration calculation, which sometimes leads to unacceptable error, is out of requirements. At the same time, due to the strengthening of international norms, there are many points which are unresolved or worthy to consider in-depth in the field of vibration calculation of ship shafting, more efforts need to be put in analysis of complex ship shafting vibration. This paper, based on the self-designed comprehensive experiment platform with multi-engine parallel operation power plant, focusing on the research hotspot in current marine propulsion system and in combination of mathematical derivation, numerical calculation, dynamics simulation, experimental testing, etc., performed the calculation of the coupling vibration of beam element and computational analysis of key parts and the whole system. The main research work is as follows:
     1) Analyzed the current shortcomings in the coupled vibration research; analyzed the causes of coupled vibration based on basic principles of mechanics of materials and elasticity; summarized the axial-transverse and torsional-lateral coupling vibration equation for beam with round section and performed derivation of torsion-axial coupling vibration equation, analyzed the rules of coupled natural frequency, derived-transverse-torsion coupling vibration equation for beam with round section axial from twin-coupled vibration equation.
     2) Since marine gearbox is the root course of the complex structure and function, the common methods of solving the gear mesh stiffness and mesh damping have been summarized, the torsional vibration equation taking gear meshing in marine gearbox into account has been established. The influence of system natural frequency and the gear meshing error on torsional vibration has been analyzed by means of theoretical calculation, modeling and simulation. Through the stress analysis of helical gear, a complete explanation of helical gear meshing coupled vibration is given and the gear pair coupling vibration model is derived. Comparing the results between the test data of measurement and calculation from various theories, it can be found that the torsional vibration equation considering gear meshing in marine gearbox is more accurate and consistent with the measurement.
     3) As the joints'application has made the shafting performance more complicated and the cross-joint-type universal coupling is wildly used in marine propulsion system, it is set as the research object in chapter4. The motion law between driving and driven shaft is derived and the equations of motion for cross joint shaft is given. The basic nonlinear equations of the torsional vibration for the universal coupling have been derived from the first class of the Lagrange equation. The simulation analysis of the impact of the angle on the natural frequency of the universal coupling system has been performed. From this, it can be found that the torque fluctuations coming from angle changing can be ignored when angle changing is within a small range. Based on the kinematics of universal coupling, the torsional vibration equation in consideration of the cross shaft universal coupling has been derived from the Lagrange equation. Analysis reveals that no matter how the angle changes within the driving shaft, intermediate shaft and the driven shaft the system is stable. Meanwhile, while gradually increasing the angle between the intermediate shaft and the driven shaft, the time that the system takes to reach a stable state extends accordingly, but the amplitude is lower and the frequencies corresponding to the maximum peak value decreases.
     4) Based on the experiment platform and developed software for calculation of complex shafting torsional vibration, the natural frequency of vibration of three-cylinder diesel engine with a dynamometer, four-cylinder diesel engine with a dynamometer and two-engine parallel operation with a dynamometer is calculated and analyzed. Meanwhile, with consideration of the influence of phase difference between the parallel engines, the three-dimensional model has been built. Assisted by the dynamic simulation software and considering the influent of the gear system and coupling vibration, the intermediate shaft angular velocity in different speed of revolution is given.
     5) Designed and built the multi-engine parallel operation power plant platform, a brief description of its hardware components and the monitoring system is given. An overview of three test program in different conditions is given and test data proved the correction and convenience of the theory above.
引文
[1]中国船舶工业年鉴编辑部.中国船舶工业年鉴2010[R].2010:3-5
    [2]商圣义.民用船舶动力装置[M].北京:人民交通出版社,1996:1-15
    [3]周春良.船舶轴系振动研究[D].哈尔滨:哈尔滨工程大学,2006.
    [4]黎辉.船舶推进轴系扭振若干技术问题研究[D].武汉:武汉理工大学,2007.
    [5]黄胜.船舶推进节能技术与特种推进器[M].哈尔滨:哈尔滨工程大学出版社,2007:70-141
    [6]刘国花.多机并车系统方案研究与选型设计[D].武汉:武汉理工大学,2009.
    [7]CCS.钢质海船入级规范第3分册[S].CCS,2009
    [8]DNV. Rulea of Ships/High Speed, Light Craft and Naval Surface Craft [S].2006
    [9]李震,桂长林,孙军.内燃机曲轴轴系振动分析研究的现状、讨论与展望[J].内燃机学报,2002,20(5):469-474.
