用户名: 密码: 验证码:
软胶囊滴丸制药生产过程的建模与优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以软胶囊滴丸制药生产工艺过程为研究对象,以提高软胶囊滴丸产品合格率和质量稳定性为研究目标,基于智能控制、数据驱动建模与智能优化算法对该过程进行建模与优化控制研究。主要工作如下:
     首先,对软胶囊滴丸制药生产工艺过程进行了系统分析:软胶囊滴丸过程包含了多个子系统,各子系统本身也各具特点,如明胶溶液生成过程子系统包含多个环节,期间会发生复杂的物理和化学变化,具有明显的非线性,中间控制变量较多,是一个十分复杂的工业过程;明胶温度子系统、石蜡油液位子系统和脉冲压力子系统中则存在不同程度的非线性、参数时变性和纯滞后等问题。在此基础上,针对该过程中存在的问题和各子系统的不同特点,设计相应的控制策略,以期达到较好的控制效果。
     接下来,对明胶溶液生成过程子系统进行了研究,提出一种多阶段逆模型建模方法,控制明胶溶液生成过程工艺参数。明胶溶液生成过程包含多个阶段,整体建模方法往往将其简化为一个阶段,不考虑大量的中间变量和参数。本研究采用多阶段建模方法,能够克服整体建模方法的缺点并提高模型精度;同时采用逆模型方法,可以根据胶液质量指标的要求来确定控制变量的设定值,方便操作和控制。
     然后,分别对明胶温度子系统、石蜡油液位子系统、脉冲压力子系统进行建模和控制研究,分别建立了各子系统的数学模型;将模糊控制、自适应控制、PID控制以及基于模式识别的智能控制方法相结合,设计出混合型模糊PID(Fuzzy-PID)、模型参考模糊自适应PID(MRFA-PID)、基于模式识别的自适应控制(PR-PID)三种新型智能控制策略,并分别应用于上述子系统,解决该过程中的非线性、参数时变性和纯滞后等问题,在保证控制系统稳态精度的同时,改善系统的动态性能,减少超调量和调节时间,提高控制系统的鲁棒性。
     本文研究的最终目标是提高软胶囊滴丸产品合格率和质量稳定性。需要对影响软胶囊滴丸的关键工艺参数,包括各子系统的设定值进行优化设计。因此,在完成对各子系统的建模和优化控制的基础上,对软胶囊滴丸过程产品质量进行建模和优化研究。首先详细分析了软胶囊滴丸生产过程质量控制的性能要求和影响产品生产过程质量的因素,给出软胶囊滴丸产品的二级层次结构质量指标体系和操作变量;软胶囊滴丸生产过程中,面向产品质量的建模由于变量众多,关系复杂,统计建模和机理建模均无法取得理想效果,因此本文以软胶囊滴丸制剂过程工艺参数胶液黏度、胶液温度、石蜡油温度等为输入,以圆整度、拖尾情况、完好率和胶丝情况等产品质量指标为输出,采用最小二乘支持向量回归机等基于数据驱动的智能建模方法建立较高精度的软胶囊滴丸产品质量模型。
     在此基础上,本文用层次分析法(AHP)确定各二级指标的权重,然后,基于微粒群(PSO)算法求解以提高软胶囊滴丸成品率为最终目标的多目标优化问题,对模型输入参数空间进行寻优,确定成品率最高时所对应的工艺参数标称值,对产品质量进行优化控制。经生产试制,利用优化后的工艺参数值进行离线指导能使该制剂过程的成品率提高约2.7个百分点,表明利用LSSVM与PSO算法对软胶囊滴丸制剂过程进行建模与优化是合理的,为软胶囊制剂过程的优化提供了一条新的途径。
This article takes soft capsule dropping pills pharmaceutical production process as the research object.In order to improve the yield of soft capsule dropping pills and its stability of product quality,the modeling and optimizing control are studied based on intelligent control,data-driven modeling and intelligent optimization algorithms. The main work in this dissertation is presented as follows.
