用户名: 密码: 验证码:
火炮身管指向控制中的非线性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮式自行火炮适应当代战争和非战争军事行动的需求得以快速发展,该火炮武器系统对火力的精确度和反应速度要求极高,不断改进的火力控制系统是实现该技术要求的保障之一。虽然当前先进的光电技术和计算机技术大幅提升了火力控制系统的性能,但是位于火控系统末端的火炮身管指向受控动力系统,潜在其中的耦合、非线性及不确定性等多种复杂动力因素仍制约着整个武器系统性能的进一步提升。因此,针对这一问题开展研究工作对于完善该类武器系统性能和满足当代军事行动需求具有重要意义。
     本文重点研究了炮塔-火炮控制通道耦合设计的方法和理论,并用以解决火炮身管指向控制中的非线性问题,论文的主要研究成果包括:
     1、提出并初步建立了炮塔-火炮控制通道耦合设计的方法和理论。基于炮塔-火炮物理系统的实际结构特征和运动特性,应用拉格朗日能量法建立了炮塔-火炮动力系统的标称非线性耦合动力学模型;基于状态空间分析法和非线性系统的反馈线性化技术,为火炮身管指向控制设计了轴间耦合的PD控制器,并应用李亚普诺夫稳定性理论证明了炮塔和火炮能够实现对火控指令渐进稳定跟踪。
     2、分析了火炮身管指向高低与方位轴间动力耦合给轴间耦合PD控制带来的两方面问题,即受控系统的初始动态特性问题和控制实时性问题。提出了火炮身管指向的综合自适应控制方法,使火力跟踪控制初始阶段,火炮高低和方位向实际轨迹相对于指令轨迹超调量减小、收敛时间缩短、振荡次数减少,这极大提高了火炮身管指向动作的快速性和准确性。提出了火炮身管指向的任务空间控制方法,不仅使火力跟踪控制时的计算复杂度降低,增强了控制实时性,而且提高了火炮身管指向动作稳态时的跟踪精度。
     3、分析了火炮身管指向高低与方位传动轴柔性对火炮身管指向控制的影响,即一方面影响火炮身管指向受控系统的稳定性,另一方面增加了系统独立状态数目使控制复杂性增强,且增加了对传感器配置数量的需求。提出了火炮身管指向的最优反馈线性化控制方法,抑制了传动轴柔性造成的电机轴和负载轴状态的波动,同时消除了传动轴上的柔性振动。提出了火炮身管指向控制时的线性随机观测器设计方法,不仅有效消除了传感器噪声对火炮身管指向时位置控制精度影响,还取消了对电机轴状态的传感器测量需求,降低了系统硬件配置成本。
     4、分析了火炮身管指向系统动力参数摄动、外部冲击扰动等不确定动力因素对火炮身管指向控制的影响,即不确定动力特性使基于标称模型设计的控制器的实际控制效果变差。提出了火炮身管指向的线性滑模补偿控制方法和非奇异终端滑模控制方法,有效消除了不确定性动力因素的影响,并使火炮身管指向控制的稳动态性能均得到改善。提出了火炮身管指向的神经滑模控制方法,不仅进一步改善了火炮身管指向控制的稳动态性能,而且能够自动适应系统不确定动力特性的变化,有效消除控制输入中的抖动现象,为火炮身管指向提供高性能控制方案。
The wheeled self-propelled artillery, which owns high accuracy of fire and quick fire response, will meet the requrement of the contemporary war and non-war military operations. The technology requirement will be achieved by improving fire control system. Although the performance of fire control system has been enhenced by the advanced photovoltaic and computer technology, the coupling, nonlinear and uncertain dynamic factors in the pointing control of gun barrel of the fire control system still constrain severely the performance of the entire weapon system.Therefore, it's important to solve these problems for improving the performance of such weapon systems and meeting the requrement of the military operations.
