用户名: 密码: 验证码:
基于多体动力学船舶柴油机推进轴系轴承润滑研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶柴油机是船舶的主要推进动力装置,其曲轴飞轮输出端连接中间轴、艉轴和螺旋桨,构成船舶的推进轴系,将主机所产生的机械功传递给螺旋桨,推动船舶前进。船舶柴油机推进轴系由若干滑动轴承共同支承,包括曲轴主轴承、支承中间轴的中间轴承和内置在艉轴管内支承艉轴的前、后艉轴承。推进系统结构和受力复杂,深入分析船舶推进轴系各摩擦副的润滑性能及其影响因素,对于提高船舶动力装置经济性及可靠性、优化轴系设计有重要的现实意义。目前大型低速二冲程船舶柴油机推进轴系各轴承润滑特性的分析和预测还难于开展有效的实验研究。本文建立了船舶柴油机推进轴系的多体动力学分析模型,依据弹性流体动压润滑理论,开展了各轴承润滑特性的计算分析,对各滑动轴承的润滑特性及其影响因素进行了深入研究。
     以MAN B&W6S50MC-C二冲程船舶柴油机作推进动力的39000载重吨油轮推进轴系为研究对象,建立了弹性曲轴、中间轴、艉轴以及柴油机各主轴承座、中间轴承座和艉轴承座的三维实体有限元模型。考虑各弹性体间的动力学耦合作用以及弹性体和润滑油膜间的流固耦合作用,采用模态缩减子结构法将有限元模型进行动态缩减,继而用缩减得到的模型信息文件构建推进轴系轴承润滑的多体动力学分析模型。
     在单纯考虑柴油机本身曲轴、活塞连杆机构,未考虑中间轴系、螺旋桨等部件的影响下,对额定工况下的MAN B&W6S50MC-C柴油机主轴承润滑特性进行仿真研究。计算结果表明:各主轴承载荷数值各不相同,润滑状况存在较大差异,其中MB2轴承的工作状态相对较差。轴承各种参数和运行工况等对主轴承润滑特性的影响程度各不相同。单缸熄火时,柴油机需要降速降负荷运行,由于惯性力的影响,各轴承载荷变化并不相同;由于装配等因素导致轴承座上下偏移,载荷会发生变化,润滑状态也相应改变;在轴承座倾斜情况下,载荷变化不大,但润滑状况急剧恶化,高油压区偏布于轴承边缘。
     在上述柴油机多体动力学分析模型的基础上,计入传动轴系和螺旋桨等的影响,将曲轴、中间轴、艉轴和螺旋桨等包含进来,通过完整的全轴系轴承润滑计算模型来分析中间轴承和艉轴承的润滑状况及其主轴承润滑状态的变化情况。边界条件更趋于实际情况,可以得出更趋合理和更准确的主轴承、中间轴承和艉轴承的润滑特性参数。计算结果表明:远离柴油机功率输出端的主轴承工作状态变化不大,距离输出端越近,主轴承工作状态变化越明显,最后一道主轴承变化情况甚为显著。对用作船舶主推进动力装置的柴油机曲轴主轴承进行准确的润滑分析,必须考虑后端轴系的影响作用。中间轴承沿轴向受力均匀,润滑状况良好,工作较为平稳;由于螺旋桨重力的影响,后艉轴承载荷的边缘效应十分明显,高油压区分布在靠近螺旋桨侧的艉轴承边缘;随着螺旋桨运行转速的增大,轴系的横向振动也增大,轴系滑动轴承的载荷幅值也随之变化;由于陀螺效应的影响,艉轴的倾斜角度逐渐减小,艉轴承润滑状况也随之趋于好转。
     综上所述,本文建立船舶柴油机推进轴系多体动力学计算模型,对滑动轴承润滑特性参数进行了数值分析。该多体动力学分析模型和耦合仿真分析方法为船舶推进轴系轴承润滑特性的分析和预测提供了一种有效的研究方法,实现轴系滑动轴承快速和高效的优化设计。
Marine propulsion shaftings, composed of crankshaft, intermediate shaftings, stern shaftings and propeller, transmit power generated by marine diesel engine to propel vessel forward. Marine propulsion shaftings are supported by sliding bearings such as main bearings, intermediate bearings, fore and aft sterntube bearings built-in stern tube. Marine propulsion system has particular structure and complicated loads. In-depth analysis of the lubrication characteristics for friction pairs of marine propulsion shaftings and its influencing factors has important practical value for improving the economy and reliability of marine power plant and optimizing the shafting design. Currently, it is difficult to develop effective experimental study for the analysis and prediction of bearing lubrication characteristics for large low-speed two-stroke marine diesel engine propulsion shafting. In this paper, the multi-body dynamics model of marine diesel engine propulsion shafting was established, based on elastohydrodynamic lubrication theory, the lubrication characteristics of all bearings and its influencing factors were analyzed thoroughly.
