用户名: 密码: 验证码:
电磁逆问题的统计分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁场逆问题一直以来都是计算电磁学领域的研究热点。从应用的角度它可以分为两大类:参数辨识问题和优化设计问题。其中前者的本质是在给定的试验结果和试验参数的前提下,反演或重建出现这一结果的源参数及其电磁和物理特性;而后者的本质是给定某电磁系统期望的性能指标,然后通过参数的寻优来实现这一目标。本文的主要研究目的是为电磁场逆问题提供一套比较系统的统计推断方法和试验设计技术,包括经典的统计分析方法和现代的贝叶斯(Bayes)统计推断方法;从而为快速有效的分析电磁逆优化工程问题打下坚实的基础。
     首先,针对参数辨识问题,我们将常见的电磁逆问题纳入到多元线性逆问题的模型框架中来。核心研究内容有两个:其一是模型参数的经典统计学估计方法,主要包括极大似然估计量、最小二乘估计量及其加权形式的估计量、线性无偏估计量和最小范数估计量。其二是模型参数的Bayes估计方法,主要包括一般Bayes估计量、极大后验估计量和最小线性均方误差估计量。所有的这些估计量都是从不同的出发点,针对不同的模型假设下得到的。在Bayes反演方法中,我们还将详细的说明参数的先验信息和噪声信息的估计方法。随后还将结合蒙特卡洛(Monte Carlo)方法对铁磁流体微粒尺寸分布的估计问题进行实例分析,分析结果显示上述的统计估计方法都是非常有效的。同时我们也发现Bayes方法对噪声项的敏感性显著的低于经典统计学方法,而且结果的精度也优于前者,是一种值得推广的解决参数辨识问题的统计方法。
     其次,针对优化设计问题我们首先讨论了统计近似模型的拟合方法和试验技术的设计。其中近似模型部分主要从理论上研究了模型的重构理论与方法以及各个模型之间的关系:包括确定性参数的响应面模型、径向基函数模型和半参数的克热金(Kriging)模型。同时还将研究近似模型在我们提出的各种优化方法下的的最优选择策略问题。所有模型部分的理论基础均为经典统计学理论和试验设计与分析技术。
     随后,针对传统的独立研究优化算法和模型的缺点,我们提出了一种新的优化方法:序贯优化方法。它本质上是一个序贯采样的优化过程,能同时执行模型的拟合优化与算法的参数优化过程。通过对两个IEEE标准工程测试问题(TEAMWorkshop Problems 22 and 25)和两个数学验证函数的考察及分析,我们发现序贯优化方法对这类问题非常有效,对模型的选取没有依赖性,能在同样满足求解精度的要求下,将有限元的计算量降到不足直接优化方法的1/10。
     最后,针对高维电磁装置的优化设计问题,我们在序贯优化方法的基础上提出了降维优化方法。它通过两种降维技术(专家先验和试验设计技术)将一个高维的优化问题转化为一个只关于显著性参数的低维优化问题。从三个高维电磁装置的实际设计分析来看,这种新的方法同样非常有效,求解的精度也能达到设计的要求,同时能将有限元的计算量减少到约为直接优化方法的1/3左右。总之,序贯优化方法降维优化方法对离散域、连续域,单目标、多目标,低维和高维的电磁装置优化设计问题都非常有效,可广泛的应用于工程电磁装置的优化设计问题之中。
Electromagnetic inverse problems are always the research focus in the field of computational electromagnetism. From the point of view of application, it can be classified into two major categories: one is parameter identification problem; the other is optimization design problem. For the former problem, the main task is to reconstruct the source parameters and their physical properties under the given experimental results and parameters. And the essential problem of electromagnetic optimization design is a parameters optimization process under the expecting performance index of electromagnetic system. The main purpose of this thesis is to develop a set of statistical inference methods (including classic statistical methods and modern Bayesian statistical methods) and design of experiment techniques to the electromagnetic inverse problems. And with the proposed methods, we can lay a solid foundation for the efficient and robust analysis of all kinds of engineering inverse problems.