     This dissertation studies the method and theory of the coupling-channels analysis and design of pointing control of gun barrel, which will solve the aforementioned problems. The main contributions are listed as follows:
     1. The method and theory of the coupling-channels analysis and design of pointing control of the gun barrel are suggested and constructed initially. The gun-turret coupling dynamic nominal model is developed by Lagrange equation. An axis-coupled PD controller is proposed for the pointing control of gun barrel by the feedback linearization techniques and the stability of the controlled system is proven by Lyapunov function.
     2. The problems on the dynamic coupling of the elevation-azimuth axes in the pointing control of gun barrel are analyzed. A composite self-adapting control scheme is proposed for the pointing control of gun barrel. This approach improves initial dynamical performance of tracking control of fire, and ensures accuracy of fire and quick fire response. A task space control scheme is also proposed for the pointing control of gun barrel. The computational complexity of control algorithm is reduced and the real-time performance of the control system is enhanced by this method.
     3. The problems on the flexibility of the elevation-azimuth transmission shafts in the pointing control of gun barrel are analyzed. An optimal feedback linearization control scheme is proposed for the pointing control of gun barrel. The fluctuated states of motor and load shafts, which are brought by the flexibility of transmission shafts, are restrained by this approach. A linear stochastic estimator is presented in order to estimate the high order states of the linearization system with the measurement noise and cancel sensors of motor shafts. Meanwhile, this approach achieves the exact and smooth tracking control on the fire command.
     4. The problems on the uncertain dynamic performace of the dynamic parameters perturbation and external disturbance in the pointing control of gun barrel are analyzed. A linear sliding mode compensator and an improved nonsingular terminal sliding mode controller are proposed for the pointing control of gun barrel. They not only surpress the effects of the uncertainty of the dynamic system, and improve the steady and dynamic performace of the pointing congtrol of gun barrel. A neural sliding mode controller is also proposed for the pointing control of gun barrel. This method not only compensates the uncertainty automatically and eliminates the chattering in the control inputs, but also enhances further the steady and dynamic performace of the pointing congtrol of gun barrel.
引文
[1]朱怿匀.蓬勃发展的车载自行火炮[J].现代兵器,2010,(2):10-17.
    [2]童皖,张金忠.无人炮塔系统关键技术组合分析[J].装甲兵工程学报,2006,20(2):42-45.
    [3]周启煌,刘春彦,葛银茂.现代坦克火控系统体系结构发展的轨迹[J].火力与指挥控制,2006,31(10):4-7.
    [4]肖咏捷,龚钰哲.国外陆军炮兵防空兵统筹非战争军事行动需求的思路与举措[J].军事装备,2010,36-42.
    [5]张延斌,张宁.火炮控制系统及原理[M].北京:北京理工大学出版社,2009.
    [6]朱竞夫,赵碧君,王钦利.现代坦克火控系统[M].北京:国防工业出版社,2003.
    [7]顾乃宁.基于DSP的数字火控随动系统设计[D].南京理工大学硕士学位论文,2004.
    [8]栗建中.坦克火炮控制系统设计与仿真[D].东南大学硕士学位论文,2006.
    [9]臧克茂,李立宇,李匡成.坦克炮采用交流全电控制系统的研究[J].兵工学报,2006,27(3):549-552.
    [10]谈乐斌,张相炎,管红根.火炮概论[M].北京理工大学出版社,2005.
    [11]廖自力,减克茂,马晓军,常天庆.数字交流全电炮控系统研究[J].装甲兵工程学院学报,2002,16(1):24-27.
    [12]尚颖辉,马晓军,减克茂.交流全电炮控系统的研究与影响[J].火炮发射与控制学报,2003,47-50.
    [13]臧克茂,马晓军,李长兵.现代坦克炮控系统[M].北京:国防工业出版社,2007.
    [14]陈冬根,马春庭.PGZ95式25mm自行高炮系统[M].北京:国防工业出版社,2008.
    [15]龚一均.火炮随动系统数字位置调节器控制策略及算法[J].四川兵工学报,1997年第,18(4):45-49.
    [16]许大浦.炮控数字PID设计分析[J].兵工学报坦克装甲车与发动机分册,1997,(1):60-64.
