用户名: 密码: 验证码:
基于响应的电力系统暂态稳定性实时判别与控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于实时广域测量信息进行了电力系统暂态稳定分析的理论探讨、数学模型的建立、动态特征信息提取、受扰轨迹预测、实时暂态稳定判据、主导失稳模式识别及切机控制措施量化等方面的研究,研究了基于广域实测信息的电力系统暂态稳定响应控制策略。
     广域测量系统可以获得全网的实时动态响应数据,由于测量数据是海量的,需要从海量测量数据中提取部分动态特征信息进行研究,从而避免对海量数据的处理,提高暂态稳定分析的速度。动态特征信息必须要能全面反映系统受扰后的暂态稳定过程,考虑到多机系统暂态稳定问题的复杂性,单一依靠某种特征信息可能很难准确识别系统的稳定性。因此,基于广域测量信息的暂态稳定研究,需要综合利用多种动态特征信息。
     电力系统受扰轨迹变化趋势十分复杂,具有很强的非线性特性,要求在暂态稳定受扰轨迹的预测模型必须能实时跟踪曲线的变化趋势,及时调整模型参数以提高预测性能。本文基于预测模型参数的特性,提出了一种预测模型参数自适应调整技术,主要目的是跟踪受扰轨迹的非线性变化,利用最新的测量值,及时调整模型参数从而实现总体最优预测性能。模型参数自适应技术主要分为内外两部分循环计算,内循环计算根据预测模型得到预测结果,外循环计算基于最新测量值,根据模型参数自适应调整原则,及时修正模型参数,提高模型的适应能力。
     实时暂态稳定性判据是实现暂态稳定实时决策的关键,对多机系统而言,系统发生扰动时输电断面联络线的特征信息能有效反映两侧系统间的摇摆情况。本文基于联络线特征信息提出了一种基于功率-相角-频率的快速判据,仅使用有限的、关键的网络特征信息进行设计,因此具有快速性和实用性。在进行失稳识别时,首先判断系统是否进入不稳定区域,然后判断系统是否有趋于失稳的倾向,最后判断系统是否会越过不稳定平衡点。基于实际系统进行了仿真验证,结果表明运用此判据可准确地判别暂态功角失稳。
     暂态功角失稳与暂态电压失稳是故障后系统在暂态过程中的两种主要表现形式,暂态功角失稳和暂态电压失稳的主导性识别,是进行暂态稳定控制的前提。本文研究表明,暂态过程中输电断面联络线有功功率的变化量包含两部分分量,一部分与联络线母线电压相角相关,另一部分与联络线母线电压幅值相关。这两部分分量与失稳模式之间存在如下关系:当电压失稳为主导失稳模式时,输电断面功率改变量主要由与母线电压幅值相关的分量引起,当功角失稳为主导失稳模式时,输电断面功率改变量主要由与母线电压相角差相关的分量引起。基于这种关系,本文提出了一种功率全微分的主导失稳模式识别判据,为后续紧急控制提供决策依据。
     进行暂态稳定紧急控制时,首先需要确定合理的切机量。基于暂态能量函数的切机控制措施量化方法,要求能量函数能精确地反映出导致系统失稳的暂态能量。修正的暂态能量函数与同步坐标下和惯量中心坐标下的暂态能量函数相比,最能反映导致系统失稳时的暂态能量。基于修正的暂态能量函数,本文定义了系统的加速能量函数。基于临界切机量时系统加速能量所满足的特性方程,提出了一种基于系统加速能量的临界切机量求取方法。与基于等面积法则的传统方法不同,该方法不需要计算系统的不稳定平衡点,积分路径拟合及积分计算过程简单。
This dissertation focuses on the rotor angle stability analysis based on wide-area measurement information, including mechanisms analysis, mathematics modeling, extraction of dynamic characteristic data, prediction of disturbed trajectories, real-time transient instability criterion, recognition of principal mode and quantitative research of generation capacity tripped. Then a response data driven transient stability control strategy based on real-time measurement data is proposed.
