用户名: 密码: 验证码:
微型旋翼飞行体自适应气动外形抗扰动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于微型飞行器小尺寸、低质量、小惯性、低雷诺数、低速飞行等特点,阵风或是复杂气流对飞行稳定性影响较为突出,而目前可以作为借鉴或参考的抗扰动计算方法和理论体系尚不完善。本文在对微型飞行器抗扰动气动布局以及自适应气动特性研究的基础上,提出了一种具有柔性气动布局的微型旋翼飞行体试验模型,分别从数值模拟、可视化测试、理论构建等方面对微型飞行体自适应气动外形抗气流扰动特性进行了研究与实现,为今后具有柔性气动布局的微型旋翼飞行体设计奠定理论基础。主要研究内容和创新点如下:
     基于多物理场信息传递和流固耦合作用的有限元数值模拟方法,完成了具有相同气动布局参数的柔性气动外形和刚性气动外形的对比性试验,分别对绕流流场分布、自适应变形以及气动力参数等方面进行试验观察与对比,结果显示具有柔性气动布局的微型旋翼飞行体表现出较好的气动特性。引入拉格朗日运动方程对具有柔性气动布局的微型旋翼飞行体稳定性进行分析和评价,完成多因素正交试验设计,确定影响稳定性关键因素以及柔性气动外形的最优化布局,为下一步试验样机的构建提供设计依据。
     构建了具有柔性气动布局的微型旋翼飞行体试验样机和气流扰动仿真测试实验系统,提出不依赖高帧频影像设备的基于频闪成像原理的微型旋翼飞行体柔性气动外形三维可视化视觉检测方法。提取基于尺度不变性和旋转不变性的表面纹理特征实现柔性气动外形空间运动信息的提取,采用三角形控制网格细分算法实现柔性气动外形的三维可视化呈现,在测试系统误差分析基础上给出了相应的解决方案。完成了微型旋翼飞行体柔性气动外形的抗扰动实验测试,获取气流扰动作用下气动外形运动学参数、形态结构、弹性变形等抗扰动信息。
     对不同气动布局设计的微型旋翼飞行体气动外形进行数学建模,结合频闪成像立体视觉气动外形抗气流扰动测试结果与飞行稳定性分析,建立起气动布局参数与影响稳定性因素之间的函数方程,最终给出微型旋翼飞行体自适应气动外形抗气流扰动机理,为今后在微型旋翼飞行体样机设计阶段改善其稳定性能、提高抗扰动能力提供理论依据。
Due to the fact that micro air vehicles have small-scale, low weight, low inertia,small Reynolds number and low flight speed, their flight stability is more sensitive towind gust as well as complex atmosphere flow. However, currently the analytical andcomputational approach about disturbance rejection technology has not beencompletely established. Based on the detailed study of anti-disturbance aerodynamicdesign and self-adaptive aerodynamic characteristics of micro air vehicles, the thesishas proposed a hovering flying model with a flexible aerodynamic shape. Theanti-disturbance performance of its flexible aerodynamic shape has been discussedand implemented by numerical simulation, experimental study and theoreticalderivation respectively, which is a significant contribution to the flexible aerodynamiclayout design of hovering flying vehicles in the future.
     The major research contents and innovations of the thesis are summarized asfollows:
     The FEM numerical analysis based on a multi-field information transmission andfluid-structure interaction has been utilized to calculate the unsteady aerodynamiccharacteristics. Through the comparative trials of flexible aerodynamic shape andrigid aerodynamic shape, in which both research models have the same layout designand structural parameters, the differences in terms of flow field distribution, adaptiveelastic deformation and aerodynamic forces have been found. It has been showed thatthe hovering flying model with a flexible aerodynamic layout has better aerodynamiccharacteristics and flight performance. The Lagrange equation of motion has beeninvestigated and based on this the method of improving the flight performance isproposed. In order to find the most significant influence factors and the optimaldesigned aerodynamic layout, an orthogonal experimental design and related analysisare presented.