    [17]Pablo O. Arambel, Raman K. Mehra and Bradley Beeson.New generation high speed turret and pseudo bang-bang controller[C].Proceedings of the American Control Conference, Arlington,2001,2561-2566.
    [18]Gu Y L, Loh R N K, Coleman N. Control of weapon pointing systems based on robotic formulation[C]. Proceedings of the 1992 American Control Conference, 1992,1:413-418.
    [19]G. Tao. A two-step adaptive controller for a two-body system[J].IEEE Transactions on Automatic Control,2000,45(5):1011-1016.
    [20]D.S.GMarcio and M. F. Armando. Gun-turret modelling and control [C]. ABCMA Symposium Series in Mechatronics,2:60-67.
    [21]N. Coleman, M. Mattice and S. Banks. High-precision nonlinear, adaptive, robust weapon control systems design[C], Proceedings of the 1992 American Control Conference,1992,1:409-412.
    [22]Isidori A. Nonlinear control systems[M].3rd ed.Springer-Verlag World Publishing Corp..1995.
    [23]Ozgoli, S.,Position Control for Flexible Joint Robots in Presence of Actuator Saturation[D]. Ph.D. Dissertation,K.N.Toosi University of Technolog,2005.
    [24]Je S. Yeon, Jong H. Park, Sang-Hun Lee.Practical Robust Control for Flexible Joint Robot Manipulators [C]. Proceedings of the 17th World Congress The International Federation of Automatic Control,Seoul,2008,11769-11774.
    [25]B. Wie and D. Bemstein. A benchmark problem for robust control design[C]. Proc. ACC'90,1990:961-962.
    [26]Choi,G.H.,Nakamura,H. and Kobayashi,H. Calibration of servo systems with redundant actuators[C].In Proceedings of IFAC world congress, San Francisco, 1996,169-174.
    [27]Chang.T. N.,Ji, Z.,Shimanovich,M.,and Caudill,R. Vibration control of contactless drive system using passband shaping[C].In Proceedings of IFAC world congress,San Francisco,1996,357-362.
    [28]Boneh,R.,and Yaniv,O. Control of an elastic two-mass system with large backlash[J]. Journal of Dynamic Systems, Measurement and Control,1999,121(2):278-284.
    [29]Brandenburg,G.,Geissenberger,S.,Kink,C.,Schall,N.H.,and Schramm,M. Multi-motor electronic line shafts for rotary printing presses:A revolution in printing machine techniques[J].IEEE/ASME Transactions on Mechatronics,1999,4(1):25-31.
    [30]Oldak S.,Baril C.and Gutman P.O. Quantative design of a class of nonlinear systems with parameter uncertainty[J]. International Journal of Robust and Nonlinear Control,1994,4:101-117.
    [31]Nordin M. and Gutman P.O. A robust linear design of an uncertain two-mass system with backlash[C]. In Proceedings of the Crst IFAC workshop in automotive control,Ascona, Schweiz,1995:183-188.
    [32]Fathi G., John Y. H., and Spong M. W.Adaptive Control of Flexible-Joint Manipulators[J]. IEEE Control Systems Magazine,1989:9-13.
    [33]M.C.Readman and P.R.Belanger.Analysis and control of a flexible joint robot[C].Proceedings of the 29th Conference on Decision and Control. Munich, Germany.1990:2551-2559.
    [34]M.Nordina and P.O.Gutmanb. Controlling mechanical systems with backlash -a survey[J].Automatica,2002,38:1633-1649.
    [35]Brandenburg G. and Kaiser,W. On PI motion control of elastic systems with notch filters in comparison with advanced strategies[C].In Proceedings of IFAC conference motion control,Munich,Germany,1995:863-872.
    [36]Brandenburg G. and Schafer U. Design and performance of diDerent types of observers for industrial speed and position controlled electrome -chanical systems [C].In Proceedings of the international conference on electrical drives and power electronics,Strbske Pleso,Slovakia,1990:1-10.