     Response data of network can be collected by wide-area measurement system and it is need to extract the dynamic characteristic data for transient stability analysis in order to avoid dealing with the huge number of PMUs data and improve the speed of stability analysis. Dynamic characteristic data is required to reflect the process of transient stability after disturbance. Considering the complexity of transient stability problem of multi-machine system, it is difficult to identify the stability of power system correctly, so multiple characteristic data is used for transient stability analysis based on wide-area measurement information.
     The tendency of disturbed trajectories variation is complex and the curves have strong nonlinear characteristics. In the prediction of disturbed trajectories, the parameters of prediction model must dynamically adjust to cope with the variation of nonlinearity of curves in real-time to enhance the prediction ability. Based on detailed analysis on the relation between prediction performance and model parameters, a self-adaption technology for model parameters is proposed in this dissertation. Using the latest measurement data to calculate the parameters and cope with the variation of nonlinearity for the purpose of realizing overall optimal performance prediction. The proposed technology includes inner and outer loop calculations. Inner loop focuses on the calculation of prediction results and the outer loop focuses on the calculation of parameters with the latest measurement data according to principles of adaptive adjustment of model parameters.
     Real-time transient stability criterion is the key of real-time transient stability analysis. For multi-machine power system, dynamic characteristic information of tie lines in transmission section can reflect the oscillation status between two systems when the oscillation occurs. A power-phase angle-frequency criterion based on the characteristic information of tie lines is proposed. Few and vital network information is used to design this criterion, so it has fast calculation speed and practicality to be used. There are three steps to identify the unstable status with this criterion. Firstly, identify if the system operating point is in the unstable area. Secondly, identify if the system has the tendency to lose stability. Finally, confirm if the system operating point is beyond the unstable equilibrium point. Simulation results based on actual power system show that the criterion can identify transient angle stability correctly.
     Rotor angle instability and transient voltage instability are two forms of system instability during the post disturbance. Recognition between them is the pre-preparation for power system emergency control. Research shows that the variation of active power of tie lines in transmission section includes two components. The first component is associated with the bus voltage magnitude of tie lines; the second component is associated with the phase angle of bus voltage for tie lines. The relationship between different unstable modes and the components is shown as follows:When the transient voltage instability is the principle mode, the variation of active power in tie lines is mainly determined by the first component. When the rotor angle instability is the principle mode, the variation of active power in tie lines is mainly determined by the second component. A criterion for recognition of principal mode based on this relationship is presented for the subsequent emergency control.
     Estimating the generation capacity to be tripped suitably is a pre-preparation for power system transient stability emergency control. The methods of estimating generation capacity tripped based on transient energy function requires that the function can accurately reflect the energy which causes the system instability. Based on the corrected energy function, accelerated energy function of power system is defined. With the detailed analysis of accelerated energy of power system, a method to estimate generation critical capacity tripped is presented. Different from the equal-area criterion, this method don't need to calculate the unstable equilibrium points, integral path determined and calculation process are simple.
引文
[1]张文亮,周孝信,印永华,等.华北-华中-华东特高压同步电网构建和安全分析[J].中国电机工程学报,2010,30(16):1-5.
    [2]汤涌.电力系统数字仿真技术的现状与发展[J].电力系统自动化,2002,26(17):66-70.
    [3]谢小荣,李红军,吴京涛.同步相量技术应用于电力系统暂态稳定性控制的可行性分析[J].电网及时,2004,28(1):10-14.
    [4]D. Li, R. Li, Y. Sun, et al. State estimation with WAMS/SCADA hybrid measurements[J]. Power & Energy Society General Meeting,2009, PES09, IEEE:2009, Calgary, AB, Canada:1-5.