     The propulsion system of a39000deadweight tonnage oil tanker propelled by a MAN B&W6S50MC-C diesel engine was taken as study objective, and the three dimensional solid finite element models of flexible crankshaft, intermediate shaft, and stern shaft, main bearings of diesel engine, intermediate bearing and sterntube bearings were established. Considering dynamic interaction behaviors of all flexible bodies and the fluid-solid interaction behavior between flexible bodies and elastohydrodynamic lubrication oil film, Modal Reduced-Substructuring method was employed for dynamic reduction of finite element models, the resulting files generated from reduced FE models were employed to create multi-body dynamics model of propulsion system.
     Considering purely the engine pistons, connecting rods, crankshaft and main bearings, but ignoring intermediate shafting, stern shaft and propeller, the simulation study on lubrication characteristics of MAN B&W6S50MC-C main bearings was carried out at rated working conditions. Simulation results show that:the loads and lubrication conditions of main bearings were quite different to each other, and the lubrication conditions of No.2main bearing was poor. The influences of bearings structure parameters and operating conditions to the lubrication characteristics of main bearings were quite different. Once one cylinder misfire, engine load should decrease, and the load on each bearing varied differently due to the influence of inertia forces. Supposing the bearing offset owing to mis-assembly probably, the bearing lubrication changed. In the case of bearing tilting, the bearing load changed very small, but the bearing lubrication deteriorated sharply, and high oil pressure zone deviated to bearing edges.
     Based on the above multi-body dynamics model, considering the influence of driving shafting and propeller, full shafting model for lubrication simulation of large low-speed two-stroke marine diesel engine propulsion system was created. The boundary conditions exerting on this model were closer to actual situation, and the lubrication characteristics of main bearings, intermediate bearing and sterntube bearings were more reasonable and more accurate. Simulation results show that:The lubrication characteristics of the main bearings close to engine output end changed significantly, but small change appeared on the main bearings close to engine free end. The load distributed uniformly on the intermediate bearing in axial direction, and the intermediate bearing lubricated well and worked smoothly. As the impact of the propeller gravity, the edge effect of the aft sterntube bearing load was very obvious, and high oil pressure zone located at the aft edge of aft sterntube bearing. With the increasing running speed of propeller shaft, the lateral vibration of shafting strengthened, and the bearing loads increased accordingly. As the impact of gyroscopic effects, the tilting angle of stern shaft decreased, and the sterntube bearing lubrication improved accordingly.
     In summary, the multi-body dynamics model of marine diesel engine propulsion shafting was established and the lubrication characteristics of sliding bearings were simulated in this paper. The multi-body dynamics model and interaction simulation method provides an effective research method to the analysis and prediction of bearing lubrication characteristics for marine propulsion shafting, and fast and effective optimization design of sliding bearings were achieved.
引文
[1]http://www.maerskline.com/link/page=brochure&path.
    [2]时志刚,冯明志,高荃.我国船舶柴油机发展展望.柴油机,2012,34(1):1-3.
    [3]李柱国.内燃机滑动轴承.上海:上海交通大学出版社,2003.
    [4]温诗铸,黄平.摩擦学原理(第3版).北京:清华大学出版社,2008.
    [5]Tower B. First report on friction experiments. Proc.Inst Mech. Engrs,1883:36-58.
    [6]叶晓明.活塞环组三维润滑数值模拟及其应用研究:(博士学位论文).武汉:华中科技大学,2004.
    [7]陈燕生,沈心敏,闻英梅,等.摩擦学基础.北京:北京航空航天大学出版社,1991.