     Firstly,the soft capsule dropping pills pharmaceutical production process is analyzed systematically.The soft capsule dropping pills process contains a number of subsystems,each subsystem with its own characteristics,such as gelatin solution generation subsystem is a very complex industrial processe,which includes a number of links,there are complex physical and chemical changes in the process,with obvious non-linear and many intermediate control variables.The gelatin temperature subsystem,paraffin oil level subsystem and pulse pressure subsystem are also very complexed with the characteristics of non-linear,time-varying parameters and time delay and so on.On this basis,aiming at the problems of the process and the different characteristics of the subsystems,design the appropriate control strategy to achieve better control results.
     Then,the gelatin solution production process subsystem was studied.This paper investigates multistage inverse modeling for a class of serially connected industrial large-scale systems.To control the quality of the production,inverse modeling is to obtain the model of the required process conditions and the control variable set points of a process system by backward reasoning with the specified product qualities as a starting point.The existing methods of inverse modeling establish the inverse model for the whole process which is generally difficult and rough.To reduce the difficulty and to improve the accuracy of the model,multistage inverse modeling method is proposed in this paper.The inverse models are established by using least squares support vector machine(LSSVM)and BP neural network (BP-NN)respectively.As an illustration of the effectiveness of the proposed method, we consider the production quality control problem of the gelatin solution production process.The simulation results indicate the model based on the proposed method has smaller error and higher hit rates.
     And then,the modeling and control of gelatin temperature control subsystem, paraffin oil level subsystem and pulse pressure subsystem are studied respectively. The mathematical models of the subsystems are established respectively.Aiming at the problems of nonlinear,time-variant and coupling existing in soft capsule dropping pills system,three kinds of novel intelligent control strategies are proposed based on fuzzy logic controller,adaptive control,PID controller and intelligent control based on pattern recognition method.They are namely hybrid fuzzy PID(Fuzzy-PID), model reference fuzzy adaptive PID(MRFA-PID),and adaptive control based on pattern recognition(PR-PID).The proposed methods can improve the dynamic response,regulation precision and robustness of the closed-loop system as well as guarantees the basic requirement on stability and product quality.They are used in the above three subsystems respectively.
     The ultimate goal of this study is to improve the soft capsule dropping pills pass rate and stability of product quality.The key process parameters of soft capsule dropping pills,including settings of the subsystems need an an optimization design. Therefore,on the basis of the completion of various sub-systems modeling and optimization control,the process of soft capsule dropping pills product quality modeling and optimization were studied.Soft capsule dropping pills product quality model was established based on data-driven modeling method.Soft capsule dropping pills product quality control system is a multi-input and multi-output complex system. First of all,the process parameters and a two-level hierarchy index system of soft capsule pills product quality were proposed based on the analysis to the production process.In the soft capsule dropping pills production process,there are so many variables in product quality-oriented modeling and the relationship among them are quite complex,which make physical-driven and statistical modeling very difficult, even if not impossible.So,data-driven modeling method is used to establish a higher precision product quality model of the soft capsule dropping pills.The model was established based on least squares support vector machine(LSSVM),whose inputs are the process parameters,namely gelatin solution viscosity,gelatin solution temperature,paraffin oil temperature,and pulse pressure,and outputs are the secondary quality indexes,namely spherical degree,tailed degree,breaking pill rate and collodion silk degree.
     On this basis,Analysis hierarchy process(AHP)was used to determine the weights of the secondary quality indexes.And then,particle swarm optimization(PSO) algorithm was used to optimize the process parameters in order to improve the yield of soft capsule pills,which is a multi-objective optimization problem.The nominal values of the process parameters corresponding to the highest yield can be obtained. The yield increases by 2.7 percent when the optimizing parameters are used to the soft capsule dropping pills process via off-line instruction,which indicating that the method of using LSSVM and PSO in product quality modeling and optimization of soft capsule dropping pills is reasonable.It provides a new way for soft capsules process optimization.
引文
[1]国家食药监管局长.中国制药业GMP认证进入倒计时[Z].http://finance.sina.com.cn,2004年生03月04日15:33,中国新闻网.
    [2]彭彦卿.全自动脉冲滴丸机自动控制系统的设计[J].医药工程设计,2002,23(5):40-43.
    [3]Luo Jian,Zhuang Jin-fa,et al Peng Yan-qing.Model Reference Fuzzy Adaptive PID Control an Its Applications in Typical Industrial Processes[C].Proceedings of the 2008 IEEE International Conference on Automation and Logistics(ICAL 2008).Qingdao,China,2008:896-901.