     Firstly, for the parameter identification problem, we convert this problem into the framework of multivariate linear inverse problem. There are two main research contents; one is the classical statistical estimation method for model parameter, such as maximum likelihood estimator, least square estimator and its weighted form, linear unbiased estimator and minimum norm estimator. The other is the Bayesian statistical estimation method for model parameter, such as Bayesian estimator, maximum a posterior estimator, linear minimum mean square error estimator. All these estimators are derived from different starting points and model assumptions.
     In this section, we also give a detailed discussion about the prior information and noise information for the Bayesian method. Then we investigate the particle size distribution estimating problem of magnetic particles in feerfluids with Monte Carlo method. The experiment results demonstrate that all the proposed methods can be easily implemented and can induce satisfied results. Meanwhile, the results given by Bayesian method are better than that of classical methods, which are more sensitively to the noise. In summary, all these methods can be seen as effective direct extraction procedures of parameter information from the experimental data directly; and they can be widely employed in many electromagnetic inverse problems.
     Secondly, for the optimization design problem, we first give a discussion about the statistical approximate models and the techniques of design of experiment. The reconstruction theory and method will be fully discussed, which includes the following approximate models: parameter models (including response surface model and radial basis function model), semi-parameter model (Kriging model). Moreover, we will consider the model selection strategies for the practical problems. The background of these methods is the classical statistical theory and the design and analysis techniques of experiment.
     Then, as models and algorithms were almost discussed separately in traditional optimization methods and these methods may waste a lot of computation cost; we present a new efficient global optimization method, sequential optimization method (SOM), in this paper. SOM is a sequential sampling process; it only needs a small sample data, and the overall computational effort needed is much less than that by direct optimization method. To illustrate the performance of the proposed methods, two analytic test functions and IEEE TEAM Workshop Problems 22 and 25 are investigated. Experimental results of test function demonstrate that SOM can obtain satisfactory solutions; and the number of finite element sample points needed is less than 1/10 compared with that by direct optimization method.
     Finally, dimension reduction optimization method (DROM) based on SOM is presented for high dimensional optimization design problems of electromagnetic devices. Using DROM, a high dimensional problem can be converted into a low dimensional problem with expert experience or some design of experiment techniques. Then three engineering problems are investigated to illustrate the efficiency of the proposed methods. From the experimental results, we can see that the presented methods can obviously reduce the computational cost of finite element analysis, while the optimal results also satisfy design specification. The number of finite element sample points needed is less than 1/3 compared with that by direct optimization method. In summary, all these methods are very suit for the optimization design problems of electromagnetic devices, including discrete, continuous, mono-objective, multi-objective, low and high dimensional optimization design problems.
引文
[1] 黄卡玛,赵翔.电磁场中的逆问题及应用.北京:科学出版社,2005.
    [2] 倪光正,杨仕友,钱秀英等.工程电磁场数值计算.北京:机械工业出版社,2004.
    [3] Mohammed, O. A., Lowther, D. A., Lean, M. H. et al. On the creation of a generalized design optimization environment for electromagnetic devices. IEEE Transactions on Magnetics, 2001, 37(5):3562-3565.
    [4] Chechurin, V. L., Korovkin, N. V., and Hayakawa, M., Inverse Problems in Electric Circuits and Electromagnetics. New York, Springer-Verlag, 2007.
    [5] 盛骤,谢式千,潘承毅.概率论与数理统计(第三版).北京:高等教育出版社,2005.
    [6] 魏宗舒.概率论与数理统计教程.北京:高等教育出版社,2001.
    [7] Gonzalez,R,C.and Woods,R.E.Distal Image Processing.阮秋琦,阮宇智等译,北京:电子工业出版社,2002.
    [8] Kay,S.M.Fundamentals of Statistical Signal Processing.罗鹏飞,张文明,刘忠等译.北京:电子工业出版社,2003.
    [9] 颜威利,许桂芝等.生物医学电磁场数值分析.北京:机械工业出版社,2006.
    [10] Phillips, J. W., Leahy, R. M., and Mosher, J. C. MEG-based imaging of focal neuronal current sources. IEEE Transactions on Medical Imaging, 1997, 16(3): 338-348.