    [8]Pinkus J. The Reynolds Centennial:A Brief History of the Theory of Hydrodynamic Lubrication. Transaction of ASME, Journal of Lubrication Technology,1987,109(1):2-20.
    [9]Dubois G B, Ocvirk F W. Analytical derivation and experiment evaluation of short bearing approximation for full journal bearings. NACA,1953, Report 1157:1199-1229.
    [10]温诗铸,杨沛然.弹性流体动力润滑.北京:清华大学出版社,1992.
    [11]Furuhama S. A Dynamic Theory of Piston Ring Lubrication. Bulletin of the JSME, First report-Calculation,1960,2:423-428.
    [12]Dowson D. A Generalized Reynolds Equation for Fluid-film Lubrication, International Journal of Mechanical Science,1962,4(2):159-170.
    [13]Dowson D, Hudson J D, Hunter B. An Experimental Investigation of the Thermal Equilibrium of Steadily Load Journal Bearings, Proceeding of the Institution of Mechanical Engineers,1966, 181(2):70-80.
    [14]Khonsari N M. A Review of thermal Effects in Hydrodynamic Bearings.Part I:Slider and Thrust Bearings, ASLE Tribology Transactions,1987,30(1):19-25.
    [15]Hashish E, Sankar T S, Osman M. Finite Journal Bearing with Nonlinear Stiffness and Damping. Part Ⅱ:Stability Analysis, ASME Journal of Mechanical Design,1982,104(4):406-411.
    [16]Patir N, Cheng H S. An Average Flow Model for Determining Effect of Three Dimensional Roughness on Partial Hydrodynamic Lubrication. Transaction of ASME, Journal of Lubrication Technology,1978,100(1):12-17.
    [17]Parir N, Cheng H S. Application of Average Flow Model to Lubrication between Rough Sliding Surfaces. Transaction of ASME, Journal of Lubrication Technology,1979,101(2):220-230.
    [18]Rhode S M. A mixed friction model for dynamically loaded-contacts with application to piston ring lubrication. Proceeding 7th Leeds-Lyon Symposium on Tribology, Westbury House,1980: 262-278.
    [19]Greenwood J A, Tripp J H. The Contact of Two Nominally Flat Rough Surfaces. Proceeding of the Institution of Mechanical Engineers,1971,185:625-633.
    [20]Wu Chengwei, Zheng Linqing. An Average Reynolds Equation for Partial Film Lubrication with a Contact Factor. ASME Journal of Tribology,1989,111:188-191.
    [21]张朝,张直明.计入非牛顿效应的曲轴轴承的混合润滑分析.内燃机学报,1999,17(3):303-307.
    [22]王晓力,朱克勤.基于应力偶流体模型的动载轴承润滑研究.清华大学学报,2001,41(8):60-63.
    [23]孙军.曲轴-轴承系统摩擦学、刚度和强度的耦合研究:(博士学位论文).合肥:合肥工业大学,2005.
    [24]Goenka P K. Dynamically loaded journal bearings: finite element method analysis. ASME Journal of Tribology, 1984, 106:429-439.
    [25]Taylor C M. Fluid-film lubrication in the internal combustion engine:an invited review. Journal of Physics D:Applied Physics. 1992, 25:91-100.
    [26]王刚志,楼晓燕.基于热弹性流体动力润滑理论的内燃机主轴承油槽设计.拖拉机与农用运输车,2011,38(3):87-91.
    [27]胡雄海,洪玉芳,汪久根.微沟槽表面的滑动轴承性能分析.机械设计与研究,2002,18(2):51-54.
    [28]裘祖干,张长松.动载径向粗糙轴承分析.内燃机学报.1993,11(2):159-164.
    [29]Christensen H. Stochastic models for hydrodynamic lubrication of rough surface. Proc.inst.Mech.Eng, 1969, 184:1013-1026.
    [30]张朝,裘祖干.粗糙度和流体的非牛顿特性对内燃机滑动轴承性能的影响.内燃机工程,1995,(3):69-76.
    [31]Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces. Proceeding of the Institution of Mechanical Engineers, 1970, 185:625-634.
    [32]王晓力.计入表面形貌效应的内燃机主轴承热流体动力润滑分析:(博士学位论文).北京:清华大学,1999.
