用户名: 密码: 验证码:
气动发动机工作过程和关键零部件优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以气体储能(压缩空气/液氮)为能量源的汽车动力系统是一种新型的汽车驱动方案。由于该系统的排放为纯净的空气,不会对环境造成任何的污染以及具有能量可再生的特点,符合了“安全、舒适、环保,燃料来源多元化”的汽车设计理念。应用气动汽车将可以缓解数量巨大的内燃机汽车给有限的资源与环境带来的压力。目前对气动汽车的研究要么是纯粹的改装,要么是零碎的理论,形成实验过于直观,理论不成体系这种局面。虽然同内燃机复杂的燃烧工作过程相比,气动发动机的工作过程要简单的多,但是气动汽车的开发与研究仍然是一项庞大的系统工程,需要系统的项目规划,科学可行的技术路线才能形成完整的气动汽车理论并形成一批核心技术成果。
     针对气动发动机样机的能量利用率低及目前还没有关于气动发动机的设计理论与方法的现状,在积累前人有益研究成果的基础上,本文从系统热力循环优化与关键零部件优化两个层次进行了研究,其主要工作与结论如下:
     气动汽车的研究进展综述介绍了当前各单位研究气动汽车的思路及所取得的成果,总结出进气管理系统、整车气动化与轻量化、优化设计方法是气动汽车开发的3大核心技术;分析说明气动混合动力系统较其他形式混合动力系统的优越性;提出了气动发动机的研究思路应该是由机械固定进排气相位的配气机构向全可变进气时间的智能配气机构发展,由单级单组分热力循环向多级多组分热力循环转变,由零部件级优化设计逐渐转变成系统整体优化设计
     发展气动汽车的可行性分析通过分析“燃料”(液氮/压缩空气)的实际储能密度、总循环效率、气动发动机的动力性能和经济性能、气动汽车的运行成本与安全性能、“燃料”的来源、辅助配套设施的建设等因素,说明气动汽车是一种实用的清洁燃料汽车,具有很好的发展前景。
     气动发动机的试验研究通过自由度分析,说明气动动力系统具有温度、压力和发动机转速3个自由度;建立了气动发动机试验台架,测得了气动发动机的动力性能、经济性能随自由变量的变化规律曲线;利用熵分析方法进行效率分析,得出储能介质的能量在系统中损耗与利用的分布情况,指出热力循环优化、降低内部压降、优化工作过程及防止工质泄漏是影响系统效率的主要因素也是优化工作的重点。
     基于热力学理论的气动动力系统设计与优化系统设计可以确定系统的做功界限,为零部件的设计提供初始数据。针对液氮在单级朗肯循环下的能量利用效率低的问题,设计了基于等熵膨胀的多级多组分朗肯循环,计算结果表明液氮冷量的利用率由原来的24%提高到60%,该热力循环方案在理论上还解决了以液氮为储能介质的动力系统换热器结霜问题。在理论研究工作中,还设计了“收益函数”作为表征系统的性能指标,并采用模糊综合评判法对处于实际工作环境中的“基于等熵膨胀的多级多组分朗肯循环”与另一个高效液氮热力循环系统“布莱顿循环”进行了比较,得出虽然他们在理想状况下的能量利用效率相同,但当系统出现不可逆因素时,本文所设计的多级朗肯循环的性能却变化不大而优于布莱顿循环。为了设计固定相位气动发动机的余隙容积、进排气相位与持续角等参数,对气动发动机的实际示功图进行简化,建立了“气动发动机理想工作过程的简化模型”,采用多目标优化设计方法获得了能让气动发动机的热力学第一效率、热力学第二效率以及热经济效率综合最优的一组参数。针对简化模型没有考虑进气对工作过程的影响,利用有限时间热力学和变质量热力学理论对可变相位配气机构气动发动机的实际工作过程建模,通过仿真分析获得了进排气相位、进气持续时间、进气压力等变量与气动发动机的动力性能、经济性能间的约束关系,并由此提出了可变配气相位气动发动机在线参数调节方法。编写了非支配排序遗传进化算法,将其作为气动发动机结构参数和工作参数设计的基本方法并获得完整的气动发动机性能设计曲线。
     气动发动机关键零部件优化方案的设计为了降低实际不可逆因素对系统工作过程的影响,使其性能达到设计目标,针对气动发动机的关键零部件进行了优化。其中包括:以应用泛函优化原理为基础编制了气动发动机活塞运动轨迹的优化程序,得到的优化轨迹能使工质的能量利用率较原系统提高100%。并进一步分析得到进排气门的启闭规律与活塞运动规律间的匹配关系。通过比较不同形状的活塞上顶面与进气道对进气过程中缸内流场、缸内平均压力及活塞上顶面的压力的影响,说明采用流线型的进气道和半球型活塞上顶面的组合能显著提高气动发动机的比输出功。文中还介绍了基于等温膨胀器、可变相位配气机构、气动动力系统中换热器的优化方案等丰富的内容。
     可变相位配气机构的结构与控制算法设计为实现进排气相位与持续时间完全可调配气机构,设计了电磁直接驱动进排气门。介绍了进排气门的结构与工作原理,并以进气不出现超音速流的保守标准,设计了进排气门的几何尺寸;根据气门体的响应时间要求设计了E型铁芯的电磁铁参数;设计了PWM输入电压的驱动电路。在MATLAB/Simulink中建立了电磁驱动进气门的工作模型,通过动态仿真修正了初始设计方案,并研究了电压与进气压力等因素对气门动态性能的影响。为了能在有干扰的情况下,可靠的控制气门的运动,建立了以LyapunovRedesign法与PID联合控制为基础的电磁驱动气门闭环控制算法和以测量电流为基础的开环控制算法;在仿真的基础上比较了开环控制与闭环控制的优缺点。对电磁驱动进排气控制系统进行了可观测性分析,证明了以电流为输出的系统具有可观测性,可以通过测量系统电流实现闭环控制,为以后的观测器设计提供了理论基础。
     本文深入探讨了气动汽车的发展前景,理清了气动发动机的研究思路,将气动发动机技术进行分解并对部分内容进行了深入的研究,既发展了前人的研究成果,又为后人创建了一个研究平台。