    [11] Whitley, D. A genetic algorithm tutorial. Statistics and Computing, 1994, 4(2): 65-85.
    [12] Rutenbar, R.A. Simulated annealing algorithms: an overview. IEEE Circuits and Devices Magazine. 1989, 5(1): 19-26.
    [13] Storn, R. and Price, K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11:341 -359.
    [14] Ho, S.L., Yang, Shiyou, Ni, Guangzheng, et al. A particle swarm optimization-based method for multiobjective design optimizations. IEEE Transactions on Magnetics, 2005, 41(5): 1756-1759.
    [15] Ho, S.L., Yang, Shiyou, Ni, Guangzheng. A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices. IEEE Transactions on Magnetics, 2006, 42(4): 1107-1110.
    [16] Glover, F. and Laguna, M. Tabu search, Kluwer, Boston. 1997.
    [17] Baluja, S. Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report, Pittsburgh, PA: Carnegie Mellon University, 1994.
    [18] Larranaga, P., and Lozano, J. A. Esitimation of Distribution Algorithm: A New Tool for Evolutionary Computation, Boston: Kluwer Acadmic Publisher, 2002.
    [19] Pelikan, M. Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms, New York: Springer-Verlag, 2005.
    [20] 周树德,孙增圻.分布估计算法综述.自动化学报,2007,33(2):113-124.
    [21] Dyck, D. Lowther, D. A. Malik, Z. et al. Response surface models of electromagnetic devices and their application to design. IEEE Transactions on Magnetics, 1998, 35(3): 1821-1824.
    [22] 罗平.快速全局优化算法及其在高温超导储能磁体中的应用[博士学位论文].杭州:浙江大学,2006.
    [21] Wang, L. and Lowther, D. A. Selection of approximation models for electromagnetic device optimization. IEEE Transactions on Magnetics, 2006, 42 (4): 1227-1230.
    [23] Ishikawa, T. Tsukui, Y. and Matsunami, M. A combined method for the global optimization using radial basis function and deterministic approach. IEEE Transactions on Magnetics, 1999, 35(3):1730-1733.
    [24] Gutmann, H. M. A radial basis function method for global optimization. Journal of global optimization, 2001, 19(3): 201-227.
    [25] Coulomb, J. L. Kobetski, A. Caldora Costa, M. et al. Comparison of radial basis function approximation techniques. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 2003, 22(3): 616-629.
    [26] Lophaven, S. N. Nielsen, H. B. and Sondergaard, J. DACE: A MATLAB Kriging toolbox version 2.0. Technical Report IMM-TR-2002-12, Technical University of Denmark, Copenhagen, 2002.
    [27] Lebensztajn, L. Marretto, C. A. R. Costa, M. C. et al. Kriging: a useful tool for electromagnetic device optimization. IEEE Transactions on Magnetics, 2004, 40(2): 1196-1199.
    [28] 谢延敏.基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计研究[博士学位论文].上海:上海交通大学,2007.
    [29] Bandler, J. W. Cheng, Q. S. Dakroury, S. A. et al. Space mapping: the state of the art. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 337-361.
    [30] Echeverria, D. Encica, L. Lomonova, E. A. et al. Manifold-mapping optimization applied to linear actuator design. IEEE Transactions on Magnetics, 2006, 42(4):1183-1186.
    [31] Marius Birsan. A Bayesian approach to electromagnetic sounding in a marine environment. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1455-1460.
    [32] Tollefsen, D. Dosso, S. E. and Wilmut, M. J.Matched-field geoacoustic inversion with a horizontal array and low-level source. The Journal of the Acoustical Society of America, 2006, 120(1), 221-230.
    [33] Huang, C. F. Gerstoft, P. and Hodgkiss, W. S. Uncertainty analysis in matched-field geoacoustic inversions. The Journal of the Acoustical Society of America, 2006, 119(1), 197-207.
    [34] Marius Birsan. Electromagnetic source localization in shallow waters using Bayesian matched-field inversion.Inverse Problems, 2006,22: 43-53.