    [33]孙军,王震华,桂长林.计入曲轴受载变形的粗糙表面曲轴轴承弹性流体动力润滑分析.机械工程学报,2009,45(1):135-140.
    [34]富彦丽.径向滑动轴承瞬态热弹性流体动力润滑性能的研究:(博士学位论文).西安:西安交通大学,2003.
    [35]Ezzat H A, Rohde S M. Thermal transient in finite slider bearings. Journal of Lubrication Technology, 1974, 96(7):315-321.
    [36]Ott H H, Paradissiadis G. Thermo hydrodynamic analysis of journal bearings considering cavitation and reverse flow. ASME Journal of Tribology,1988,110(3):439-448.
    [37]Paranjpe R S, Han T. A Transient Thermo hydrodynamic Analysis including Mass Conserving Cavitation for Dynamically Loaded Journal Bearings. ASME Journal of Tribology, 1995, 117(3):369-379.
    [38]Paranjpe R S. A Study of Dynamically Loaded Engine Bearings Using a Transient Thermo hydrodynamic Analysis. Tribology Transactions,1996,39(3):636-644.
    [39]Hirani H, Athre K, Biswas S. A Hybrid Solution Scheme for Performance Evaluation of Crankshaft Bearings. ASME Journal of Tribology,2000,122(4):733-741.
    [40]Bouyer J, Fillon M. On the significance of thermal and deformation effects on a plain journal bearing subjected to severe operating conditions. ASME Journal of Tribology,2004,26(4):819-822.
    [41]童宝宏,桂长林,孙军,等.计入热变形影响的内燃机主轴承热流体动力润滑分析.机械工程学报,2007,43(6):180-185.
    [42]童宝宏,桂长林,陈华,等.热变形对内燃机主轴承润滑特性影响的仿真分析.农业机械学报,2007,38(6):1-5.
    [43]邓玫,孙军,付永红,等.计及轴受载变形的粗糙表面轴承热弹性流体动力润滑分析.机械工程学报,2010,46(15):95-101.
    [44]Paranjpe R S. Analysis of Non-Newtonian Effects in Dynamically Loaded Finite Journal Bearings Including Mass Conserving Cavitation, ASME Journal of Tribology,1992,114(4):736-745.
    [45]Walters K, Bates T W, Coy R C, etal. On the importance of non-Newtonian effects in journal bearing lubrication: a numerical approach. SAE transactions,1997,106:1065-1071.
    [46]王晓力,温诗铸,桂长林,等.内燃机润滑油流变学性能的研究.摩擦学报,1999,19(4):368-371.
    [47]张俊岩,王晓力.微极性流体润滑的挤压膜轴承特性研究.北京理工大学学报,2009,29(9):771-774.
    [48]王晓力,朱克勤.计入应力偶效应和空化效应的滑动轴承热流体动力润滑数值研究.工程力学,2002,19(5):160-164.
    [49]王晓力,朱克勤.应力偶对滑动轴承热流体动力学特性的影响.清华大学学报,2002,42(2):239-242.
    [50]Fantino B, Frene J. Comparison of Dynamic Behavior of Elastic Connection-Rod Bearing in Both Petrol and Diesel Engines. ASME Journal of Tribology,1985,107(1):87-91.
    [51]Goenka P K, Oh K P. An optimum short bearing theory for Elastohydrodynamic solution of journal bearings. ASME Journal of Tribology,1986,108(2):294-199.
    [52]Kumar A, Goenka P K, Booker J F. Modal analysis of Electrodynamics lubrication:a connecting rod application. ASME Journal of Tribology,1990,112(3):524-532.
    [53]Fantino B, Frene J, Parquen J D. Viscosity Effects on the Dynamic Characteristics of an Elastic Engine Bearing. Engine Lubrication.1985,94:472-483.
    [54]Tempel L Van der, Moes H, Bosma R. Numerical Simulation of Dynamically Loaded Flexible Short Journal Bearings. ASME Journal of Tribology, 1985,107(3):396-402.
    [55]Bates T W, Fantio B, Launay L. Oil film Thickness in an Elastic Connecting Rod Bearing: Comparison between Theory and Experiment. Tribology Transactions, 1990,33(2):254-266.