Cars driven by compressed air or liquid nitrogen are one kind of novel concept vehicle. Due to its clean air exhaust and energy regenerated characters, presence of air powered cars is coincident with future car developing idea which including safety, comfort, conservation of energy, environment friendlyship, abundant fuel supply and so on. It's conceivable that wide application of air powered car would elaborate increasing environment and energy impacts brought by cars driven by internal combustion engine. Currently, achievements in field of air powered engine are nothing but simple modifications or fragmentary theories which resulted in direct viewing experiments and unilateral theories. Comparing with complicated combustion process of ICE, working process of air powered engine is much simple. But it's still a huge systemic project to develop and study air powered car. Only systematic project programming, scientific technique routine, drawing on wisdom of masses and racing against clock could be helpful to form integrated air automobile theory, achieve core technique and accelerate air automobile entering people's daily life.
     Considering low energy utility efficiency of air powered sample engine and there is no method to design air powered engine, this paper is dedicated to optimizing it basing on predecessors' instructive achievements. Main job consists of systematic thermocycle optimization and component optimization which are detailed in follow.
     Overview on developments of air powered engine and vehicle Researching routines and achievements in air powered engine of main researching institute are introduced. It's concluded that gas admission management system, pneumatic powering whole vehicle and lighting, optimization design methods study are 3 core techniques duration course of developing air automobile. It's also illustrated that air hybrid powering system is superior to other hybrid system. It's proposed that Teachings on air powered engine should follow routine turning from mechanic valve trains to intelligent variable valve timing system, from single stage single component cycle to multistage multi-component thermo cycle, from part optimization to system design and optimization.
     Feasibility study on developping air powered engine Feasibility study on application of air automobile is completed by analysis of real fuel energy density, circulation efficiency, dynamic and economic performance, driving cost, fuel production, safety and auxiliary constructions and so on. It's proved that air automobile is a practice green vehicle with huge application value.
     Experiment studies on air powered engine Through degree of freedom analysis, air engine system has 3 DOFs which are injection temperature, pressure and engine speed. A liquid nitrogen fueled air powered engine test bench is also built where impacts of free variables on engine dynamic and economic performance are tested. Then entropy analysis is enclosed in analyzing system efficiencies basing on experiment results, which make energy distributions and consuming status clear. Following optimizations are conducted base on results.