    [5]Rehtanz C, Bertsch J. Wide area measurement and protection system for emergency voltage stability control[C].2002 IEEE Power Engineering Society Winter Meeting.New York,USA,2002,2:842-847.
    [6]安艳秋,高厚磊.基于同步相量测量的线路参数在线计算[J].电力自动化设备,2002,22(9):21-23.
    [7]王兆家,芩宗浩,陈汉中.华东电网多功能功角实时监测系统的开发及应用[J].电网技术,2002,26(8):73-77.
    [8]Burnett R O, Butts M M, Cease T W, et al. Synchronized phasor measurements of a power system event[J]. IEEE Trans on Power Systems,1994,9(3):1643-1650.
    [9]闵勇,丁仁杰,韩英铎,等.一次系统事故的同步相量测量结果分析[J].电力系统自动化,1998,22(7):10-13.
    [10]Hashiguchi T, Yoshimoto M, Mitani Y, et al. Oscillation mode analysis in power system based on data acquired by distributed phasor measurements[C]. Proceedings of the 2003 International Symposium on Circuits and Systems,2003,3:367-370.
    [11]鞠平,代飞,等.电力系统广域测量技术[M].北京:机械工业出版社,2008.
    [12]陈实,许勇,王正风.电网实时动态监测技术及应用[M].北京:中国水利水电出版社,2010.
    [13]胡志祥,谢小荣,肖晋宇,等.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39-43.
    [14]吴桂林,郑建勇,于跃海,等.广域测量系统仿真子站实时通信问题[J].电力自动化设备,2009,29(7):105-108.
    [15]王立鼎,杨东,吴京涛,等WAMS系统历史数据库的优化[J].电力自动化设备,2005,25(2):62-64.
    [16]季坤,王克英,蔡泽祥.广域测量系统中PMU的通信方案[J].电力系统自动化,2005,29(3):77-80.
    [17]李虹,李卫国,彭书涛,等.WAMS中的PMU最优配置新方法[J].高电压技术,2009,35(2):415-419.
    [18]刘文霞,罗红,张建华WAMS通信业务的系统有效性建模与仿真[J].中国电机工程学报,2012,32(16):144-150.
    [19]陆进军,戴则梅,高鑫,等.广域测量系统集成测试方案[J].电力系统自动化,2010,34(23):111-114.
    [20]王志强,刘文霞,范勇峰,等.广域测量系统可靠性研究框架[J].电力系统自动化,2008,32(24):25-29.
    [21]彭静,卢继平,汪洋,等.广域测量系统通信主干网的风险评估[J].中国电机工程学报,2010,30(4):84-90.
    [22]刘伟,王亮,陈玉林,等.广域测量系统中刀片式架构相量数据集中器的设计与实现[J].电力系统自动化,2012,36(12):61-65.
    [23]张胜,王健,贺春.相量测量单元性能评价标准和测试方法[J].电力系统自动化,2007,31(21):102-105.
    [24]周泽听,张道农,张晓莉,等.《电力系统同步相量测量装置检测规范》的编制[J].电网技术,2008,32(5):38-41
    [25]张晓莉,周泽听,张道农,等.同步相量测量装置的测试与评估[J].电力科学与技术学报,2011,26(2):31-36.
    [26]鞠平,郑世宇,徐群,等.广域测量系统研究综述[J].电力自动化设备,2004,24(7):37440,49.
    [27]Kakimoto N, Ohsawa Y, Hayashi M. Transient stability analysis of electric power system via lure type lyapunov funtion (Parts Ⅰ and Ⅱ) [J]. Trans IEE of Japan,1978,98(5):566-604.
    [28]Fouad A A, Kruempel K C, Mamandur K R C, et al. Transient stability margin as a tool for dynamic security assessment[R]. CA:EPRI,1981.
    [29]Chiang H D, Wu F F, Varaiya P P. A BCU method for direct analysis of power system transient stability[J]. IEEE Trans on Power System,1994,9(3):423-424.