    [56]XU H, Smith E H. A New Approach to the Solution of Elastohydrodynamic Lubrication of crankshafts Bearings. Proceedings of the Institute of Mechanical Engineers, 1990, 204(C3):187-197.
    [57]Xu H, Crooks C S. A study of the behavior of connecting rod bearing using an EHL Predictive tool. SAE Transactions,1997,106:380-387.
    [58]Xu H. Effects of EHD contacts upon the bearing and housing behavior. SAE Transactions,1996, 105:391-398.
    [59]Aitken M B, McCallion H. Elastohydrodynamic Lubrication of Big-End Bearings, Part Ⅰ: Theory. Proceedings of the Institute of Mechanical Engineers, 1991,205(C2):99-106.
    [60]Knoll G, Lang J, Rienacker A. Transient EHD Connecting Rod Analysis:Full Dynamic versus Ouasi-static Deformation. ASME Journal of Tribology, 1996, 118:349-355.
    [61]Gamier T, Bonneau D, Grente C. Three-Dimensional EHD Behavior of the Engine Block-Crankshaft Assembly of a Four Cylinder In line Automotive Engine. ASME Journal of Tribology, 1999, 121(4):721-730.
    [62]Okamoto Y, Kitahara K, Usijima K, etal. A Study for Wear and Fatigue of Engine Bearings on Rig Test by Using Elastohydrodynamic Lubrication Analysis. SAE transactions, 1999, 108:415-428.
    [63]Ushijima K, Aoyama S, Kitahara K, etal. A study on engine bearing wear and fatigue using EHL analysis and experimental analysis. JSAE Review,2000,21(2):189-196.
    [64]何芝仙,桂长林.计入轴瓦弹性变形的滑动轴承润滑分析的快速近似算法.润滑与密封,2007,32(5):48-51.
    [65]何芝仙,桂长林.计入轴瓦变形的曲轴轴承系统动力学摩擦学耦合分析.振动与冲击,2008,27(10):139-143.
    [66]何芝仙,桂长林,李震,等.计入曲轴倾斜时曲轴-轴承系统动力学、摩擦学和弹性力学耦合分析.内燃机工程,2009,30(3):86-92.
    [67]Maspeyrot P, Frene J. Comparison between aligned and misaligned bearings under dynamic loading in both quasi-static and dynamic misalignment. Proceeding of the Leeds Lyon symposium on Tribology,1991,18:19-26.
    [68]Lahmar M. Comparison of the dynamic behavior of two misaligned crankshaft bearing. Proceeding of the institute of mechanical engineers,2000,214:991-997.
    [69]Jun Sun, Jianglin Liu, Changlin Gui. Thermoelastohydrodynamic lubrication analysis of crankshaft bearing considering crsnkshaft deformation under load. Advanced Tribology,2010, 3:112-115.
    [70]Jun Sun, Changlin Gui. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation. Tribology International,2004,37(10):841-848.
    [71]蔡晓霞,孙军,刘利平,等.计及机体变形的内燃机主轴承弹性流体动力润滑分析.摩擦学学报,2010,30(2):118-122.
    [72]王刚志.内燃机主轴承热弹性流体动力润滑数值分析及试验研究:(博士学位论文).天津:天津大学,2007.
    [73]杨陈,郝志勇.柴油机曲轴—机体动力耦合仿真分析.农业机械学报,2007,38(11):202-204.
    [74]林琼,郝志勇,郭磊.曲轴系统多体动力与油膜动力润滑耦合的数字化仿真研究.内燃机工程,2007,28(3):45-48.
    [75]郭磊.车用动力总成结构振动噪声的虚拟预测与分析技术研究:(博士学位论文).杭州:浙江大学,2009.
    [76]孙军,桂长林,汪景峰,等.轴-轴承系统强度和刚度与摩擦学的耦合分析.农业机械学报,2005,36(10):125-129.
    [77]林琼.基于试验与仿真分析的发动机运动件摩擦耦合动力学研究:(博士学位论文).杭州:浙江大学,2008.
    [78]程颖,宋潇,孙善超.曲轴系柔性多体动力学与动力润滑耦合仿真.北京理工大学学报,2006,26(4):314-317.
    [79]桂长林,何芝仙,李震,等.曲轴-轴承系统机械行为的捆绑式分析方法.内燃机学报,2010,28(2):180-185.