    [10]Bargis E, Garro A, Vullo V. Crankshaft Design and E-valuation of Current Methods-Part 2-A Modern Design Method:Modal Analysis [J]. Conference on Reliability,Stress Analysis and Failure Prevention in Mechanical Design,ASME International,1980(b):203-211
    [11]李惠珍,张德平.用有限元进行曲轴扭振计算[J].内燃机学报,1991,9(2):157-162.
    [12]Okamura H, ShinnoA. Simple Modeling and Analysis for Crankshaft Three-Dimensional Vibrations, Part 1:Background and Application to Free Vibrations [J]. ASME Journal of Vibration and Acoustics,1995,117(1):70-79.
    [13]Nadolski W, Szolc T, Pielorz A. Dynamic Investigation of the Crankshaft of Three Cylinder Single Bank Engines Using Torsional Elastic Waves [C]. Proceedings of the 15thInternational Conference on Dynamic of Machines.Editions of the Academy of Science of the GDR,1986.
    [14]郝志勇,舒歌群.内燃机轴系扭振相应的扭转波计算方法研究[J].内燃机学报,2000,18(1):29-32.
    [15]Holzer H. Die Berechnung der Drehschwingungen[M]. Berlin:Springer,1921.
    [16]中华人民共和国船级社.船上振动控制指南(CG/Z 002-2000)[S].北京:人民交通出版社,2001.
    [17]芮筱亭,负来峰,陆毓琪等.多体系统传递矩阵法及其应用[M].北京:科学出版社,2008.
    [18]Rubin S. On transmission matrices for vibration and their relation to admittance and impedance [J]. Journal of Engineering for Industry,1964,86:9-21.
    [19]Sanker S. On the Torsional Vibration of Branched Systems Using Extended Transfer Matrix Method [J]. Journal of Mechanical Design,1979,101(4):546-553.
    [20]Schwibiner P, Nordmann R. Improvement of a Reduced Torsional Model by Means of Parameter Identification [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1989,111:17-26.
    [21]Targoff P. The associated matrices of bending and coupled bending-torsion vibration [J]. Journal of Aeronautics Science,1947,14:579-582.
    [22]Mercer A, Seavey C. Prediction of natural frequencies normal modes of skin-stringer panel rows [J]. Journal of Sound and Vibration,1967,6:149-162.
    [23]Mead J. Vibration response and wave propagation in periodic structures [J]. Journal of Engineering Materials and Technology,1971,93:783-792.
    [24]刘庆潭,倪国荣.压杆稳定性和横向自由振动计算的传递矩阵法[J].长沙铁道学院学报,1994,12(4):87-95.
    [25]刘庆潭,曾自愚.钢筋混凝土轨枕弯曲自由振动计算的传递矩阵法[J].海南大学学报(自然科学版),2006,24(2):129-132.
    [26]戴莉娅,张志华,孙大庆.船舶推进轴系纵、横、扭祸合振动传递矩阵法的研究[J].中国造船,1989(4):98-106.
    [27]唐斌.基于精确动态刚度矩阵法的内燃机轴系扭转、纵向及弯曲三维耦合振动研究[D].大连理工大学,2006.
    [28]唐斌,薛冬新,宋希庚.复杂分支轴系扭振计算的动态矩阵法[J].船舶工程,2003,25(3):24-27.
    [29]刘刚,吴炜,饶春晓等.基于传递矩阵法的船舶轴系回旋振动计算研究[J].中国舰船研究,2010,5(1):60-63.
    [30]赵蓦,郝志勇.柴油机曲轴系扭转振动的有限元模型研究[J].车辆与动力技术,2000(04):27-31.
    [31]S. Mohammad Hashemia, Marc J. Richarda, A Dynamic Finite Element (DFE) method for free vibrations of bending-torsion coupled beams [J]. Aerospace Science and Technology, 2000,4(1):41-55.
    [32]邹春平,黎明南.船舶推进轴系扭振应用软件开发[J].江苏船舶,1996,5:29-33.
    [33]周瑞平,杨建国,张升平.船舶推进轴系扭转振动应用软件开发研究[J].武汉理工大学学报,2003,3:69-72.