     The experimental prototype of the hovering flying object with a flexibleaerodynamic shape and the experimental environment with simulation and detectionfunctions have been built. Instead of using high frame rate imaging equipment, theproposed3D visualization detection method is based on a stroboscopic imagingtechnique to record the information of the flexible aerodynamic shape. The scale invariant feature transform (SIFT) features are extracted from left and rightstroboscopic images to realize space information acquisition. The flexibleaerodynamic shape is represented by triangle mesh subdivision algorithm usingextracted SIFT features as control vertex. Given system error analysis andcorresponding solutions, the experimental measurement for anti-disturbanceperformance of the flying prototype is completed in the thesis to acquirethree-dimensional information of its flexible aerodynamic shape in terms of kineticparameters, morphology structure and elastic deformation.
     Based on various aerodynamic layout designs of the hovering flying object, amathematical surface model of the aerodynamic shape has been established. Theapproach to improving the flight stability of the flying model has been analysed.Combined with subdivision surface resulted from the aerodynamic shape’s3Dvisualization measurement, the relationship between aerodynamic layout andinfluence factors on the stability performance has been constructed. Theanti-disturbance mechanism of the hovering flying model is deduced to providereferences for the improvement of flight stability and the enhancement ofanti-disturbance performance during the hovering flying model’s design process.
引文
[1] J. R. Wilson,Mini technologies for major impact,Aerospace America,1998,36~42
    [2] J. M. McMichael and Col. M. S. Francis,Micro air vehicle-toward a newdimension in flight,USAF,DARPA TTO document,1996
    [3] High-tech micro air vehicle will battle with soldiers,http://www.spacewar.com/
    [4]袁昌盛,付金华,国际上微型飞行器的研究进展与关键问题,航空兵器,2005,6:50~53
    [5] J. M. Grasmeyer and M. T. Keennon,Development of the black widow micro airvehicle,AIAA Paper No.2001-0127,2001
    [6] Naval Research Lab MITE,http://www.designation-systems.net/
    [7] F. Bohorquez,P. Samuel,J. Sirohi and et al.,Design, analysis and hoverperformance of a rotary wing micro air vehicle, Journal of the AmericanHelicopter Society,2003,48(2):80~90
    [8] Honeywell T-Hawk Micro Air Vehicle,http://www.thawkmav.com/
    [9] J. P. How,B. Bethke,A. Frank and et al.,Real-time indoor autonomous vehicletest environment,Control Systems,2008,28(2):51~64
    [10] A. G. Bachrach,R. He and N. Roy,Autonomous flight in unknown indoorenvironments,International Journal of Micro Air Vehicles,2009,1(4):217~228
    [11] Y. Lian, W. Shyy, D. Viieru and et al.,Membrane wing aerodynamics for microair vehicles,Progress in Aerospace Sciences,2003,39(6-7):425~465
    [12] W. Shyy,P. Ifju and D. Viieru,Membrane wing-based micro air vehicles,Applied Mechanics Reviews,2005,58:283~301
    [13]李占科,徐顶国,牛文,柔性-刚性混合翼微型飞行器研究,西北工业大学学报,2010,28(5):769~773
    [14]李占科,徐顶国,牛文,不同柔度的柔性翼气动特性实验,航空动力学报,2011,26(1):136~140
    [15] AeroVironment Nano Hummingbird,http://www.avinc.com/nano
    [16] S. S. Baek,F. L. G. Bermudez and R. S. Fearing,Flight control for target seekingby13gram ornithopter. IEEE International Conference on Intelligent Robots andSystems, September,2011,2674~2681
    [17] S. Avadhanula,R. J. Wood,E. Steltz and et al.,Lift force improvements for themicromechanical flying insect,IEEE International Conference on IntelligentRobots and Systems,2003,1350~1356
    [18]美科学家发明六足机器昆虫探秘鸟类飞行进化,http://www.stdaily.com/
    [19] R. J. Wood,Liftoff of a60mg flapping-wing MAV,IEEE/RSJ InternationalConference on Intelligent Robots and Systems,2007,1889~1894