    [80]周春良.船舶轴系振动研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2006.
    [81]Haddara M R. On the transverse vibration of a propeller-tail shaft system. Ocean Engineering, 1988,15(2):119-126.
    [82]石磊.计入支承系统特性的船舶推进轴系动态校中研究:(博士学位论文).大连:大连理工大学,2010.
    [83]张宏辉,周继良,唐锡宽.船舶轴系的合理轴承间距的研究.舰船科学技术,2007,29(4):54-56.
    [84]Murawski L. Influence of journal bearing modeling method on shaft line alignment and whirling vibration. Proceedings of the 8th International Symposium on Practical design of Ship and Other Floating Structures, 2001:1205-1212.
    [85]Murawski L. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration. Marine Structures,2005,18(1):62-84.
    [86]魏海军,王宏志.船舶轴系校中多支承问题的研究.船舶力学,2001,5(1):49-54.
    [87]王宏志,魏海军,关德林,等.中间轴承对船舶轴系力学状态影响的数字模拟.船舶力学,2006,10(1):98-105.
    [88]Wei Haijun. Contractions study on two shipping shaft system alignment calculation base on finite-element method. Proceedings of the 29th Chinese control conference,2010:29-31.
    [89]耿厚才,饶柱石,崔升.船舶轴系油膜计算与轴承反力分析.船舶力学,2004,8(5):120-124.
    [90]周春良,刘占生,郑洪涛.轴承支承长度及间距对船舶轴系振动特性影响.船舶工程,2007,29(5):16-18.
    [91]Lei Shi, Dongxin Xue, Xigeng Song. Research on shafting alignment considering ship hull deformations. Marine structure.2010,23(1):103-114.
    [92].周瑞平.超大型船舶推进轴系校中理论研究:(博士学位论文).武汉:武汉理工大学,2005.
    [93]张雨,刘耀宗,胡茑庆,等.轴系非对中时轴承振动的数值模拟与物理模拟研究.中国造船,1999,4:64-70.
    [94]Zhou Rui-ping, Xu Lu-jun, Li Bing-rong, etal. Improvement of finite element analysis in the propulsion shaft alignment. Journal of Ship Mechanics, 2005, 9(3):111-117.
    [95]金志鸿,唐育民,海鹏洲,等.水润滑特性和弹性接触应力对尾轴承使用寿命的影响.中国造船,1986,04:76-84.
    [96]周春良,袁士勤,刘顺隆,等.轴向槽船舶艉管轴承内部流场数值仿真.润滑与密封,2006,(11):39-43.
    [97]周春良,刘占生,刘顺隆.船舶艉管轴承润滑流场数值分析.润滑与密封,2007,32(2):145-149.
    [98]彭娅玲,张志国,陈汝钢,等.船舶艉部水润滑轴承润滑特性的数值分析研究.中国造船工程学会2007年船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议论文集,2007:483-488.
    [99]Hirani H, Verma M. Tribological study of elastomeric bearings for marine propeller shaft system. Tribology International, 2009, 42:378-390.
    [100]刘正林,周建辉,刘宇,等.计入艉轴倾角的船舶艉轴承液膜压力分布计算,武汉理工大学学报,2009,31(9):111-131.
    [101]唐育民,海鹏洲,金志鸿.船舶艉轴承润滑特性的分析与计算.武汉水运工程学院学报,1983,4:9-20.
    [102]唐育民,王贤烽.船舶艉管轴承的优化设计研究.武汉水运工程学院学报,1991,15(3):218-225.
    [103]王贤烽.船舶艉管轴承结构的改进及实验研究.船舶工程,1994,2:35-42.
    [104]朱汉华.船舶螺旋桨轴振动与润滑耦合理论和试验研究:(博士学位论文).武汉:武汉理工大学,2005.
    [105]Xi Yangyang, R.Romen. Calculations on the oil film in stern tube bearing. Ship & Offshore, 2009,4:22-25.
    [106]张天勇,朱汉华,范世东.船舶艉轴承动态工况润滑特性分析.船舶工程,2010,32(1):29-32.
    [107]苟振宇,孙长江,沈红宇,等.船舶艉轴承接触压力分布及其影响因素研究.船海工程,2010,39(3):48-50.
    [108]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究:(博士学位论文).成都:西南交通大学,2006.