    [35] Thurm, S. and Oderbach, S. Particle size distribution as key parameter for the flow behavior of ferrofluids. Physics of Fluids, 2003,15(6): 1658-1664.
    [36] Berkov, D. V., Gornert, P., Buske, N. et al. New method for the determination of the particle magnetic moment distribution in a ferrofluid. Journal of Physics D: Applied Physics, 2000, 33:331-337.
    [37] Lei, Gang, Shao, Keran, Yang, Guangyuan et al. Linear unbiased estimators for particle size distribution of magnetic nanoparticles. Journal of Physics D: Applied Physics, 2008, 41, 065002, 1-5.
    [38] Kay, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall USA, 1993.
    [39] Weisberg.S.Applied Linear Regression(Second Edition),王静龙译.北京,中国统计出版社,1998
    [40] Douglas M.Bates,Donald G.Watta.Nonlinear Regression Analysis and its Application.韦博成,张尧庭译.北京,中国统计出版社,1997
    [41] Kirk M.Wolter.Introduction to Variance Estimation.王吉利、李毅主译.北京:中国统计出版社,1998.
    [42] Lawless.J.F.Statistical Models and Methods for Lifetime Data.茆诗松,濮晓龙,刘忠译.北京:中国统计出版社,1998.
    [43] Friston, K. J., Penny, W., and Phillips, C. Classical and bayesian inference in neuroimaging: theory. NeuroImage, 2002, 16: 465-483.
    [44] Mosher, J.C. Leahy, R.M. Lewis, P. S. EEG and MEG: forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering, 1999, 46(3): 245-259.
    [45] Arthur K. Liu, Anders M. Dale, John W. Belliveau. Monte Carlo simulation studies of EEG and MEG localization accuracy.Human Brain Mapping, 2002, 16(1): 47-62.
    [46] Fuchs, Manfred, Wagner, Michael, K(o|¨)hler, Thomas. Linear and nonlinear current density reconstructions. Journal of Clinical Neurophysiology, 1999, 16(3):267-295.
    [47] Wang, J. Z. Williamson, S. J. and Kaufman, L. Magnetic source images determined by a lead-field analysis: The unique minimum-norm leastsquares estimation. IEEE Transactions on Biomedical Engineering, 1992, 39(7): 665-675.
    [48] Shim Y. S. and Cho, Z. H. SVD pseudoinversion image reconstruction. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29(4): 904-909.
    [49] Hansen, P. C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 1992, 34:561-580.
    [50] 王健.铁磁流体的制备方法和粘度测量[硕士学位论文].南京:南京理工大学,2005
    [51] 杨华.水基四氧化三铁磁流体的制备及其性能研究[硕士学位论文].长沙,中南大学, 2003.
    [52] Odenbach, S. Recent progress in magnetic fluid research. Journal of Physics: Condensed Matter, 2004, 16:1135-1150.
    [53] Lacava, B. M. Azevedo, R. B. Silva L. P. et al. Particle sizing of magnetite-based magnetic fluid using atomic force microscopy: A comparative study with electron microscopy and birefringence. Applied Physics Letter, 2000, 77:1876-1878.
    [54] Chantrell, R.W. Popplewell J. and Charles, S. W. Measurement of particle size distribution parameters in ferrofluids. IEEE Transactions on Magnetics, 1978,14(5): 975-977.
    [55] O'Grady K. and Bradbury, A. Particle size analysis in ferrofluids. Journal of Magnetism and Magnetic Materials, 1983, 39, 91-94.
    [56] Kim T. and Shima, M. Reduced magnetization in magnetic oxide nanoparticles. Journal of Applied Physics, 2007, 101, 09M516.
    [57] Woodward, R. C. Heeris, J. Pierre, T. G. St. et al. A comparison of methods for the measurement of the particle-size distribution of magnetic nanoparticles. Journal of Applied Crystallography, 2007, 40, s495-s500.
    [58] Ayoub, N.Y. E1-Hilo, M. Laham, N. The effect of various particle-size distributions on the initial susceptibility of a textured fine-particle system. Journal of Physics D: Applied Physics, 1988, 21: 1291-1294.