    [30]倪以信,姚良忠,蔡泽祥.直接暂态稳定分析综合法[J].中国电机工程学报,1992,12(6):66-68.
    [31]Chiang H D, Hirsch M, Wu F F. Stability regions of nonlinear autonomous dynamical systems[J]. IEEE Trans on Automatic Control,1988,33(1):16-27.
    [32]Zaborszky J,Huang G,Zheng B,et al.On the phase portraits of a class of large nonlinear dynamic systems such as the power system[J]. IEEE Trans on Automatic Control,1988,33(1):4-15.
    [33]Liu C W, Thorp J S. New methods for computing power system dynamic response for real-time transient stability prediction [J]. IEEE Trans on Circuits and Systems,2000,47(6):324-337.
    [34]李琰,周孝信,周京阳.基于新增虚拟节点的系统受扰轨迹预测[J].电力系统自动化,2007,31(12):19-22.
    [35]李琰,周孝信,周京阳.基于引入虚拟负荷的发电机暂态稳定预测[J].电工技术学报,2008,23(3):103-107.
    [36]Ota Y, Ukai H, Nakamura K, et al. Evaluation of stability and electric power quality in power system by using phasor measurements[C]//Proceedings of International conference on Power System Technology. Australia:IEEE,2000:1135-1140.
    [37]滕林,刘万顺,貟志皓,等.电力系统暂态稳定实时紧急控制的研究[J].中国电机工程学报,2003,23(1):64-69.
    [38]李光琦.电力系统暂态分析[M].北京:中国电力出版社,1995:203-210.
    [39]刘广建,卢继平.基于功角特性曲线的发电机运行状况实时分析[J].电网技术,2006,30(S1):41-45.
    [40]赵磊,单渊达.基于轨迹信息的发电机暂态稳定指标分析方法[J].电网技术,2002,26(8):25-28.
    [41]Wang Liancheng, Girgis A A. A new method for power system transient instability detection[J]. IEEE Transaction on Power Delivery,1997,12(3):1082-1088.
    [42]谢欢,张保会,于广亮,等.基于相轨迹凹凸性的电力系统暂态稳定性识别[J].中国电机工程学报,2006,26(5):38-42.
    [43]刘玉田,林飞.基于相量测量技术和模糊径向基网络的暂态稳定性预测[J].中国电机工程学报,2000,20(2):19-23.
    [44]林飞,刘玉田,邱夕照.基于模糊神经网络的电力系统暂态稳定控制决策[J].电工技术学报,2001,16(2):83-87.
    [45]刘前进,陈德树.模糊子集理论在电力系统实时暂态稳定预测中的应用[J].电力系统自动化,1993,17(12):31-36.
    [46]黄辉,舒乃秋,李自品,等.基于信息融合技术的电力系统暂态稳定评估[J].中国电机工程学报,2007,27(16):19-23.
    [47]蔡国伟,穆钢,K W Chan,等.基于网络信息的暂态稳定性定量分析—支路势能法[J].中国电机工程学报,2004,24(5):1-6.
    [48]秦晓辉,毕天姝,杨奇逊,等.基于WAMS动态轨迹的电力系统功角失稳判据[J].电力系统自动化,2008,32(23):18-22.
    [49]宋方方,毕天姝,杨奇逊.基于暂态能量变化率的电力系统多摆稳定性判别新方法[J].中国电机工程学报,2007,27(16):13-18.
    [50]穆钢,王仲鸿,韩英铎,等.暂态稳定性的定量分析:轨迹分析法[J].中国电机工程学报,1993,13(3):23-30.
    [51]Fouad A A, Kruempel K C, Vittal V, et al. Transient stability program output analysis[J]. IEEE Trans on Power Systems,1986, vol. PWRS-1(1):2-9.
    [52]褚云龙,谢欢.基于相图凸凹性和系统辨识理论的暂态稳定性快速预测方法[J].电网技术,2008,32(5):59-65.