    [109]张直明.滑动轴承的流体动力润滑理论.北京:高等教育出版社,1986.
    [110]杨金福.流体动力润滑及轴承转子系统的稳定性研究:(博士学位论文).保定:华北电力大学,2006.
    [111]闫志勇.复杂转子系统动力学行为研究:(博士学位论文).上海:复旦大学,2011.
    [112]Reynolds O. On the theory of lubrication and its application to Mr. Beauchamp Tower's Experiments. Phil.Trans.Roy.Soc,1886,177(1):157-234.
    [113]Guy Bayada, Sebastien Martin, Carlos Vazquez. An Average Flow model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitations Model. Journal of Tribology, 2005, 127:793-802.
    [114]Syverud T. Experimental investigation of the temperature fades in the cavitation zone of full journal bearing. Tribology International,2001,34(12):859-870.
    [115]Greenwood J A, Williamson J B P. Contact of Nominally Flat Surfaces. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1966, 295(1442):300-319.
    [116]Tripp J H. Surface Roughness Effects in Hydrodynamic Lubrication:the Flow Factor Method. Journal of Lubrication Technology,1983,105:458-465.
    [117]Zienkiewicz O C, Taylor R L. The finite element method.2000.
    [118]Melenk J M, Babuska. The partition of unity finite element method:basic theory and applications. Computer methods in applied and engineering,1996,139:1-4.
    [119]Singiresu Rao. The finite element method in engineering.2005.
    [120]Schweiger m, Arridge S R, Hiraoka M. The finite element method for the propagation of light in scattering media:boundary and conditions. Medical Physics,1995,22(11):1179-1192.
    [121]Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics,1992,10(5):37-318.
    [122]Ratnam M M, Evans W T. Comparison of measurement of piston deformation using holographic interferometry and finite element. Experimental Mechanics, 1993,33(4):336-342.
    [123]崔圣爱.基于多体系统动力学和有限元法的车桥耦合振动精细化仿真研究:(博士学位论文).成都:西南交通大学,2009.
    [124]吴楠,廖日尔,张保成,等.柴油机曲柄连杆机构多体动力学仿真分析.内燃机工程,2005,26(5):69-73.
    [125]Roberson R E, Schwertassek R. Dynamics of multibody systems. Berlin:Spring Verlag,1988.
    [126]Huston R L. Multibody dynamics——modeling and analysis methods. Journal of applied mechanics Reviews,1991,44(3):109-117.
    [127]Schichlen W. Recent development in multibody systems dynamic. Journal of Mechanical Science and Techonology,2005,19(1):227-236.
    [128]Hang E J, Auyn,Bacon. Computer aided kinematics and dynamics of mechanical systems. Numerical Methods in Engineering,1990,30(7):1356-1357.
    [129]Ahmed a, Shabana. Dynamics of multibody system. Cambridge:Cambridge University Press, 2005.
    [130]Schiehlen W. Multibody system dynamic:roots and perspectives. Multibody System Dynamics,1997,1(2):149-188.
    [131]李民,舒歌群,卫海桥.多体动力学建模方法对发动机主轴承载荷计算影响.农业工程学报,2008,24(12):57-61.
    [132]Yuji Aikawa, Tomoyoshi Osakabe, Yoshihiko Sunayama. Prediction of engine mount vibration using multi body simulation with finite element models. SAE paper.2005,32-0006.
    [133]Ahmed A, Shabana. Flexible multibody dynamics:review of past and recent developments. Multibody System Dynamics,1997, 1(2):189-222.
    [134]王颋.面向CAD设计模型的计算多体动力学虚拟原型:(博士学位论文).成都:西南交通大学,2006.
    [135]彭禹.基于虚拟样机技术的发动机子系统设计方法研究:(博士学位论文).杭州:浙江大学,2007.
    [136]马星国,尤小梅,闻邦椿.基于虚拟样机技术的曲轴多体动力学仿真.振动与冲击,2008,27(9):155-157.
    [137]Vijayaraghavan D. New concepts in numerical prediction of cavitation in bearings. Toledo: University of Toledo,1989.
    [138]Swift H W. The stability of lubricating films in journal bearings. Journal of Institution of Civil Engineers,1931,233:267-288.