    [37]Schafer U. and Brandenburg G. State position control for elastic pointing and tracking systems with gear play and Coulomb friction-a summary of results[C].In Proceedings of the European conference on power electronics and applications, Firenze,1991:596-602.
    [38]Koyama M. and Yano, M. Two degrees of freedom controller using reference system model for motor drives[C].In Proceedings of the European conference on power electronics and applications,Firenze,1991:596-602.
    [39]Hori Y. Iseki H. and Sigiura, K. Basic consideration of vibration supression and disturbance rejection control of multiinertia system using SFLAC(state feedback and load acceleration control)[C].IEEE Transactions on Industry Applications,1994, 30(4):889-896.
    [40]Baril C.and Galic,J. Speed control of an elastic two-mass system. Technical Report TRITA/MA-94-29T, Optimization and Systems Theory, Royal Institute of Technology,10044 Stockholm,Sweden,1994.
    [41]Hjalmarsson,H., Gunnarsson,S.,&Gevers, M.. Model free tuning of a robust regulator for a Gexible transmission system [J]. European Journal of Control,1996,1 (2),97-103.
    [42]Nordin M.,Galic J. and Gutman,P.O. New models for backlash and gear play [J].International Journal of Adaptive Control and Signal Processing, 1997,1:9-63.
    [43]SchLafer U. and Brandenburg G. State position control for elastic pointing and tracking systems with gear play and Coulomb friction—a summary of results[C].In Proceedings of the sixth Conference on power electronics and motion control(PEMC),Budapest,1990:797-801.
    [44]Pettersson, M. Driveline modeling and control[D].Ph.D.thesis,Department of Electrical Engineering, LinkLoping University, Sweden,1997.
    [45]Cohen M. and Cohen I.The use of worm gear transmissions in electro -mechanical systems:Analysis, digital control and application [C]In The 25th Israel conference on mechanical engineering,1994:175-182.
    [46]Grundmann S. Robust vibration control by multi model pole assessment[C]. In Proceedings of IFAC motion control.Munich,1995:876-881.
    [47]Gurian, S. Resonance compensation in large drive systems[C].In Proceedings of 1998 AISE annual convention, www.aise.org,Pittsburg, USA:AISE.
    [48]Nordin M. Robust control of a rolling mill with minimal impact drop[D]. Master's thesis,Optimization&Systems Theory,Department of Mathematics, The Royal Institute of Technology,Stockholm,Sweden,1992.
    [49]Withit C. and Peter H. M. Model-independent control of a flexible-joint robot manipulator[J].Journal of Dynamic Systems, Measurement, and Control,2009, 131:1-10.
    [50]Spong, M. W. Modeling and Control of Elastic Joint Robots[J].ASME J. Dyn. Syst.,Meas.,Control,1987,109(4):310-319.
    [51]Nicosia S.,Tomei,P.and Tornambe, A. A Nonlinear observer for elastic robots[J].IEEE J. Rob. Autom.,1988,4(1):45-52.
    [52]Ge S. S.Adaptive control design for flexible joint manipulators[J]. Automatica,1996, 32(2):273-278.
    [53]Ge S. S.,Lee T. H. and Harris, C. J. Adaptive Neural Network Control of Robotic Manipulators,World Scientific,Singapore,1998.
    [54]K.Khorasani. Adaptive control of flexible-joint robots[J]. IEEE Transactions on Robotics and Automation,1992,8(2):250-267.
    [55]H.D.Taghirad and M.A.Khosravi. A robust linearcontroller for flexible joint manipulators[C].Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems.Sendal,Japan,2004:2936-2941.
    [56]F.Amjadi,S.Khadem and H.Khaloozadeh.Position and velocity control of a flexible joint robot manipulator via a fuzzy controller based on singular perturbation analysis[C].Proceedings of 10th Annual IEEE Conference on Fuzzy Systems. Australia,2001:348-351.