    [59] Xue D.S. and Si, M.S. Bayesian inference approach to particle size distribution estimation in ferrofluids. IEEE Transactions on Magnetics, 2006, 42(11): 3657-3660.
    [60] Potton, J. A. Daniell, G. J. and Melville, D. A new method for the determination of particles size distributions from superparamagnetic measurements, Journal of Physics D: Applied Physics, 1984, 17:1567-1581.
    [61] 茆诗松,王静龙,濮晓龙.高等数理统计.北京:高等教育出版社,2000.
    [62] James O.Berger. Statistical Decision Theory and Bayesian Analysis(Second Edition).贾乃光,吴喜之译.北京:中国统计出版社,1998.
    [63] Kotz Samuel,吴喜之.现代贝叶斯统计学.北京:中国统计出版社,2000
    [64] 张尧庭,陈汉峰.贝叶斯统计推断.北京:科学出版社,1991.
    [65] Gottvald, M. A. Bayesian evolutionary inversions in computational electromagnetics. IEEE Transactions on Magnetics, 2000, 36 (4):1098-1101.
    [66] Serinagaoglu, Y. Brooks, D. H. MacLeod, R. S. Bayesian solutions and performance analysis in bioelectric inverse problems. IEEE Transactions on Biomedical Engineering, 2005, 52(6): 1009-1019.
    [67] Differential Evolution Homepage, [Online]. Available: http://www.icsi.berkeley.edu/-storn/code.html.
    [68] Kim, Hong-Kyu, Chong, Jin-Kyo, Par, k Kyong-Yop et al. Differential evolution strategy for constrained global optimization and application to practical engineering problems. IEEE Transactions on Magnetics, 2007, 43(4):1565-1568.
    [69] Barba, P. Di. Farina, M. and Savini, A. An improved technique for enhancing diversity in pareto evolutionary optimization of electromagnetic devices. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 2001, 20(2):482-496.
    [70] Lampinen, J. and Zelinka, I. Mixed integer-discretecontinuous optimization by differential evolution, Part 1: the optimization method. Proceedings of MENDEL'99, 5-th International Mendel Conference on Soft Computing, 1999, 71-76.
    [71] Lampinen, J. andZelinka, I. Mixed integer-discretecontinuous optimization by differential evolution, Part 2: a practical example. Proceedings of MENDEL'99, 5-th International Mendel Conference on Soft Computing, 1999, 77-81.
    [72] Campelo, F., Guimaraes, F.G., Igarashi, H. et al. A clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics, 2005, 41(5): 1736-1739.
    [73] Rashid, K., Farina, M., Ramirez, J. A. et al, A comparison of two generalized response surface methods for optimisation in electromagnetics", The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 2001, 20(3): 740-752.
    [74] Coulomb, J. L., Kobetski, A., Caldora, Costa M., et al. Comparison of radial basis function approximation techniques. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 2003, 22, (3): 616-629.
    [75] Lebensztajn, L., Marretto, C. A. R., Costa, M. C. et al. Kriging: a useful tool for electromagnetic device optimization. IEEE Transactions on Magnetics, 2004, 40(2): 1196-1199.
    [76] Pahner, U and Hameyer K. Adaptive coupling of differential evolution and multiquadrics approximation for the tuning of the optimization process. IEEE Transactions on Magnetics, 2000, 36(4):1047-1050.
    [77] 王少荣,彭晓涛,唐跃进,等.电力系统稳定控制用高温超导磁储能装置及实验研究.中国电机工程学报,2007,27(22):44-50.
    [78] 石晶,唐跃进,戴陶珍,等.电力安全与超导磁储能系统.温物理学报,2005,27(5):1051-1057.
    [79] Lei Gang, Shao, Keran, Guo Youguang, et al. Sequential optimization method for the design of electromagnetic device. IEEE Transactions on Magnetics, 2008, 44(11): 3217-3220.
    [80] Lei Gang, Shao Keran, Li Yanbin, et al. Sequential response surface model method for the optimization design of SMES.The 11th International Conference on Electrical Machines and Systems (ICEMS), 2008:328-331.