    [4]Luo Jian Peng Yan-qing,Ge Xiao-hong,Zhuang Jin-fa,et al.LSSVM Based Multistage Inverse Modeling for Gelatin Solution Production Process[J].Journal of Information & Computational Science,2008,6(5)
    [5]陈李清.PLC控制系统在六头滴丸机上的应用[J].医药工程设计,2004,25(2):37-40.
    [6]陈李清,彭彦卿.六头自动软胶囊滴丸机(Ⅱ)控制系统的设计与实现[J].医药工程设计,2005,26(6):30-32.
    [7]彭彦卿,陈李清,罗键.新型六头滴丸机控制系统的改进[J].厦门理工学院学报,2007,15(2):40-45.
    [8]彭彦卿,罗键,葛晓宏,庄进发等.多阶段逆模型方法及在胶液生成过程中的应用[J].系统仿真学报,2009,21(4):1178-1181,1186.
    [9]彭彦卿,罗键,陈李清.基于PLC的混合型模糊PID在胶温控制系统中的应用[J].厦门大学学报(自然科学版),2008,47(2):191-195.
    [10]彭彦卿,庄进发,罗键等.滴丸机石蜡油液位的模型参考模糊自适应PID 控制[J].天津大学学报(自然科学版),2008,41(8):931-936.
    [11]Luo Jian,Zhuang Jin-fa,et al.Peng Yan-qing.Adaptive Control based on Pattern Recognition and Its Applications in Typical Industrial Processes[C].2008 3~(rd) International Conference on Intelligent System and Knowledge Engineering(ISKE 2008).Xiamen,China,2008:26-31.
    [12]彭彦卿,罗键,兰维瑶.基于模式识别的脉冲压力自适应控制[J].仪器仪表学报,2008,29(11):2351-2356.
    [13]彭彦卿.LOGO!在自动筛丸机上的应用[J].电世界,2005,46(4):24-25.
    [14]彭彦卿.PLC控制系统的选用与抗干扰能力的提高[J].医药工程设计,2004,25(6):45-46.
    [15]彭彦卿,徐敏,陈李清.过程控制实验模型的研制[J].厦门理工学院学报,2006,14(1):23-27.
    [16]彭彦卿.人机界面的开发与应用[J].鹭江职业大学学报,2004,12(4):82-85.
    [17]厦门市中长期科学技术发展规划纲要(2006-2020)[Z]:www.cnr.cn/xmfw/qytd/zsyz/200609/t2006091,2007-7-26.
    [18]厦门市“十一五”科技发展专项规划[Z]:〈http://www.xminfo.net.cn/policyinstruct/2006/115...39K 2008-4-22〉.
    [19]万百五.工业大系统优化与产品质量控制[M].北京:科学出版社,2003.
    [20]张宇飞,邵秀丽,雷建军.基于神经网络和遗传算法的中药滴丸制剂过程建模与优化[J].计算机工程与应用,2005,(2):191-193,216.
    [21]李文,邵秀丽.中药制剂过程的建模、优化与应用研究[J].世界科学技术-中医药现代化,2005,7(6):24-30.
    [22]张宇飞,李文,邵秀丽等.中药滴丸制剂质量控制数字化的研究与实践[J].南开大学学报(自然科学版),2005,38(3):34-38.
    [23]李军,黄海宽,曹琦.基于支持向量机的中药工艺参数优化研究[J].计算机工程与应用,2007,43(36):205-207.
    [24]孙鹤旭,邢国麟,牛春刚等.基于网络化的中药滴丸机智能控制系统的设计[J].仪表技术与传感器,2008,(5):92-95.
    [25]万百五.工业生产的产品质量模型和质量控制模型及其应用[J].自动化学报,2002,28(6):1019-1024.
    [26]万维汉,万百五,史维祥等.闪速炉的仿人模糊质量控制模型[J].西安交通大学学报,2001,35(7):700-704.
    [27]万维汉,万百五,杨金义.闪速炉的神经网络冰镍质量模型与稳态优化控制 研究[J].自动化学报,1999,25(6):800-803.