    [57]M.W.Spong,K.Khorasani and P.V.Kokotovic.An integralmanifold approach to the feedback control of flexible joint robots[J].IEEE Journal of Robotics and Automation,1987,3(4):291-300.
    [58]A.De Luca and L.Lanari. Robots with elastic joints are linearizable via dynamic feedback[C]. Proceedings of 34th IEEE Conference on Decision and Control, NewOrleans,1995:3895-3897.
    [59]A.De Luca and P.Lucibello. General algorithm for dynamic feedbackLinearization of robots with elastic joints[C]. Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Piscataway,1998:504-510.
    [60]P.Tomei. An observer for flexible joint robots[J].IEEE Transactions on Automatic Control,1990,35(6):739-743.
    [61]F.Abdollahi,H.A.Talebi and R.V.Patel. A stable neural network-based observer with application to flexible-joint manipulators [J]. IEEE Transactions on Neural Networks, 2006,7(1):118-129.
    [62]T.Lahdhiri and H.Elmaraghy.Design of an optimal feedback linearizing-based controller for an experimental flexible-joint robot Manipulator [J].Optimal Control Applications and Methods,1999,20(4):165-182.
    [63]K.Chen and L.Fu. Nonlinear adaptive motion control for a manipulator with flexible joints[C]. Proceedings of IEEE International Conference on Robotics and Automation,1989,1201-1206.
    [64]A.Beneallegue and N.Sirdi. Passive control for robot manipulators with elastic joints[C]. Proceedings of IMACS MCTS 91 Modeling and Control of Technological Systems,1991,481-487.
    [65]D.Dawson,Z.Qu and M.Bridges et al.Robust tracking of rigid-link flexible-joint electrically-driven robots[C]. Proceedings of the 30th IEEE Conference on Decision and Control,Los Angeles USA,1991,1409-1412.
    [66]C.Kwan and F.Lewis. Robust backstepping control of nonlinear systems using neural networks[J].IEEE Transactions on Systems,Man,and Cybernetics Part Ⅰ:Systems and Humans,2000,30(6):753-766.
    [67]C.Macnab and G.D. Eleuterio. Neuro adaptive control of elastic-joint robots using robust performance enhancement [J].Robotica,2001,19(6):619-629.
    [68]徐志成,张建明,苏成立,王树青.基于微粒群优化的模型参考自适应控制[J].高技术通讯,2006,3(16):262-266.
    [69]Tomonobu S, Tomohiro K, Katsumi U. Position Control of Ultrasonic Motors Using MRAC and Dead-Zone Compensation with Fuzzy Inference[J]. IEEE Transaction on Power Electronics,2002,17:265-272.
    [70]Phuah J S, Lu J M, Yahagi T. Model Reference Adaptive Control for Multi-input Multi-Output Nonlinear Systems Using Neural Networks. Proceedings of the 2003 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics,2003, 12-16.
    [71]张鹏,邹蓬,陈艳.基于H∞理论的二级倒立摆控制研究[J].中国民航学院学报,2005,23(4):46-49.
    [72]Wang J, Qiao G D, Deng B. H∞ variable Universe Adaptive Fuzzy Control for Chaotic System[J]. Chaos,Solitons and Fractals,2005,24:1075-1086.
    [73]Yoneyama J. Design of H∞ Control for Fuzzy Time-delay Systems[J]. Fuzzy Sets and Systems,2005,151:167-190.
    [74]Niu Y G, Hodw C, Lam J. Robust Integral Sliding Mode Control for Uncertain Stochastic Systems with Time-varying Delay[J]. Automatica,2005,41:873-880.
    [75]Chen X K. Adaptive Sliding Mode Control for Discrete-time Multi-input Multi-output Systems[J]. Automatica,2006,42(3):427-435.
    [76]董克文,张兴.滑模变结构控制与应用[J].电气应用,2007,26(3):6-10
    [77]Shao J P, Chen L H, Ji Y J, Sun Z B. The Application of Fuzzy Control Strategy in Electro-hydraulic Servo System[C]. Communications and Information Technology, 2005,ISCIT 2005,IEEE International Symposium on,2005,1:165-170.