    [81] Alotto P, Baumgartner U, Freschi F, et al. SMES optimization benchmark extended: introducing pareto optimal solutions into TEAM22. IEEE Transactions on Magnetics, 2008, 44(6): 1066-1069.
    [82] Campelo F., Guimaraes F. G., Igarashi H., et al, A clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics, 2005, 41(5):1736-1739.
    [83] Guimaraes, F. G., Campelo, F., Saldanha, R. R., et al. A multiobjective proposal for the TEAM benchmark problem 22. IEEE Transactions on Magnetics, 2006, 42(4): 1471-1474.
    [84] SMES Optimization Benchmark, [Online]. Available: http://www.igte.tugraz.at/archive/team/index.htm.
    [85] Wu C. F. J. and Hamada, M. S. Experiments: Planning, Analysis and Parameter Design Optimization. New York, Wiley, 2000.
    [86] Lebensztajn L. and Coulomb, J. L. TEAM workshop problem 25: a multiobjective analysis. IEEE Transactions on Magnetics, 2004, 40(2): 1402-1405.
    [87] Costa, M. C, Coloumb, J. L., and Mar(?)chal, Y. Parameters screening of TEAM workshop problem 25 by the application of experimental design method, in Proc. ISTET 2001: 19-22.
    [88] Hajji, O., Brisset, S, and Brochet. P. A new tabu search method for optimization with continuous parameters. IEEE Transactions on Magnetics, 2004,40(2): 1184-1187.
    [89] Lahaye, D., Canova, A., Gruosso, G. Adaptive manifold-mapping using multiquadric interpolation applied to linear actuator design. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 2007, 26(2):225-235.
    [90] Takahashi, N. Natsumeda, M. Otoshi, M. et al. Examination of optimal design method using die press model (problem 25). The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL),1998, 17(6):595-601.
    [91] Encica, L. Makarovic, J. Lomonova, E. A. et al. Space mapping optimization of a cylindrical voice coil actuator. IEEE Transactions on Industry Applications, 2006,42(6): 1437-1444.
    [92] Echeverr(?)al, D. Lahayel, D. Encica, L. et al. Manifold-mapping optimization applied to linear actuator design. IEEE Transactions on Magnetics, 2006, 42(4): 1183-1186.
    [93] Encica L., Echeverr(?)a D., Lomonova E. A., et al. Efficient optimal design of electromagnetic actuators using space mapping. Structural and Multidisciplinary Optimization, 2007, 33: 481-491.
    [94] Simpson T. W., Booker A. J., Ghosh D., et al. Approximation methods in multidisciplinary analysis and optimization: A panel discussion. Structural and Multidisciplinary Optimization, 2004, 27 (5): 302-313.
    [95] Liu, W. K. and Belytschko, S. Li, T. Moving least-square reproducing kernel methods (Ⅰ) Methodology and convergence. Computer Methods in Applied Mechanics and Engineering, 1997, 143:113-154.
    [96] 曾清红,卢得唐.基于移动最小二乘法的曲线曲面拟合.工程图学学报,2004, 1:84-89.
    [97] Wu. Z. M. Compactly supported positive definite radial basis functions. Advanced Computation Mathematics, 1995, 4: 283-292.
    [98] Song, Kangzu, Zhang, Xiong and Lu, Mingwan. Meshless method based on collocation with consistent compactly supported radial basis functions. Acta Mechanica Sinica, 2004, 20(5): 551-557.
    [99] Wendland, H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Advanced Computation Mathematics, 1995, 4:389-396.
    [100] Wu, C. F. Jeff, Michael Hamada. Experiments: Planning, Analysis, and Parameter Design Optimization.张润楚等译.北京:中国统计出版社,2003.
    [101] Montgomery,D.C.Design and analysis of experiments.陈荣昭译.北京:中国统计出版社,1998
    [102] Lei Gang, Shao, K. R., Guo, Y. G. et al. Improved sequential optimization method for high dimensional electromagnetic optimization problems. IEEE Transactions on Magnetics. Vol. 45, No. 10, 2009, (Accepted).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700