    [34]Murawski L. Axial vibrations of a propulsion system taking into account the couplings and the boundary conditions [J]. Journal of Marine Science and Technology,2004,9:171-181.
    [35]徐桃园,张强,陈灿等,大位移井钻柱纵向振动理论分析与ANSYS计算[J].噪声与振动控制,2010(2):50-53.
    [36]阙仁波,王奎华,许瑞萍.粘性阻尼土中变截面桩的纵向振动特性与应用研究[J].计算力学学报,2008(6):808-815.
    [37]许秀运,钟学添,何轩轩编著.船舶轴系纵向振动[M].北京:人民交通出版社,1985.
    [38]曹贻鹏,张文平.轴系纵振对双层圆柱壳体水下声辐射的影响研究[J].船舶力学,2007(2):293-299.
    [39]李良伟,赵耀,陆坡等.减小船舶轴系纵向振动的动力减振器参数优化[J].中国造船,2010(2):139-148.
    [40]中国动力工程学会.火电发电设备技术手册,第二卷:汽轮机[G].机械工业出版社,2004.
    [41]史月涛,丁兴武,盖永光等主编.汽轮机设备与运行[M].北京:中国电力出版社,2008.
    [42]闻邦椿,顾家柳,夏松波等.高等转子动力学——理论、技术与应用[M].北京:机械工业出版社,2000.
    [43]虞烈,刘恒.轴承——转子系统动力学[M].两安:西安交通大学出版社,2001.
    [44]Chen S L, Geradin M. An improved transfer matrix technique as applied to BHA lateral vibration analysis [J]. Journal of Sound and Vibration,1995,185(1):93-106.
    [45]Behzad M, Bastami A R. Effect of centrifugal force on natural frequency of lateral vibration of rotating shafts [J]. Journal of Sound and Vibration,2004,274:985-995.
    [46]陈锡恩,高景.船舶轴系回旋振动计算及其参数研究[J].航海工程,2001(5):8-11.
    [47]朱汉华,严新平,刘正林等.冲击载荷下船舶轴系转速与回旋振动间影响研究[J].武汉理工大学学报(交通科学与工程版),2008,32(6):983-985.
    [48]王磊,谢俊超,周瑞平.大型船舶推进轴系回旋振动特性分析研究[J].江苏船舶,2010,27(1):14-17.
    [49]周瑞平.基于VB的船舶轴系回旋振动计算软件[J].造船技术,1999(3):30-33.
    [50]Parson M G Mode Coupling in Torsional and Longitudinal Shafting Vibration [J]. Marine Technology,1983,20(3):257-271.
    [51]Jenzer J, Welte Y. Coupling Effect Between Torsional and Axial Vibration in Installations with Two-stoke Diesel Engines [Z]. Wartsila NSD,1991.
    [52]李渤仲,宋天相,宋希庚.活塞式发动机轴系耦合振动问题(一)——扭转振动引起的轴向振动[J].内燃机学报,1989,7(1):1-6.
    [53]李渤仲,宋天相,宋希庚等.活塞式发动机轴系耦合振动问题(二)——扭转、轴向的升级连振[J].内燃机学报,1990,8(4):317-322.
    [54]王义,宋天相,宋希庚.船舶推进轴系扭转——轴向耦合振动响应曲线的分析[J].船舶工程,1995(1):33-39.
    [55]张洪田,张志华,刘志刚等.船舶推进轴系纵扭耦合振动研究[J].中国造船,1995(2):68-75.
    [56]舒歌群,吕兴才.高速柴油机曲轴扭转—纵向耦合振动的研究[J].兵工学报,2002,23(1):1-5.
    [57]张锁怀,郭军.带螺旋桨的曲轴系统扭纵耦合非线性振动模型[J].机械工程学报,2010,46(11):121-128.
    [58]Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. New York:JOHN WILEY & SONS, 1979.
    [59]夏品奇.纵横向耦合梁的谐波响应分析[J].振动工程学报,1995,8(1):67-72.
    [60]Han S M, Benaroya H. Non-linear coupled transverse and axial vibration of a compliant structure, part 1:formulation and free vibration [J]. Journal of sound and vibration,2000, 237(5):837-873.
    [61]Han S M, Benaroya H. Non-linear coupled transverse and axial vibration of a compliant structure, part 2:forced vibration[J]. Journal of sound and vibration,2000,237(5):875-900.