    [78]Li C C, Liu X D, Zhou X, Bao X, Huang J. Fuzzy Control of Electro-hydraulic Servo Systems Based on Automatic Code Generation[C]. Intelligent Systems Design and Applications,2006, ISDA'06,Sixth International Conference on.2006,1:244-247.
    [79]J.M.Zhang, R.H.Li and P.A.Zhang. Stability analysis and systematic design of fuzzy control systems[J]. Fuzzy Sets and Systems,2001, 1(120):65-72.
    [80]R.J.Wai,Adaptive fuzzy sliding-mode control for electrical servo drive[J],IEEE Trans.Ind.Electron.,2007,54(1):586-594.
    [81]D.W.C.Ho and Y.G.Niu. Robust Fuzzy Design for Nonlinear Uncertain Stochastic Systems via Sliding-Mode Control [J]. IEEE Transactions on Fuzzy Systems,2007, 3(15):350-358.
    [82]R.G. Rodriguez, E.D. Leon and V.P. Vega, et al. An adaptive neural network controller for visual tracking of constrained robot manipulators[C].American Control Conference,2005,5:3694-3700.
    [83]GLeng,G.Prasad and T.M. McGinnity. An on-line algorithm for creating self-organizing fuzzy neural networks[J]. Neural Networks,2004,10 (17):1477-1493.
    [84]J. f. Qiao and H.d. Wang. A self-organizing fuzzy neural network and its applications to function approximation and forecast modeling[J]. Neuro computing,2008, 4(71):564-569.
    [85]Y.Yildiz,A.Sabanovic,and K.S.Abidi,Sliding-mode neuro-controller for uncertain systems[J],IEEE Trans.Ind.Electron.,2007,54(3):1676-1685.
    [86]Z.Man,H.Wu,S.Liu,and X.Yu,A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks [J],IEEE Trans. Neural Netw.,2006, 17(6):1580-1591.
    [87]N.Yagiz,Y.Hacioglu,and Y.Taskin,Fuzzy sliding-mode control of active suspensions [J],IEEE Trans.Ind.Electron.,2008,55(10):3883-3890.
    [88]Mu X.J. and Chen Y. Z. Neural sliding mode control for multi-link robots[J]. Control and Decision Conference,2008:3513-3517.
    [89]R.J. Wai. Fuzzy Sliding-Mode Control Using Adaptive Tuning Technique[J]. IEEE Transactions on Industrial Electronics,2007,1(54):586-594.
    [90]N. Sadati and R. Ghadami.Adaptive multi-model sliding mode control of robotic manipulators using soft computing[J]. Neurocomputing,2008,71(2):2702-2710.
    [91]S.B. Roh, W. Pedrycz and S. K. Oh. Genetic Optimization of Fuzzy Polynomial Neural Networks[J].IEEE Transactions on Industrial Electronics,2007,4(54): 2219-2238.
    [92]Slotine J E, Li W. Applied non-linear control[M]. Englewood Cliffs, NJ: Prentice-Hall,1991.
    [93]李殿璞.非线性控制系统理论基础[M].哈尔滨工业大学出版社,2006.
    [94]杨永.不确定性非线性系统的自适应鲁棒控制及其应用.浙江大学博士后研究工作报告,1998.
    [95]王伟.捷联式惯导系统在自行火炮上的应用[J].兵工自动化,2008,27(3):1-3.
    [96]霍伟.机器人动力学与控制[M].高等教育出版社,2005.
    [97]LaSalle J, Lefschetz S. Stability by Lyapunov's direct method[M]. NewYork: Academic Press.
    [98]吴受章.最优控制理论与应用[M].机械工业出版社,2008.
    [99]吴振顺.自适应控制理论与应用[M].哈尔滨工业大学出版社,2005.
    [100]S. Nicosia and P. Tomei.On the feedback linearization of robots with elastic joints[C],Proceedings of the 27th Conference on Decision and Control Austin,Texas,1988,180-185.