     Air propulsion system design based on thermodynamics model System design can be used to evaluate performance upper limit and provide data for parts design. To increase energy efficiency, a 4-stage liquid nitrogen-methane-ethylene-R134a isentropic Rankine power cycle is presented. Simulation results show that energy efficiency increases from 24 % in original single Rankine cycle to 60 %. And problem of frost building on external surface of heat exchanger is avoided in theory. A "benefit function" is built to represent performance of thermo system basing on thermo economics and fuzzy synthetical evaluation is incorperated to compare designed cycle to another high efficiency cycle "Braton cycle". It's showed that new designed cycle is better with little fluctuation when irreversible disturbance occurred. To determine injection parameters and engine parameters for fixed injection and discharge angle, an simplified process model, main charters of real working process is retained, is presented and one group of optimal parameters are gotten by specific work output, power, second law of thermodynamics objected multi objective optimization in Matlab optimization tools box. Real engine working process with variable valve time is modeled basing finite time thermodynamics and changeable mass thermodynamics and relationships of injection pressure, valve timing with engine performance and air consuming rate are presented. "On-line parameters tuning method" is proposed to realize VVT air engine parameters tuning realtime. Nondominated sorting genetic algorithm is modified and introdced as basis for air powered engine design. A group of design curves air presented in the paper.
     Schemes of optimization on key parts of air powered engine To eliminate affections of irreversibilities on system performances and reach its design goal, some optimizations must be done on key parts of air engine. In this paper, a procedure is programmed basing on functional optimization theory to optimize piston trajectory. Simulation results showed that there is 100 % more of specific work in resulted new trajectory than original piston trajectory. Furthermore, relations leading to high energy efficiency between vavle open and piston movement are given. In order to eliminate fraction of energy consuming in injection process and improve work output by utilizing nonuniform characters of cylinder flow field, cylinder flow field in variform intake ports and piston surfaces are presented by CFD software Fluent. It's shown that streamlined intake port and hemispherical piston surface lead to an evident increase in work output. Achievements in optimization on heat exchanger of liquid nitrogen propulsion system, isothermal expander and engine structure and so on, abundant optimization schemes are also introduced in the paper.
     Structure design and control algorithm design on valves with variable timing To realize VVT valve trains in air powered engine; an electro magnet powered valve is designed. Its structure and operation principle are specified in detail. Geometry of intake valve is designed on criteria that there is no supersonic flow appeared in inlet port. Parameters of electromagnet are designed according to equested valve responding time. And PWM voltage input driven circuit is also presented. Performance of designed electromagnet valve is evaluated in MATLAB/Simulink where realistic model is built and affection of input voltage and injection pressure on valve dynamic performance are also presented by model. In order to control valve reliable with disturbance and measure error existence, a close loop control system combining Lyapunov Redesign method with PID control method and an open loop control system basing on current measurement are built. Simulation procedure is then built to study and compare performances of close and open loop control system. Nonlinear absorbability analysis on electromagnet valve system is also conducted. It's proved that system with current as output is observable. One can evaluate all of system states by observing current, which offers a basis for state observer design.
     This paper develops onnotation of air automobile, makes research direction clear, resolves air powered engine technique into pieces and studies deeply into some sections. That not only arranges predecessors' achievements, but also lay down foundations for subsequent researching.
引文
[1] 尹家绪.加强具有自主知识产权的混合动力汽车业.2005年全国两会专题 2005; http://news.sina.com.cn/c/2005-03-07/14375290285s.shtml".
    [2] LPG燃料汽车是跨时代的交通工具.2006;http://www.newenergy.org.cn/html/2006-3/200639_7884.html".
    [3] 杜渐.汽车工业作为经济增长支柱产业的分析.2004; http://www.istis.sh.cn/list/list.asp?id=516".
    [4] 全球机动车保有量持续增长.全球保有量及晋及率.2004;http://www.iamabi.cn/world/world/world_2.asp".
    [5] 李康.汽车动力源变革与汽车交通的可持续性.道路交通与安全.2006;http://www.bast.net.cn/kjqk/dljtyaq/74894.shtml".
    [6] 马晓河.如何走好汽车产业健康发展之路.2006;http://www.autoboss.net/qikan/qikan1402.asp".