    [28]D.C.Esveld Hadiyantoa,R.M.Boom,et al.Product quality driven design of bakery operations using dynamic optimization[J].Journal of Food Engineering,2008,86:399-413.
    [29]Zhang Ying-chuan.Product quality modeling and control based on vision inspection with an application to baking processes[D].Ph.D.Georgia Institute of Technology,2005.
    [30]Weiping Zhong.Modeling and Optimization of Quality and Productivity for Machining Systems with Different Configurations[D].University of Michigan:Mechanical Engineering,The University of Michigan,Ph.D.2002.
    [31]Yuan Cheng.Vision -based Automatic Process Control[D].Industrial and System Engineering,The State university of New Jersey,Ph.D.2005.
    [32]柴天佑,丁进良,王宏等.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,43(5):505-515.
    [33]冯冬青,张新征,费敏锐.基于回归神经网络的氧乐果合成过程建模与仿真[J].系统仿真学报,2005,17(6):1522-1530.
    [34]苗青,曹广益,朱新坚.基于一种改进的RBF神经网络的直接甲醇燃料电池建模[J].系统仿真学报,2005,17(2):284-289.
    [35]高学金,王普,孙崇正等.基于支持向量机的青霉素发酵过程建模[J].系统仿真学报,2006,18(7):2052-2055.
    [36]常玉清,王福利,王小刚等.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报,2006,27(3):241-244.
    [37]John Q.Gan Shang-Ming Zhou.Low-level interpretability and high-level interpretability:a unified view of data-driven interpretable fuzzy system modeling[J].Fuzzy Sets and Systems,2008,159(23):3091-3131.
    [38]F.J.A.van Ruitenbeek E.J.M.Carranza,C.Hecker,et al.Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata[J].International Journal of Applied Earth Observation and Geoinformation,2008,10(3):374-387.
    [39]Haralambos Sarimveis Eleni Aggelogiannaki.Haralambos Sarimveis.Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models[J].Computers & Chemical Engineering,2008,32(6)
    [40]Oscar Castillo Patricia Melin.An intelligent hybrid approach for industrial quality control combining neural networks,fuzzy logic and fractal theory[J].Information Sciences,2007,177:1543-1557.
    [41]M.Kashif.Data-driven Modeling for Enhanced Management of Water Resources:Problems and Solutions[D].Civil and Environmental Engineering,Utah State University?Ph.D.2006.
    [42]Vladimir N.Vapnik著,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [43]John Shawe-Taylor著,李国正,王猛,曾华军译Nello Cristianini.支持向量机导论[M].北京:电子工业出版社,2005.
    [44]王国鹏.基于支持向量机的系统建模方法研究[D].华北电力大学,硕士学位论文,2004.
    [45]Vandewale J Suykens J A K.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
    [46]Suykens J A K,Lukas L,Van Dooren P,et al.Least squares support vector machine classifiers:a large scale algorithm[C].Proc of the Europeam Conference on Circuit Theory and Design(ECCTD'99).Stresa,Italy,1999:839-842.
    [47]李炜;石连生;梁成龙.基于粒子群优化的VB-LSSVM算法研究辛烷值预测建模[J].仪器仪表学报,2009,30(2):335-339.
    [48]杨延西,刘丁.基于小波变换和最小二乘支持向量的短期电力负荷预测[J].电网技术,2005,29(13):60-64.
    [49]李大中,王臻.基于最小二乘支持向量机的生物质气化过程模型建立[J].系统仿真学报,2009,21(3):629-633.
    [50]李金松,张强,周士华.双链DNA解链温度的最小二乘支持向量机预测方法[J].计算机工程与应用,2009,45(5):55-58.
    [51]焦尚彬,刘丁.基于最小二乘支持向量机的绝缘子盐密光纤在线检测[J].仪器仪表学报,2008,29(11):2335-2340.
    [52]潘海天 曲涛,夏陆岳,蔡亦军,孙小方.基于NGA-LSSVM的白水浓度软测量[J].浙江工业大学学报,2008,36(6):612-615.
    [53]顾幸生 林碧华.基于差分进化算法-最小二乘支持向量机的软测量建模[J].化工学报,2008,56(7):1681-1685.
    [54]范磊,张运陶.基于LSSVM实现CO:转化率的软测量建模[J].计算机与应用化学,2006,23(1):55-58.