    [20] D. B. Doman,M. W. Oppenheimer,M. A. Bolender and et al.,Altitude controlof a single degree of freedom flapping wing micro air vehicle,American Instituteof Aeronautics and Astronautics,2009,1~19
    [21]南京将自主打造国内首条微型飞行器产业链,http://www.njdaily.cn/
    [22]郝振海,黄圣国,高精度气压高度表的研制,南京航空航天大学学报,2009,41(1):134~138
    [23]徐一村,毕树生,宗光华,扑翼飞行器柔性翼的动力分析与实验,航空动力学报,2008,23(10):1892~1895
    [24] K. Fregene and C. L. Bolden,Dynamics and control of a biomimetic single-wingnano air vehicle,American Control Conference,2010,51~56
    [25] H. Youngren,S. Jameson and B. Satterfield,Design of the SAMARAImonowing rotorcraft nano air vehicle,American Helicopter Society65th AnnualForum,2009
    [26] C. P. Ellington,The novel aerodynamics of insect flight: applications to micro airvehicles,Journal of Experimental Biology,1999,202(23):3439~3448
    [27] D. P. Magree,A photogrammetry-based hybrid system for dynamic tracking andmeasurement:[Bachelor Degree thesis],USA:Air University,2010
    [28] A. P. Willmott and C. P. Ellington,The mechanics of flight in the hawkmothmanduca sexta. I. Kinematics of hovering and forward flight,The Journal ofExperimental Biology,1997,200(21):2705~2722
    [29] G. K. Taylor and A. L. R. Thomas,Dynamic flight stability in the desert locustschistocerca gregaria,The Journal of Experimental Biology,2003,206(16):2803~2829
    [30] W. Shyy,H. Aono,S. K. Chimakurthi and et al.,Recent process in flapping wingaerodynamics and aeroelasticity,Process in Aerospace Science,2010,46(7):284~327
    [31] W. Shyy,Y. Lian,S. K. Chimakurthi and et al.,Flexible wing and fluid-structureinteractions for micro-air vehicles,Flying Insects and Robots,2009,143~157
    [32] S. P. Sane and M. H. Dickinson,The aerodynamic effects of wing rotation and arevised quasi-steady model of flapping flight,The Journal of ExperimentalBiology,2002,205(8):1087~1096
    [33] S. P. Sane,The aerodynamics of insect flight,The Journal of ExperimentalBiology,2003,206(23):4191~4208
    [34] C. T. Orlowski and A. R. Girard,Modeling and simulation of nonlinear dynamicsof flapping wing micro air vehicles,AIAA Journal,2011,49(5):969~981
    [35] G. J. Berman and Z. J. Wang,Energy-minimizing kinematics in hovering insectflight,Journal of Fluid Mechanics,2007,582:153~168
    [36] H. Aono,S. K. Chimakurthi,C. E. S. Cesnik and et al.,Computational modelingof spanwise flexibility effects on flapping wing aerodynamics,47th AIAAAerospace Sciences Meeting including The New Horizons Forum and AerospaceExposition,2009,1~18
    [37] H. Aono,S. K. Chimakurthi,H. Liu and et al.,Effect of Spanwise Flexibility onAerodynamics of a Plunging Wing,The DFD08Meeting of the AmericanPhysical Society,2008
    [38] R. Ramamurti and W. Sandberg,Simulation of the dynamics of micro airvehicles,AIAA Paper No.2000-0896,2000
    [39] D. K. Tafti,Unsteady aerodynamics of a flapping wing for micro air vehicle(MAV) applications,Proceedings of the37th National&4th InternationalConference on Fluid Mechanics and Fluid Power,2010
    [40] Z. J. Wang,J. M. Birch and M. H. Dickinson,Unsteady forces and flows in lowReynolds number hovering flight:two-dimensional computations vs roboticwing experiments,The Journal of Experimental Biology,2004,207:449~460
    [41]吴江浩,王济康,孙茂,蜜蜂悬停飞行控制的仿生力学研究,航空学报,2007,28(4):776~782
    [42]孙茂,刘彦鹏,王济康,昆虫悬停飞行的动稳定性:理论分析与数值模拟,空气动力学学报,2008,26:6~13
    [43] M. Sun and J. Tang,Unsteady aerodynamic force generation by a model fruit flywing in flapping motion,The Journal of Experimental Biology,2002,205(1):55~70
    [44] J. H. Wu and M. Sun,Unsteady aerodynamic forces of a flapping wing,TheJournal of Experimental Biology,2004,207(7)1137~1150
    [45]徐国武,白鹏,翼型连续变形过程中非定常气动特性研究,力学季刊,2012,33(2):168~173
    [46]刘岚,方宗德,侯宇等,微型扑翼飞行器的气动建模分析与试验,航空动力学报,2005,20(1):22~28
    [47]张龙,王和平,葛文杰等,基于柔性翼肋的变形机翼几何参数设计,航空计算技术,2009,39(1):1~5