    [62]O'Reilly O M. On coupled longitudinal and lateral vibrations of elastic rods [J]. Journal of sound and vibration,2001,247(5):835-856.
    [63]胡义,杨建国.梁纵横耦合振动研究[J].武汉理工大学学报(交通科学与工程版),2010,34(3):537-541.
    [64]鲁周勋.转轴的弯、扭耦合振动研究[J].汽轮机技术,1994,36(5):266-268.
    [65]Papadopoulos C A, Dimarogonas A D. Coupling of bending and torsional vibration of a cracked Timoshenko shaft [J]. Archive of Applied Mechanics,1987,57(4):257-266.
    [66]J.R.Banerjee, S.Guo and W. P. Howson. Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping [J]. Computers & Structures,1996,59(4):613-621
    [67]J.R.Banerjee, F.W.Williams. Exact dynamic stiffness matrix for composite Timoshenko beams with applications [J]. Journal of Sound and Vibration,1996,194(4):573-585
    [68]J.R.Banerjee. Frequency equation and mode shape formulae for composite Timoshenko beams [J]. Composite Structures,2001,51(4):381-388
    [69]J. R. Banerjee, H. Su. Free Transverse and Lateral Vibration of Beams with Torsional Coupling [J]. Journal of Aerospace Engineering,2006,19(1):13-20
    [70]S.H.R.Eslimy-Isfahany, J.R.Banerjee, A.J.Sobey. Response of a bending-torsion coupled beam to deterministic and random loads [J]. Journal of Sound and Vibration 1996,195(2):267-283
    [71]J. R. Banerjee. Explicit frequency equation and mode shapes of a cantilever beam coupled in bending and torsion [J]. Journal of Sound and Vibration,1999,224(2):267-281
    [72]S.H.R.Eslimy-Isfahany, J.R.Banerjee. Use of generalized mass in the interpretation of dynamic response of bending-torsion coupled beams [J]. Journal of Sound and Vibration, 2000,238(2):295-308
    [73]J.R.Banerjee. Explicit Modal Analysis of an Axially Loaded Timoshenko Beam with Bending-Torsion Coupling [J]. Journal of Applied Mechanics,2000,67(2):307-313
    [74]J.R.Banerjee. Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam [J]. Journal of Sound and Vibration,2004,270(1-2): 379-401
    [75]M.O. Kaya, O.Ozdemir Ozgumus. Flexural-torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM [J]. Journal of Sound and Vibration,2007,306(3-5):495-506
    [76]李俊,刘见华,金咸定.轴向受载的Timoshenko薄壁梁的弯扭祸合动力响应[J].计算力学学报,2003,20(2):184-188.
    [77]Li J, Shen R Y, Hua H X, et al. Coupled bending and torsional vibration of axially loaded Bernoulli-Euler beams in eluding warping effect [J]. Applied Acoustics,2004,650: 153-170.
    [78]李俊,沈荣瀛,华宏星.考虑翘曲影响的Bernoulli-Euler薄壁梁的弯扭耦合振动[J].机械强度,2003,25(5):486-489
    [79]李俊,金咸定.轴向受载的Timoshenko薄壁梁固有振动和稳定性的理论分析[J].强度与环境,2002,29(2):18-23
    [80]]Al-bedoor B O. Reduced-Order Nonlinear Dynamic Model of Coupled Shaft-Torsional and Blade-Bending Vibrations in Rotors [J]. Journal of Engineering for Gas Turbines and Power, 2001,123(1):82-88.
    [81]Hashemia S M, Richard M J. A Dynamic Finite Element (DFE) method for free vibrations of bending-torsion coupled beams[J]. Aerospace Science and Technology,2001,4(1):41-55.
    [82]Rao M A, Srinivas J, Raju V B. Coupled torsional-lateral vibration analysis of geared shaft systems using mode synthesis[J]. Journal of Sound and Vibration,2003,261:359-364.
    [83]付波.基于弯扭耦合振动与轴心轨迹辨识的水轮发电机组故障诊断研究[D].武汉:华中科技大学,2006.
    [84]向玲.电网冲击下汽轮发电机组轴系弯扭振动模拟试验研究[D].北京:华北电力大学,2009.