    [7] 技术革新:汽车发动机新命题.2006; http://www.cinic.org.cn/HTML/2006/shouqi/20062118636.html".
    [8] 绿色柴油机整装出行.2002;http://www.cyol.net/cydgn/content/2002-12/30/content_589183.htm".
    [9] 汽车产业新政策认可柴油机技术.2005;http://www.yn.gov.cn/yunnan,china/72903118479687680/20051229/1033562.html".
    [10] 国内外柴油机技术的现状与发展.2005;http://www.weichai.com/industry/channel/news_detail_1335.shtml".
    [11] 欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程.2006,28(4):317-321.
    [12] 吴憩棠.我国应适度发展乙醇燃料.2006;http://www.biotech.org.cn/news/news/show.php?id=37964".
    [13] 宋玉春.我国生物柴油及产业化前景分析.2005;http://www.myearth.com.cn/zxrx/scrd/hot0122601.htm".
    [14] 钱伯章,朱建芳.生物燃料生产和技术发展趋势(上)[J].上海化工.2005,30(11):41-44.
    [15] 液化石油气车辆的优点有哪些?2005;http://www.gemc.gov.cn/view.aspx?id=928",
    [16] 庄盛.燃气汽车相关政策和标准枚举.2006;http://www.istis.sh.cn/list/list.asp?id=2708".
    [17] 世界石油产量和油气储量均增长.2004:,http://news.xj.cei.gov.cn/Articles/OpenArticles.asp?ID=7736&Path=jjsj&FileName=20040413110125.htm".
    [18] 何东胜.天然气作为汽车替代燃料的分析[J].上海节能.2004(4):10-13.
    [19] 张道文.天然气汽车技术改进[J].天然气工业.2006,26(2):123-125.
    [20] 阮登芳,邓兆祥.恢复改装天然气发动机动力性能的措施[J].重庆大学学报(自然科学版).2005,28(5):15-18.
    [21] 庄盛.中国LPG与CNG燃气汽车发展现状.2006:http://www.istis.sh.cn/list/list.asp?id=2700".
    [22] 王贺武,周保龙,蒋德明.直喷式柴油机燃用二甲醚排放特性的研究[J].内燃机学报.2000,18(1):6-10.
    [23] 庄盛.汽车用二甲醚产业化进展情况.2006:http://www.istis.sh.cn/list/list.asp?id=2789".
    [24] 煤变二甲醚 天空更洁净.2006;http://news.gasshow.com/rqzx_desc.asp?GASNEWS_REC_NO=33013"
    [25] 柳亚林,康黎英.21世纪的绿色燃料—二甲醚[J].科技情报开发与经济.2001,12(1):44-45.
    [26] 张翠平,杨庆佛,胡真.ZS195柴油机燃用二甲醚(DME).柴油混合燃料的试验研究[J].内燃机学报.2004,22(4):306-309.
    [27] 孙茅华.醇醚燃料能否成为替代燃料的主角.2006;http://www.daynews.com.cn/mag6/20060830/ca478227.htm".
    [28] 白红义.安全性和经济效益令人信服?甲醇汽油推广悬疑.2006;http://www.ce.cn/cysc/ny/shiyou/200608/25/t20060825_8287697_2.shtml".
    [29] 美国公司评价甲醇作为车用燃料优劣.2006;http://info.china.alibaba.com/news/detail/v4-d5748062.html".
    [30] 孙传灏.绿色电池产业概况及其标准化策略[J].信息技术与标准化.2005Dec(12):7-12.
    [31] “超越家族”酝酿新超越.2005;http://www.jfdaily.com.cn/gb/node2/node142/node153/userobjectlai1149054.html".
    [32] 黎江东,罗益群,赤兔.燃料电池汽车”楚天一号”在汉问世(组图).2005;http://campus.cer.net/20050204/3128791.shtml".
    [33] 崔淑梅,段甫毅.超级电容电动汽车的研究进展与趋势[J].汽车研究与开发.2005(6):31-36.
    [34] 沈同全,程夕明,孙逢春.混合动力汽车的发展趋势[J].农业装备与车辆工程.2006(3):7-10.
    [35] 王宇宁,姚磊,王艳丽.国外电动汽车的发展战略[J].汽车工业研究.2005,9:35-40.
    [36] 温家宝总理“加口快建设节约型社会”讲话摘要.2005;http://finance.people.com.cn/GB/1037/3514267.html".