    [48]曾锐,昂海松,仿鸟复合振动的扑翼气动分析,南京航空航天大学学报,2003,35(1):6~12
    [49]张福星,朱荣,周兆英,柔性翼微型飞行器气动特性的实验研究,航空学报,2008,29(6):1440~1446
    [50]鲍麟,胡劲松,余永亮等,昆虫翼拍动中受载变形的粘弹性本构模型,应用数学和力学,2006,27(6):655~662
    [51]李周复,风洞特种试验技术,北京:航空工业出版社,2010
    [52] R. Albertani,B. Stanford,J. P. Hubner and et al.,Aerodynamics coefficients anddeformation measurements on flexible micro air vehicle wings,ExperimentalMechanics,2007,47:625~635
    [53] B. Stanford,P. Ifju,R. Albertani and et al.,Fixed membrane wings for micro airvehicles:experimental characterization, numerical modeling, and tailoring,Progress in Aerospace Sciences,2008,44:258~294
    [54] D. Watman and T. Furukawa,A visualization system for analysis of micro aerialvehicle scaled flapping wings,Journal Intelligent and Robotic Systems,2008,51:369~381
    [55] D. Watman and T. Furukawa,A system for motion control and analysis ofhigh-speed passively twisting flapping wings,IEEE International Conference onRobotics and Automation,2008,1576~1581
    [56] Z. A. Khan and S. K. Agrawal,Optimal hovering kinematics of flapping wingsfor micro air vehicles,AIAA Journal,2011,49(2):257~268
    [57] S. N. Fry, R. Sayaman and M. H. Dickinson,The aerodynamics of free-flightmaneuvers in drosophila,Science,2003,300:495~498
    [58] A. Sherman and M. H. Dickinson,Summation of visual and mechanosensoryfeedback in drosophila flight control,The Journal of Experimental Biology,2004,207:133~142
    [59] R. B. Srygley and A. L. R. Thomas,Unconventional lift-generating mechanismsin free-flying butterflies,Nature,2002,420(6916):660~664
    [60] A. L. R. Thomas,G. K. Taylor,R. B. Srygley and et al.,Dragonfly flight:free-flight and tethered flow visualizations reveal a diverse array of unsteady liftgenerating mechanisms, controlled primarily via angle of attack,The Journal ofExperimental Biology,2004,207(24):4299~4323
    [61] R. J. Adrian,Particle-imaging techniques for experimental fluid mechanics,Annual Review of Fluid Mechanics,1991,23:261~304
    [62] J. M. Birch and M. H. Dickinson,Spanwise flow and the attachment of theleading-edge vortex on insect wings,Nature,2001,412:729~733
    [63] M. H. Dickinson,F. O. Lehmann and S. P. Sane,Wing rotation and theaerodynamic basis of insect flight,Science,1999,284(5422):1954~1960
    [64]吴怀宇,微型飞行器空气动力学特性与飞行控制策略的研究:[博士学位论文],北京:清华大学,2003
    [65]刘旭东,朱荣,续立军等,集成于微型飞行器机翼上的流场传感器测量系统研究,传感技术学报,2009,22(7):950~954
    [66]昂海松,曹锐,段文博,柔性扑翼微型飞行器升力和推力机理的风洞试验和飞行试验,航空动力学报,2007,22(11):1838~1845
    [67] G. Bunget and S. Seelecke,Batmav: a biologically-inspired micro-air vehicle forflapping flight-kinematic modelling,Proceedings of SPIE:Active and PassiveSmart Structure and Integrated System,2008,6928:69282F
    [68] R. Tedrake,Z. Jackowski,R. Cory and et al.,Learning to fly like a bird,Massachusetts Institute of Technology Computer Science and ArtificialIntelligence Lab,Technical Report,2006
    [69]涵道风扇式螺旋桨,http://baike.baidu.com/view/2102851.htm
    [70] R. J. Zwaan and B. B. Prananta,Fluid/structure interaction in numericalaeroelastic simulation, International Journal of Non-Linear Mechanics,2002,37(4-5):987~1002
    [71] E. H. Dowell,H. C. Curtiss,R. H. Scanlan and et al.,A modern course inaeroelasticity,The Netherlands:SIJTHOFF&NOORDHOFF InternationalPublisher,1978
    [72] D. Wang,Derivation of3D Euler and Navier-Stokes equations in cylindricalcoordinates,Durham University
    [73]梁强,非定常气动力的N-S方程解及其应用:[硕士学位论文],西安:西北工业大学,2001
    [74] G. Hou,J. Wang and A. Layton,Numerical methods for fluid-structureinteraction—a review,Communications in Computational Physics,2012,12(2)337~377
    [75] J. P. Gomes,S. Yigit,H. Lienhart and et al.,Experimental and numerical studyon a laminar fluid-structure interaction reference test case,” Journal of Fluids andStructures, Vol.27, Issue1, Jan.2011, pp.43~61.