    [53]谢欢,张保会,于光亮,等.基于轨迹几何特征的暂态不稳定识别[J].中国电机工程学报,2008,28(4):16-22.
    [54]孙闻,房大中,薛振宇.电力系统在线暂态稳定分析方法[J].电网技术,2009,33(14):16-20.
    [55]卢芳,于继来.基于广域相量测量的暂态稳定快速评估方法[J].电力系统自动化,2010,34(8):24-28.
    [56]李国庆.电力系统暂态稳定预测控制的研究[J].电力系统自动化,1994,18(3):25-31.
    [57]郭强,刘晓鹏,吕世容,等.GPS同步时钟用于电力系统暂态稳定性预测和控制[J].电力系统自动化,1998,22(6):11-13.
    [58]Li Guoqing. A new prediction and control method for improving transient stability of power systems[C]//Proceedings of the International Conference on AMSE. Hefei:AMSE,1992:2783-2790.
    [59]李国庆,孙福军,任强.基于外部观测的电力系统暂态稳定性实时预测和控制方法[J].电网技术,1995,19(1):17-22.
    [60]孙建华.一种电力系统暂态稳定性快速实施预测方法[J].中国电机工程学报,1993,13(6):60-66.
    [61]林飞,张文,刘玉田.基于同步相量测量技术的暂态稳定性实时预测[J].继电器,2000,28(11):33-35.
    [62]苏建设,陈陈.基于GPS同步量测量的时间序列法暂态稳定预测[J].电力自动化设备,2001,21(9):7-9.
    [63]毛安家,郭志忠,张学松.一种基于广域测量系统过程量测数据的快速暂态稳定预估方法[J].中国电机工程学报,2006,26(17):38-43.
    [64]宋方方,毕天姝,杨奇逊.基于WAMS的电力系统受扰轨迹预测[J].电力系统自动化,2006,30(23):27-32.
    [65]Liu C W.Su M C, Tsay S S, et al. Application of a novel fuzzy neural network to real-time transient stability swings prediction based on synchronized phasor measurements[J]. IEEE Trans on Power Systems,1999,14(2):685-692.
    [66]Amjady N. Transient stability assessments by a new artificial neural network[C]//Proc of 2000 IEEE Power Engineering Society Winter Meeting. Singapore:IEEE,2000:1315-1319.
    [67]Mansour Y, Vaahedi E, El-Sharkawi M A. Large scale dynamic security screening and ranking using neural networks[J]. Electric Machine and Power Systems,1997,12(2):954-960.
    [68]吴琼,杨以涵,刘文颖.基于最小二乘支持向量机的电力系统暂态稳定在线预测[J].中国电机工程学报,2007,27(25):38-43.
    [69]Moulin L S,Dasilva A P A El-Sharkawi M A,et al Support vector machines for transient stability analysis of large scale power systems[J]. IEEE Trans on Power Systems,2004,19(2):818-825.
    [70]叶圣永,王晓茹,刘志刚,等.基于支持向量机的暂态稳定评估双阶段特征选择[J].中国电机工程学报,2010,30(31):28-34.
    [71]叶圣永,王晓茹,刘志刚,等.基于受扰严重机组特征及机器学习方法的电力系统暂态稳定评估[J].中国电机工程学报,2011,31(1):46-51.
    [72]叶圣永,王晓茹,刘志刚,等.基于支持向量机增量学习的电力系统暂态稳定评估[J].电力系统自动化,2011,35(11):15-19.
    [73]叶圣永,王晓茹,刘志刚,等.基于Stacking元学习策略的电力系统暂态稳定评估[J].电力系统保护与控制,2011,39(6):12-16.
    [74]彭疆南,孙元章,王海风.基于广域量测数据和导纳参数在线辨识的受扰轨迹预测[J].电力系统自动化,2003,27(22):6-11.