    [37] 石保权,殷明汉.清洁汽车行动相关标准的现状和发展趋势[J].中国标准化.2001(5):6-7.
    [38] 汽车产业发展政策.2004;http://www.autorepair.com.cn/standard/cyzhc.htm".
    [39] Knowlen C, Mattick AT, Bruckner AP. High efficiency energy conversion systems for liquid nitrogen automobiles[J]. SAE. 1998, 981898.
    [40] Williams J, Knowlen C, Mattick AT, et al. Frost-Free Cryogenic Heat Exchangers for Automotive Propulsion[J]. AIAA. 1997(97-3168).
    [41] Knowlen C, Williams J, Mattick AT, et al. Quasi-Isothermal Expansion Engines for Liquid Nitrogen Automotive Propulsion[J]. SAE. 1997, 972649.
    [42] Liquid nitrogen powered car at the University of Washington. Liquid nitrogen vehicle by University of Washington. "http://www.aa.washington.edu/aerp/CRYOCAR/CryoCar.htm".
    [43] 2005; http://www.perendev-power.com/My_Homepage_Files/Pages5.html".
    [44] MDI engines genealogy. 2002; http://www.theaircar.com/genealogy.html".
    [45] Distribution and valves. 2002; http://www.theaircar.com/howitworks.html".
    [46] Principle of compressed air enigne. 2002; http://www.energine.com/eng/engine/engine1.htm".
    [47] Sutton C. UCLA Study Suggests Air Hybrid Car Could Improve Fuel Efficiency. 2003; http://www.engineer.ucla.edu/stories/2003/hybrid.htm".
    [48] Sutton M. Scuderi Unveils Advanced Air-Hybrid Engine Concept. 2006; http://wardsauto.com/ar/scuderi_air_hybrid/".
    [49] 贾光政.高压气动减压理论及其在气动汽车上应用的关键技术研究[D].杭州:浙江大学机械与能源学院;2003.
    [50] 刘昊.空气动力发动机的探索性研究[D].杭州:浙江大学机械与能源学院;2004.
    [51] 元广杰.液氮发动机理论与实验研究[D].杭州:浙江大学机械与能源学院;2004.
    [52] 蔡金雷,元广杰,沈瑜铭,et al.气动汽车发动机的高效旋转阀配气机构[P].中国.专利号:ZL 03210704.8.2004.
    [53] 元广杰,沈瑜铭,蔡金雷,et al.气动发动机旋转阀进气装置[P].中国.专利号:ZL 02295356.6.2004.
    [54] 陈鹰.压缩空气—燃油/燃气混和动力的汽车发动机[P].中国.2002.
    [55] 翟昕.压缩空气—燃油混合动力的研究[D].杭州:浙江大学机械与能源学院;2005.
    [56] 张喜州.液氮发动机工作过程数值仿真与试验研究[D].杭州:浙江大学机械与能源学院:2005.
    [57] 祝盛.液氮汽车换热器的建模与实验研究[D].杭州:浙江大学机械与能源学院:2006.
    [58] 安达.气动发动机的系统设计及试验研究[D].合肥:合肥工业大学动力机械及工程:2005.
    [59] 傅秋阳.压缩空气发动机系统的数值模拟与优化分析[D].合肥:合肥工业大学动力机械及工程;2005.
    [60] Xiao-li Y, Guang-jie Y, Yu-ming S, et al. Theoretical analysis of air powered engine work cycle[J]. Chinese journal of mechanical engineering. 2002, 38(9): 118-122.
    [61] Yunus A C, Michael A B. Thermodynamics an engineering approach (Fourth Edition)[M]. New York: McGraw-Hill Companies, Inc, 2002: 406.
    [62] Ordonez C A. Liquid nitorgen fueled, closed Brayton cycle cryogenic heat engine[J]. Energy conversion and management. 2000, 41: 331-341.
    [63] Shao-ming X, Guang-xi J. Practical technique for air compressor[M]. BeiJing: Mechnical Industrial Publishing House, 1994: 37-38.
    [64] Jin-lei C, Xiao-li Y, Guang-jie Y. Influence of port timing on work process of air powered engine [J]. Journal of Zhejiang University: Engineering Science. 2004, 38(1): 65-69.