    [101]T. Lahdhiri and H. A. Elmaraghy. Design of an optimal feedback linearizing-based controller for an experimental flexible-joint robot manipulator[J].OPTIMAL CONTROL APPLICATIONS & METHODS,1999(20):165-182.
    [102]G.Palli,C.Melchiorri,T.Wimbock,M.Grebenstein,andG.Hirzinger,Feedback linearization and simultaneous stiffness-position control of robots with antagonistic actuated joints[C],in Proc.IEEE Int. Conf. on Robotics and Automation, 2007,4367-4372.
    [103]J.Yim,J.S.Yeon and J.H.Park,Robust Control using Recursive Design Method for Flexible Joint Robot Manipulator [C],Proc. Of IEEE International Conference on Robotics and Automation,2007,3806-3811.
    [104]G. Palli,C. Melchiorri,A. De Luca.On the Feedback Linearization of Robots with Variable Joint Stiffness[C].2008 IEEE International Conference on Robotics and Automation Pasadena,CA,USA,2008,1753-1759.
    [105]A.D.Luca,D.Schroder,M.Thummel.An Acceleration-based State Observer for Robot Manipulators with Elastic Joints[C].2007 IEEE International Conference on Robotics and Automation Roma,Italy,2007,3817-3823.
    [106]J. Hernandez and J.P. Barbot.Sliding Observer-based Feedback Control for Flexible Joints Manipulator[J]. Automatica,1996,32(9):1243-1254.
    [107]Fang Yangwang, Optimal control for stochastic systems[M].Tsinghua University Press, Beijing,2005.
    [108]刘冰,艾剑良.基于LQG/LTR方法的飞机自动着陆系统设计[J].动力学与控制学报,2010,8(1):92-96.
    [109]姜长生等.现代鲁棒控制基础[M].哈尔滨工业大学出版社.2010.
    [110]高为炳.变结构控制的理论及设计方法.科学出版社.1998.
    [111]J.Z.Peng,Y.N.Wang,W.Sun,et al.A Neural Network Sliding Mode Controller with Application to Robotic Manipulator.The Sixth World Congress on Intelligent Control and Automation.2006,1:2101-2105.
    [112]K.H.Cheng,C.F.Hsu,C.M.Lin,et al.Fuzzy-Neural Sliding-Mode Control for DC-DC Converters Using Asymmetric Gaussian Membership Functions.IEEE Transactions on Industrial Electronics.2007,3(54):1528-1536.
    [113]Y.Q.Zhang,B.Jin,Y.Tang.Granular Neural Networks With Evolutionary Interval Learning.IEEE Transactions on Fuzzy Systems,2008,2(16):309-319.
    [114]张昌凡,何静.滑模变结构的智能控制理论与应用研究[M].科学出版社.2005.
    [115]Feng,Y.,Yu,X.H.,Zheng,J.F. Non-singular terminal sliding mode control of Uncertain Multivariable Systems [C]. Proceedings of the 2006 International Workshop on Variable Structure Systems, Alghero, Italy,2006,196-201.
    [116]S.Yu and X.Yu.Continuous finite-time control for robotic manipulators with terminal sliding mode[J].Automatica,2005,41:1957-1964.
    [117]Feng,Y.,Yu,X.. Non singular terminal sliding mode control of Uncertain Two-Link Flexible Manipulators[J]. Automatica,2009,2295-2300.
    [118]石明全.某火炮自动供输弹系统和全炮耦合的发射动力学研究[D].南京理工大学博士论文,2003.
    [119]师黎,陈铁军,李晓媛等.智能控制理论及应用[J].清华大学出版社,2009.
    [120]H.Hu,P.Y.Woo. Fuzzy supervisory sliding mode and neural network control for manipulators[J]. IEEE Trans on industry and electronics,2006,53(3):929-940.
    [121]Y.Yildiz, A.Sabanovic,K.Abidi. Sliding mode neuro controller for uncertain systems[J].IEEE Tans on industry and electronics.2007,543(3):1676-1684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700