    [139]Szeri A Z. Tribology:friction lubrication and wear. Hemisphere Publishing Corp, McGraw-Hill,1980:100-120.
    [140]Jakobsson B, Floberg L. The finite journal bearing considering vaporization. Chalmers Tekniska Hoegskolas Handlingar,1957,190:1-116.
    [141]Floberg L. Infinite journal bearing considering vaporization, Transactions of Chalmers University of Technology,1957,189:80-90.
    [142]Olsson K O. Cavitation in dynamically loaded bearing. Transactions of Chalmers University of Technology,1965,308:1-120.
    [143]Floberg L. On hydrodynamic lubrication with special reference to sub-cavity pressurea and number of streamers in cavitation. Acta polytechnic scan, M. E series,1965,19:1-117.
    [144]Floberg L. Cavitation boundary conditions with regard to the number of streamers and tensile strength of the liquid. First leeds-lyons symposium on cavitation and related phenomena in lubrication,1975:31-35.
    [145]Floberg L. Experimental investigation of cavitation regions in journal bearings. Transactions of Chalmers University of Technology,1961,238:56-70.
    [146]Leclere Q, Pezerat C, Laulagnet B, etal. Indirect measurement of main bearing loads in an operating diesel engine. Jouranl of Sound and Vibration,2005,286(1):341-361.
    [147]Biotteau E, Gravouil A, Lubrecht A A, etal. Three dimensional automatic refinement method for transient small strain elasto plastic finite computations. Computational Mechanics,2012, 49:123-136.
    [148]Joun M S, Lee M C. Quadrilateral finite element generation and mesh quality control for metal forming simulation. International Journal for Numerical methods in engineering,1997, 40(21):4059-4075.
    [149]Peraire J, Peiro J, Formaggia L, etal. Finite element Euler computations in three dimensions. Numerical Methods in Engineering,1988,26(10):2135-2159.
    [150]黄丽丽.有限元三维六面体网格自动生成与在生成算法研究及其应用:(博士学位论文).济南:山东大学,2010.
    [151]Price M A, Armstrong C G, Sabin M A. Hexahedral mesh generation by medial surface subdivision:Part 1.Solids with convex edges. International Journal for Numerical methods in engineering,1995,38(19):3335-3359.
    [152]Price M A, Armstrong C G. Hexahedral mesh generation by medial surface subdivision: Part 2. Solids with flat and concave edges. International Journal for Numerical methods in engineering, 1997,40(1):111-136.
    [153]朱浩.基于多体动力学理论的车辆主动悬挂的控制策略研究:(博士学位论文).长沙:中南大学,2006.
    [154]Mourelatos Z P. A crankshaft system model for structural dynamic analysis of internal combustion engines. Computers & Structural,2001,79(20):2009-2027.
    [155]AVL LIST Gmbh. AVL EXCITE Power Unit-Users Guide. AVL LIST Gmbh,2008.
    [156]He Minhui. Thermoelastohydrodynamic analysis of fluid film journal bearing. Virginia: University of Virginia, 2003.
    [157]王刚志,舒歌群,张家雨.使用因素对多缸柴油机主轴承润滑性能的影响.农业工程学报,2007,23(2):107-11].
    [158]中国船级社.钢质海船入级规范.北京:人民交通出版社,2006.
    [159]Hui X, Qili W, Zhanhua W, etal. Elastohydrodynamic Lubrication Analysis of Marine Sterntube Bearing Based on Multi-body Dynamics.2012 International conference on future energy, environment, and materials, Part B,2012,16:1046-1051.
    [160]欧礼坚.船舶螺旋桨及推进装置故障诊断关键技术研究与应用:(博士学位论文).广州:华南理工大学,2010.
    [161]Warikoo R, Haddara M R. Analysis of propeller shaft transverse vibrations. Marine structures, 1992,5(4):255-279.
    [162]陈之炎.船舶推进轴系振动.上海:上海交通大学出版社,1987.
    [163]Carlton J S. Marine propellers and propulsion.2007.
    [164]Jakeman R W. Influence of sterntube bearings on lateral vibration amplitudes in marine propeller shafting. Tribology International, 1989,22(2):125-136.
    [165]American Bureau of Shipping. Guidance notes on propulsion shaft alignment. ABS publication, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700