    [75]刘新东,江全元,曹一家.基于功角受扰轨迹拟合的暂态稳定快速预测[J].电力系统自动化,2008,32(19):5-9.
    [76]刘洪波,穆钢,严干贵,等.根据量测轨迹计算轨迹灵敏度的卷积法[J].电力系统自动化,2007,31(5):13-17.
    [77]孙闻,房大中,袁世强,等.基于轨迹灵敏度的暂态稳定预防控制方法[J].天津大学学报,2010,43(2):109-114.
    [78]薛禹胜,李威.关于暂态稳定控制决策优化方法的思考[J].电力系统自动化,2003,27(10):15-21
    [79]任伟,房大中,陈家荣,等.基于最优控制原理的电力系统紧急控制及应用[J].电网技术,2009,33(2):8-13.
    [80]Kundur,J.Paserba, V.Ajjarapu,et al.Definition and Classification of Power System Stability[J].IEEE Trans on Power Systems,2004,19(2):1387-1401.
    [81]汤涌.电力系统电压稳定性分析[M].北京:科学出版社,2011:202-206.
    [82]邵洪泮.电力系统稳定性的直接法分析[M].北京:水利电力出版社,1991:241-249.
    [83]Kim H,Jang G,Song K.Dynamic reduction of the large-scale power system using relation factor[J] IEEE Trans on Power Systems,2004,19(3):1696-1699.
    [84]Jonsson M, Begovic M, Daalder J. A new method suitable for real-time generator coherency determination[J]. IEEE Trans on Power Systems,2004,19(3):1473-1482.
    [85]Wang X,Vijay V,Heydt G T.Tracing generator coherency indices using the continuation method:a novel approach[J]. IEEE Trans on Power Systems,2005,20(3):1510-1518.
    [86]薛禹胜.非自治非线性多刚体系统运动稳定性的定量分析[J].电力系统自动化,1998,22(2):1-5.
    [87]李琰,周孝信,周京阳.基于广域测量测点降阶的系统受扰轨迹预测[J].中国电机工程学报,2008,28(10):9-13.
    [88]谢欢,张保会,郝治国,等.基于电力系统同步多参量测量的自记忆轨迹预测算法[J].电力自动化设备,2008,28(5):1-5.
    [89]Amjady N, Majedi S F. Transient stability prediction by a hybrid intelligent system[J]. IEEE Trans on Power Systems,2007,22(3):1275-1283.
    [90]Gao Q, Rovnyak S M. Decision trees using synchronized phasor measurements for wide-area response-based control[J]. IEEE Trans on Power Systems,2011,26(2):855-861.
    [91]Kai S, Likhate S, Vittal V, et al. An online dynamic security assessment scheme using phasor measurements and decision trees[J]. IEEE Trans on Power Systems,2007,22(4):1935-1943.
    [92]Gomez F R,Rajapakse A D,Annakkage U D,et al.Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Trans on Power Systems, 2011,26(3):1474-1483.
    [93]Hashiesh F, Mostafa H E, Khatib A, et al. An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities[J]. IEEE Trans on Smart Grid,2012,3(2):645-652.
    [94]Yan J, Liu C, Vaidya U. PMU-based monitoring of rotor angle dynamics[J]. IEEE Trans on Power Systems,2011,26(4):2125-2133.
    [95]Ma J, Makarov Y V, Diao R, et al. The characteristic ellipsoid methodology and its application in power system[J]. IEEE Trans on Power Systems,2012,27(4):2206-2214.
    [96]Wu X,Zhao J,Xu A,et al.Review on transient stability prediction methods based on real time wide-area phasor measurements[C]. In Pro. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT),20114th International Conference,2011:320-326.
    [97]中国国家标准化管理委员会.GB/T 26399-2011电力系统安全稳定控制技术导则[S].北京:中国标准出版社,2011:3.