    [55]刘贺平 郭辉,王玲.KPCA-LSSVM建模方法及在钢材淬透性中的应用研究[J].控制与决策,2006,21(9):1073-1076.
    [56]Vandewalle Suykens.Recurrent least squares support vector machines[J].IEEE Transactions on Circuits and Systems,2000,47(7):1109-1114.
    [57]Huang Des-huang Sun Bing-yu.Lidar signal denoising using least-squares support vector machine[J].IEEE Signal Processing Letters,2005,12(2):101-104.
    [58]Huang De-xian Wang Yu-hong,Gao Dong-jie.et al.Nonlinear predictive control based on LS-SVM[J].Control and Decision,2004,19(4):383-387.
    [59]K.(?)str(O|¨)m and T.H(a|¨)igglund.Theory,Design and Tuning[M].New York:ISA,1995.
    [60]等 金鑫,谭文,李志军.典型工业过程鲁棒PID控制器的整定[J].控制理论与应用,2005,22(6):947-953.
    [61]Dr.F.H.Ali and Maher M.F.Algreer.Fuzzy PID control for positioning plants with uncertain parameters variation[C].Information and Communication Technologies,2006.ICTTA '06.2nd.,2006:1428-1433.
    [62]K.J.(?)str(O|¨)m.Adaptive Control[M].Beijing:Science Press,2003.
    [63]Yunis Torun(?)lyas Eker.Fuzzy Logic Control to Be Conventional Method[J].Energy Conversion and Management,2006,47:377-394.
    [64]N.Rapal A.A.Khan.Fuzzy PID Controller:Design,Tuning and Comparison with Conventional PID Controller[C].IEEE International Conference on Engineering of Intelligent Systems.2006:1-6.
    [65]Stefan Domek Stanislaw Skoczowski,Krzystof Pietrusewicz,and Bogdan Broel-Plater.A Method for Improving the Robustness of PID Control[J].IEEE Transactions on Industrial Electronics,2005,52(6):1669-1676.
    [66]刘国荣,杨宪惠.模糊自适应PID控制[J].控制与决策,1995,10(6):558-562.
    [67]N.Wang.A fuzzy PID controller for multi-model plants[C].Proceedings of the International Conference on Machine Learning and Cybernetics.Beijing,2002:1401-1404.
    [68]P.J.Escamilla-Ambrosio and N.Mort.A novel design and tuning procedure for PID type fuzzy logic controllers[C].First International IEEE Symposium Intelligent Systems.2002:36-41.
    [69]M.Mizumoto.Realization of PID controls by fuzzy control methods[J].Fuzzy Sets and Systems,1995,70:171-182.
    [70]M.J.E.Salami and Yusuf.L.Bulale.Design and Implementation of fuzzy-based PID controller[C].IEEE ICIT'02.Bangkok,THAILAND,2002:220-225.
    [71]X.H.Dong W.Zhu,Z.L.Zhang.Modeling of fuzzy control in sheet deep drawing[J].Control Theory & Applications,2007,24(1):122-126.
    [72]A Visioli.Fuzzy logic based set-point weight tuning of PID controllers[J].IEEE Transactions on Systems,Man,and cybernetic,1999,29(6):587-592.
    [73]Otsubo A Hayashi K,Murakamj S,et al.Realization of nonlinear and linear PID controls using simplified indirect fuzzy inference method[J].Fuzzy Sets and Systems,1999,105(3):409-414.
    [74]P.Hao Amin Haj Ali.Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains[J].Automatica,2004,40(9):1551-1559.
    [75]张钊,吴爱国,裴燕玲.模糊控制的模糊推理分析[J].控制与决策,2005,20(8):905-908.
    [76]金以慧.过程控制[M].北京:清华大学出版社,1993.
    [77]牛培峰,林宇,张君.高阶惯性系统自适应控制研究[J].仪器仪表学报,2007,28(7):1290-1294.
    [78]Ben M.Chen and Z Ding W.Lan.Adaptive estimation and rejection of unknown sinusoidal disturbances through measurement feedback for a class of nonminimum phase nonlinear MIMO systems[J].International Journal of Adaptive Control and Signal Processing,2006,20(2):77-97.