    [65] The articulated con-rod: an essential component of the MDI engines.; http://www.theaircar.com/conrod.html".
    [66] 系列碳纤维复合气瓶.2006;http://www.fsay.cn/cp5.htm".
    [67] 张洪欣.汽车系统动力学[M].上海:同济大学出版社,1996.
    [68] 蔡金雷,俞小莉,元广杰.气动发动机进气相位对工作过程的影响[J].浙江大学学报(工学版).2004,38(1):65-69.
    [69] Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite time process[J]. Journal of Applied physics. 1996, 79: 1191-1218.
    [70] 郑祖义,彦启森.热经济工程模糊分析[J].清华大学学报(自然科学版).1996,36(4):19-22.
    [71] 刘卫华,昂海松.热力系统综合评价模型研究[J].热动力工程.2003,18(3):233-236.
    [72] Curzon F L, Ahlborn. Efficiency of a Carnot Engine at maximum power output [J]. American Journal of Physiology. 1975, 43: 22-24.
    [73] Brown FA. An ecological optimization criterion for finite-time heat engines[J]. Journal of Applied physics. 1991. 69(11): 7465-7469.
    [74] 陈天择,严子浚.热力循环普遍的生态学品质因数及其应用[J].应用科学学报.1997,15(4):446-452
    [75] 李洪兴,汪群.工程模糊数学方法及应用[M].天津:天津科学技术出版社,1993:132-136.
    [76] Holman JP. Heat transfer[M]. Ninth ed. New York: Mc Graw-Hill Company, 2002: 153.
    [77] Massardo AF, Scialo M. Thermo-economic analysis of gas turbine based cycles[J]. Transactions of the ASME. 2000, 122: 664-671.
    [78] 苏金明,阮沈勇.MATLAB 6.1实用指南(下册)[M].北京:电子工业出版社,2002:52-59.
    [79] 刘吴,陶国良,陈鹰.空气动力发动机气缸容积及程径比的研究[J].工程设计学报.2006,13(4):255-259.
    [80] Kalyanmoy D, Amrit P, Sameer A. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionar-y Computation. 2002, 6(2): 182-197.
    [81] Kalyanmoy D, Amrit P. Kanpur Genetic Algorithms Laboratory. 2006; http://www.iitk.ac.in/kangal/index.shtml".
    [82] 刘林,俞小莉.气动发动机理想循环的优化设计[J].浙江大学学报(工学版).2006,40(10):1815-1818
    [83] Adamson T C, Nicholis JA. On the structure of jets from highly underexpanded nozzles into still air[J]. Journal of the Aero/Space science. 1959 Jan: 16-24.
    [84] Dup C, Donaldson. A study of free jet impingement, part 1. mean properties of free and impinging jets[J]. Journal of Fluid Mechinism. 1971, 45(2): 281-319.
    [85] Li-jun S, John A. entrainment characteristics of transient turbulent round, radial and wall-impinging jets: theoretical deductions [J]. Journal of Fluid Engineering. 2003 July, 125: 605-612.
    [86] Hong-ze L, Jonathan W N. An experimental investigation of starting impinging jets[J]. Journal of Fluid Engineering. 2003 March, 125: 275-282.
    [87] Scott P V. A study of near-field entrainment in gas jets and sprays under diesel conditions[J]. Journal of Fluid Engineering. 2000 June, 122: 385-395.
    [88] Hill PG, Ouellette P. Transient turbulent gaseous fuel jets for diesel engines[J]. Journal of Fluid Engineering. 1999, 121: 93-101.
    [89] Rubas P J, Paul M A, Martin G C, et al. Methane Jet Penetration in a Direct-Injection Natural Gas Engine [J]. SAE. 1998, 981043.
    [90] Naoya I, Long Z. Characteristics of Air-entrainment in a Diesel Spray [J]. SAE. 1999, 1999-01-0522.
    [91] Chen K, Karim GA. Experimental and Analytical Examination of the Development of Inhomogeneities and Autoignition During Rapid Compression of Hydrogen-Oxygen-Argon Mixtures[J]. Tansactions of ASME. 2003 April, 125: 458-465.
    [92] Cumber P, Fairweather M. Predictons of the Structure of Turbulent Moderately Underexpanded Jets[J]. Journal of Fluid Engineering. 1994, 116: 707-713.