    [85]Darpe A K, Gupta K, Chawla A. Coupled bending, longitudinal and torsional vibrations of a cracked rotor[J]. Journal of Sound and Vibration,2004(269):33-60.
    [86]褚亦清,李翠英.非线性振动分析[M].北京:北京理工大学出版社,1996
    [87]陈予恕.非线性振动[M].北京:高等教育出版社,2002.
    [88]朱因远,周纪卿编.非线性振动和运动稳定性[M].两安:西安交通大学出版社,1992.
    [89]Vanhille C, Campos-pozuelo C. Numerical Analysis of Strongly Nonlinear Extensional Vibrations in Elastic Rods [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2007,54(1):96-106.
    [90]Turhan O, Bulut G. On nonlinear vibrations of a rotating beam [J]. Journal of Sound and Vibration,2009,322:314-335.
    [91]Tang Y Q, Chen L Q, Yang X D. Nonlinear vibrations of axially moving Timoshenko beams under weak and strong external excitation [J]. Journal of Sound and Vibration,2009,320: 1078-1099.
    [92]吴松林,洪善桃.转动梁的纵横弹性运动[J].振动与冲击,1991(3):20-27.
    [93]洪善桃.高等动力学[M].上海:同济大学出版社,1996.
    [94]高卫民,郑巍,洪善桃.转动梁纵横弹性运动的非线性解法[J].振动与冲击,2004,23(2):8-11.
    [95]陈宜周.保守系统中非线性振动问题的数值解法[J].动力学与控制学报,2004(4):9-13.
    [96]吴晓,黎大志.非线性材料圆杆的扭转固有振动分析[J].振动与冲击,2005(3):53-54.
    [97]吴晓,杨立军.悬挂弹簧几何非线性减振系统的固有振动特性[J].振动与冲击,2008(11):71-72,141,199.
    [98]王光远,郑钢铁,韩潮.连接梁的非线性耦合振动分析与实验[J].振动工程学报,2009,22(1):4146.
    [99]Nayfeh A H. Method of Normal Forms [M]. New York:John Wiley & Sons,1993.
    [100]张琪昌,郝淑英,陈予恕.用范式理论研究强非线性振动问题[J].振动工程学报,2000,13(3):481-486.
    [101]张琪昌,王炜,郝淑英.研究强非线性振动问题的最简规范形方法[J].应用力学学报,2008,25(4):422-426.
    [102]王炜,张琪昌,田瑞兰.两自由度强非线性振动系统的渐近解及分岔分析[J].振动与冲击,2008,27(5):130-133.
    [103]万浩川,张琪昌,王炜.多自由度耦合强非线性振动系统的规范形方法[J].振动工程学报,2010,23(5):572-577.
    [104]李永强,朱大巍,李锋.一类强非线性受迫振动系统的解析近似[J].机械工程学报,2009,45(12):37-40.
    [105]陈之炎.船舶推进轴系振动[M].上海:上海交通大学出版社,1987.
    [106]杜红兵,陈之炎,静波.内燃机轴系扭转-纵向耦合振动数学模型[J].内燃机工程,1992,12(2):66-74
    [107]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997。
    [108]王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,31(1):37-51.
    [109]Kahraman A, Blankenship G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters [J]. ASME Appl Mech, 1997,64:217-226
    [110]Roland Mathis, Yves Remond. Kinematic and dynamic simulation of epicyclic gear trains [J]. Mechanism and Machine Theory 2009 (44) 412-424
    [111]Lassaad Walha, Tahar Fakhfakh, Mohamed Haddar. Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash [J]. Mechanism and Machine Theory 2009(44):1058-1069
    [112]X.Xu, R.P.Zhou, Z.X.Li. Virtual Simulation Analysis and Experimental Study on Gear Fault Diagnosis Based on Wavelet Neural Network[C]. Kaifeng: 2010 International Conference on Machine Vision and Human-machine Interface,2010,55-58
    [113]李瑰贤,马亮,林少芬.宽斜齿轮副啮合刚度计算及扭振特性的研究[J].南京理工大学学报,2002,26(1):35-39.