    [79]Jeong Hill Park Piao Xiang-Lan,Jian Cui,et al.Development of gas chromatographic/mass spectrometry pattern recognition method for the quality control of Korean Angelica[J].Journal of Pharmaceutical and Biomedical Analysis,2007,44:1163-1167.
    [80]Shankar Chakraborty Susanta Kumar Gauri.Feature-based recognition of control chart patterns[J].Computers & Industrial Engineering,2006,51:726-742.
    [81]孟庆利,张敏政.基于模式识别的模糊半主动控制策略[J].地震工程与工程振动,2005,25(6):152-158.
    [82]Yoram Koren Sungchul Jeea.Adaptive fuzzy logic controller for feed drives of a CNC machine tool[J].Mechatronics,2004,14:299-326.
    [83]D.A.Stone P.Stewart,P.J.Fleming.Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop[J].Engineering Applications of Artificial Intelligence,2004,17:275-284.
    [84]王永初,任秀珍.工业过程控制系统设计范例[M].北京:科学出版社,1986.
    [85]Zhi-yuan Liu Jing-Gang Zhang,Run Pei.Two-degree-of-freedom PID control with fuzzy logic compensation[C].Proceedings of the First International Conference on Machine Learning and Cybernetics.Beijing,2002:1498-1501.
    [86]荣海娜,张葛祥,金伟东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208.
    [87]Eberhart R.Particle swarm optimization Kennedy J.Particle swarm optimization[C].Proc.IEEE Int'l.Conf.on Neural Newtokrs,Ⅳ,Piscataway,.N J:IEEE Service Center,1995:1942-1948.
    [88]Shi Y Eberhart R.Particle swarm optimization:developments,applications and resources[C].Proc.Congress on Evolutionary Computation 2001, Piscataway.NJ:IEEE Service Cenetr,2001:81-86.
    [89]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004.
    [90]Voratas Kachitvichyanukul The Jin Ai.A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery[J].Computers&Operations Research,2009,36:1693-1702.
    [91]Xiaoqian Ma Jiejin Cai,Qiong Li,Lixiang Li,Haipeng Peng.A multi-objective chaotic particle swarm optimization for environmental/economic dispatch[J].Energy Conversion and Management,2009,50:1318-1325.
    [92]Yi-Ting Chen Wen-Shing Lee,Ting-Hau Wu.Optimization for ice-storage air-conditioning system using particle swarm algorithm[J].Applied Energy,2009,86:1589-1595.
    [93]Wei-Wen Chang Wei-Chang Yeh,Yuk Ying Chung Bulale,M.J.E.Salami and Yusuf.L.A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method[J].Expert Systems with Applications,2009,36:8204-8211.
    [94]A.K.Barisal P.K.Hota a,R.Chakrabarti.An improved PSO technique for short-term optimal hydrothermal scheduling[J].Electric Power Systems Research,2009,79:1047-1053.
    [95]Wei-Chang Yeh.A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems[J].Expert Systems with Applications,2009,36:9192-9200.
    [96]Hao Nie Xiaohui Yuan,Anjun Su,Liang Wang,Yanbin Yuan.An improved binary particle swarm optimization for unit commitment problem[J].xpert Systems with Applications,2009,36:8049-8055.
    [97]Taher Niknam.An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration[J].Energy Conversion and Management,2009,xxx:xxx-xxx.
    [98]Yang Liu.Automatic calibration of a rainfall-runoff model using a fast and elitist multi-objective particle swarm algorithm[J].Expert Systems with Annlications,2009,36:9533-9538.
    [99]Vrahatis M N Parsopoulos K E.Particle Swarm Optimization Method in Multiobjective Problems[C].Proc of the 2002 ACM Symposium on Applied Computing.New York,2002:603-607.
    [100]Coello C A C Sierra M R.Improving PSO-based Multi-objective Optimization Using Crowding,Mutation andε-dominance[C].Proc of the3rd Int.Conf.on Evolutionary Multi-criterion Optimization.Mexico,2005:505-519.
    [101]马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486.
    [102]C.R.Wu C.W.Chang,C.T.Lin,et al.An application of AHP and sensitivity analysis for selecting the best slicing machine[J].Computers & Industrial Engineering,2007,doi:10.1016/j.cie.2006.11.006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700