    [93] Cumber P, Fairweather M, Falle S. Predictions of the structure of turbulent highly underexpanded jets [J]. Journal of Fluid Engineering. 1995, 117: 599-604.
    [94] Li Y, Kirkpatrick A. Characteristic and computational fluid dynamics modeling of high-pressure gas jet injection [J]. Tansactions of ASME. 2004, 126: 192-197.
    [95] 吴海玲,陈听宽,罗毓珊.应用不同紊流模型的二维横向射流传热数值模拟研究[J].西安交通大学学报.2001 September,35:903-907.
    [96] Schmidlin AE. Rapid filling of a cylinder with a compressible fluid[J]. Tansactions of ASME. 1967 Aug, 89: 570-579.
    [97] Addy AL. Effects of axisymmetric sonic nozzle geometry on mach disk characteristics[J]. American Institute of Aeronautics and Astronautics 1981, 19: 121-122
    [98] Taylor C F. The internal combustion engine in theory and practice [M]. Massachusetts: MIT, 1966: 312-356.
    [99] Michael M, Stephen RB. Optimal paths for thermodynamic systems: The ideal Otto cycle [J]. Journal of Applied physics. 1982, 53(1): 34-42.
    [100] 马春.新型金属材料应用广泛,前景乐观.第一情报_材料工业.2004;http://www.istis.sh.cn/list/list.asp?id=637".
    [101] 李莉,王希珍,严兆大.电磁驱动气门机构系统模型[J].内燃机工程.2004,25(4):11-14.
    [102] 王希珍,李莉,严兆大.基于仿真基础上的电磁控制全可变气门系统优越性的分析[J].内燃机工程.2004,25(1):31-34.
    [103] Tao G, CHEN HY, Jin YY. Optimal design of the magnetic field of a high-speed response solenoid valve[J]. Journal of Materials Processing Technology. 2002, 129(1): 555-558.
    [104] Yakach M, Lauritzen P. Survey of magnetic core models[C]. Applied Power Electronics Conference 1995. 560-566.
    [105] Yuhani T. A simple scalar model for magnetic hysteresis[J]. IEEE transactions on magnetics. 1998, 34(4): 2200-2206.
    [106] Chun T, Tsao T C. Control of an electromechanical camless valve actuator[C]. Proceedings of American Control Conference; 2002 May; Anchorage, AK. 262-267.
    [107] Peterson KS, Stefanopoulou AG, Megli T. Output observer based feedback for soft landing of electromechanical camless valvetrain actuator[C]. Proceedings of the American Control Conference; 2002 May; Anchorage, AK. 1413-1418.
    [108] Wang Y, Megli T, Haghgooie M, et al. Model and control of electromechanical valve actuator[J]. SAE. 2002-01-1106.
    [109] 王希珍.电磁全可变气门的仿真控制及相关研究[D].杭州:浙江大学机械与能源学院;2003.
    [110] Peterson K S, Stefanopoulou A G. Rendering the electromechanical valve actuator globally asymptotically stable[C]. Proceedings of the 42th IEEE Conference on Decision and Control 2003 December; Maui,Hawaii USA. 1753-1758.
    [111] Haskara I, Kokotovic VV, Mianzo LA. Control of an electro-mechanical valve actuator for a camless engine[J]. International Journal of Robust and Nonlinear Control. 2004, 14: 561-579.
    [112] 李莉.电磁驱动气门机构的设计开发与试验研究[D].杭州:浙江大学机械与能源学院:2004.
    [113] Hassan K K. Nonlinear system[M]. 3rd Edition ed. New Jersey: Prentice Hall, 2002: 579-589.
    [114] 曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社,2006:90-91.
    [115] Hermann R, Krener J. Nonlinear Controllability and Observability[J]. IEEE Transactions on Automatic Control. 1977, 22(5): 828-740.
    [116] Canud A S C, YoussefA, Barbot J P, et al. Observability conditions of induction motors at low frequencies[C]. 39th IEEE Conference on Decision and Control 2000 December; Sydney. 2044-2049.
    [117] Hiroshi I, Akifumi Y, Rixat A, et al. Observability of perspective dynamical systems[C]. 39th IEEE Conference on Decision and Control. 2000; Sydney: 5157-5162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700