    [98]汤涌,易俊,孙华东,等.基于功率电流变化关系的电压失稳判别方法[J].中国电机工程学报,2010,30(28):7-11.
    [99]M. Yin, C.Y. Chung, K. P. Wong, Y. Xue, and Y. Zou, "An improved iterative method for assessment of multi-swing transient stability limit," IEEE Trans. Power Syst., vol.26, no.4, pp.2023-2030, Nov.2011.
    [100]刘光晔,杨以涵.电力系统电压稳定与功角稳定的统一分析原理[J].中国电机工程学报,2013,33(13):135-149.
    [101]张靖,文劲宇,程时杰.基于向量场正规形方法的功角和电压稳定特征分析[J].电力系统自动化,2006,30(12):12-16.
    [102]Vournas C D, Sauer P W, Pai M A. Relationships Between Voltage and Angle Stability of Power Systems[J]. Electrical Power and Energy Systems,1996,18(8):493-500.
    [103]汤涌,林伟芳,孙华东,等.基于戴维南等值跟踪的电压失稳和功角失稳的判别方法[J].中国电机工程学报,2009,29(25):1-6.
    [104]韩文,韩祯祥.一种判别电力系统电压稳定和功角稳定的新方法[J].中国电机工程学报,1997,17(6):367-368,376.
    [105]贾宏杰,余贻鑫,李鹏,等.电力系统混沌现象与不同失稳模式之间的关系[J].中国电机工程学报,2003,23(2):1-4.
    [106]吴浩,韩祯祥.电压稳定和功角稳定关系的平衡点分析[J].电力系统自动化,2003,27(12):28-31.
    [107]Overby T J, Pai M A, Sauer P M. Some Aspects of The Energy Function Approach to Angle and Voltage Stability in Power System[C]//The 31st Conference on Decision and Control, Tucson, Arizona,1992: 2941-2946.
    [108]孙华东,汤涌,马世英.电力系统稳定的定义与分类述评[J].电网技术,2006,30(17):31-35.
    [109]吴为,汤涌,孙华东,等.基于广域量测信息的电力系统暂态稳定研究综述[J].电网技术,2012,36(9):81-87.
    [110]王彪,方万良,罗煦之.紧急控制下最优切机切负荷方案的快速算法[J].电网技术,2011,35(6):82-87.
    [111]张瑞琪,闵勇,侯凯元.电力系统切机/切负荷紧急控制方案的研究[J].电力系统自动化,2003,27(18):6-12.
    [112]倪向萍,张雪敏,梅生伟.基于复杂网络理论的切机控制策略[J].电网技术,2010,34(9):35-41.
    [113]张雪敏,梅生伟,卢强.基于功率切换的紧急控制算法研究[J].电网技术,2006,30(13):26-31.
    [114]卢芳,于继来,李或,等.基于临界机组对的暂态稳定紧急控制策略[J].电网技术,2012,36(10):153-158.
    [115]任伟,房大中,陈家荣,等.大电网暂态稳定紧急控制下切机量快速估计算法[J].电网技术,2008,32(19):10-15,55.
    [116]Xue Y, Cutsem T V, Pavella M R.A Simple Direct Method for Fast Transient Stability Assessment of Large Power Systems[J]. IEEE Transactions on Power Systems,1988,3(2):400-412.
    [117]傅书逷,倪以信,薛禹胜.直接法稳定分析[M].北京:中国电力出版社,1999:25-40.
    [118]Fouad A A, Vittal V. Power System Transient Stability Analysis Using the Transient Energy Function Method[M]. New Jersey:Prentice Hall,1991.
    [119]房大中,张尧,宋文南,等.修正的暂态能量函数及其在电力系统稳定性分析中的应用[J].中国电机工程学报,1998,18(3):200-203,224.
    [120]吴为,汤涌,孙华东,等.暂态稳定受扰轨迹预测的模型参数自适应研究[J].电网技术,2013,37(3):827-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700