    [114]陆波,朱才朝,宋朝省等.大功率船用齿轮箱耦合非线性动态特性分析及噪声预估[J].振动与冲击,2009,28(4):76-801
    [115]X.Xu, R.P.Zhou, Research on Torsional Vibration of the Propulsion Shafting Gear System Based on an Extended Lumped Parameter Model[J]. Applied Mechanics and Materials 2011,37-38:1120-1124
    [116]X.Xu, R.P.Zhou. Research on Torsional Vibration of Gear-Shafting System Based on anExtended Lumped Parameter Model[J]. Advanced Materials Research 2011,143-144:487-492
    [117]施高义,唐金松,喻怀正等.联轴器[M].北京:机械工业出版社,1988:48-77.
    [118]TIPPER J A, HILL S J. Universal Joints and Driveshafts:Analysis, Design, Applications (2nd edition)[M]. Springer,2006:42.
    [119]周全中,王高平,常青.万向联轴器传动的矩阵分析[J].轻工机械,2006年3月:73-74.
    [120]朱金榴,胡秉辰.双万向联轴器静力分析[J].吉林工业大学学报,1995,25(4):77-81
    [121]朱金榴.万向联轴器十字轴的运动学和动力学方程[J].上海工程技术大学学报,1996,10(3):72-79
    [122]王鸿恩,罗义艮,贺明.三维空间多节万向传动轴扭振的分析计算[J].机械工程学报,2000.36(6):38-41.
    [123]Fischer I. S., Paul R.N. Kinematic Displacement of a Double-Cardan-Joint Driveline [J]. ASME Journal of Mechanical Design,1991(113):263-271.
    [124]Mazzei A J. Dynamic stability of a rotating shaft driven through a universal joint [J]. Journal of Sound and Vibration,1999,222(1):19-47.
    [125]Jussi Sopanen. Studies on torsion vibration of a double cardan joint driveline [R], SAMEKO Project Report,2003.2:2-18.
    [126]Costa Attilio. Torsional oscillations in constant-velocity drives incorporating two cardan joints The present state of knowledge and the design of an experimental research [J]. Meccanica,1982(17):179-200.
    [127]徐翔,周瑞平,汪萌生等.基于MATLAB的万向联轴器非线性扭振仿真[J].武汉理工大学学报,2011,133(11):135-138
    [128]王磊,周瑞平,徐翔等.全回转推进轴系扭振计算方法研究[J].造船技术,2011(6):20-24.
    [129]王艳国,周瑞平,徐翔.船用万向联轴器-减速齿轮箱传动系统的动力学仿真分析[J].造船技术,2011(6):16-19
    [130]王艳国.全回转舵桨推进轴系振动计算方法研究[D].武汉:武汉理工大学,2011
    [131]王磊.船舶复杂推进轴系扭振机理及计算软件研究[D].武汉:武汉理工大学,2011
    [132]胡爱闽.基于ADAMS的柴油机曲轴系统多体动力学仿真[J].煤矿机械,2010,31(2):62-65
    [133]李晓通CODAD联合动力装置控制规律的仿真与实验研究[D].哈尔滨:哈尔滨工程大学,2001.
    [134]孟健,马捷.异型双机并车控制策略及离合器模型研究[J].船舶工程,2009,31(z1):58-62.
    [135]孟健.舰船双柴油机推进系统的建模和仿真[D].上海:上海交通大学,2010.
    [136]黄文超.柴油机双机并车装置控制系统研究[D].上海:上海交通大学,2010.
    [137]曾凡明,陈虞涛,吴家明等.柴油机并车推进装置并车过程试验与仿真研究[J].内燃机工程,2004(5):5-9.
    [138]王永生,陈华清,敖晨阳等.舰船并车减速齿轮箱任意稳态工况下功率损失的数学模型[J].海军工程大学学报,2004(1):26-29.
    [139]陈虞涛,曾凡明,陈国钧等.基于单调速器法的并车控制器模型与并车推进装置特性分析[J].武汉理工大学学报(交通科学与工程版),2008(6):1037-1039
    [140]Xu Xiang, Zhou Ruiping, Qi Liang. Design and control simulation of the multi-functional test bench of the marine power plant [C]. IEIT Proceedings 2011(1):283-288
    [141]袁强.多机并车系统仿真及控制策略研究[D].武汉:武汉理工大学,2009.
    [142]武汉理工大学.多功能船舶联合动力装置综合模拟实验台.中国,201110113009.X[P].2011-12-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700