    [76] L. Dubcova,M. Feistauer,J. Horacek and et al.,Numerical simulation ofinteraction between turbulent flow and a vibrating airfoil,Computing andVisualization in Science,2009,12(5):207~225
    [77] S. Shin and H. T. Kim,Numerical simulation of fluid-structure interaction of amoving flexible foil,Journal of Mechanical Science and Technology,2008,22(12):2542~2553
    [78] V. Kalro and T. E. Tezduyar, A parallel3D computational method forfluid-structure interactions in parachute systems,Computer Methods in AppliedMechanics and Engineering,2000,190:321~332
    [79]刘志远,郑源,张文佳等,ANSYS-CFX单向流固耦合分析的方法,水利水电工程设计,2009,28(2):29~31
    [80]王惠,丁俊宏,MFX-ANSYS/CFX流固耦合计算及其在魔方上的应用,计算机工程与科学,2012,34(8):166~170
    [81] P. Kjellgren and J. Hyvarinen,An arbitrary Lagrangian-Eulerian finite elementmethod,Computational Mechanics,1998,21:81~90
    [82] T. Nomura,ALE finite element computations of fluid-structure interactionproblems,Computer Methods in Applied Mechanics and Engineering,1994,112:291~308
    [83]娄涛,基于ANSYS的流固耦合问题数值模拟:[硕士学位论文],兰州:兰州大学,2008
    [84] Natural rubber,http://en.wikipedia.org/
    [85] W. D. Callister,Jr.,Materials Science and Engineering:An Introduction,6th ed.,New York:Wiley,2003.737~745
    [86] R. D. Cook,Concepts and applications of finite element analysis: a treatment ofthe finite element method as used for the analysis of displacement, strain, andstress,New York;London(etc.):Wiley,1974
    [87] D. Terzopoulos and A. Witkin, Physically based models with rigid anddeformable components,Computer Graphics and Applications,1988,8:41~51
    [88] M. C. Reaves,L. G. Horta and M. R. Waszak,Model update of a micro airvehicle (MAV) flexible wing frame with uncertainty quantification,NASA/TM-2004-213232,2004
    [89] Acrylonitrile butadiene styrene (ABS),http://www.grantadesign.com/education/
    [90] Y. Yu,C. Ferri,Q. Yang and et al.,Numerical simulation of natural frequenciesin the design of micro air vehicle structures,17thInternational Conference onAutomation&Computing,2011,167~171
    [91] C. Jin,D. Li,S. Jin and et al.,Measurement technique of in-plane motion forMEMS based on block matching,Journal of Jilin University(Engineering andTechnology Edition),2004,34(3):445~448
    [92] C. Jin,S. Jin and J. Wang,Measurement Technique of in-plane motion forMEMS based on optical flow, Journal of Electronic Measurement andInstrument,2007,21(1):90~95
    [93] C. Jiang and H. Mei,The application of stroboscope in printing examinationsystem,Mechanical&Electrical Engineering Magazine,2006,23(2):19~21
    [94] C. Lu,R. Duan and S. Jiang,Experimental study of flow instabilities of fallingfilms,Journal of Tsinghua University(Science&Technology),2008,48(9):1487~1489
    [95] Y. Yu,X. Wang and H. Chen,Applications of stroboscopic imaging technique inthree-dimensional feature detection of micro flexible aerodynamic shape,International Symposium on Photoelectronic Detection and Imaging: Advancesin Imaging Detectors and Applications,2009,7384:738428
    [96]张广军,视觉测量,北京:科学出版社,2008.102~104
    [97]刘琼,秦现生,应申舜等,双目视觉测量系统架构参数设计及精度分析,中国机械工程,2008,19(22):2728~2732
    [98] G. Sansoni,M. Trebeschi and F. Docchio,State-of-the-art and applications of3Dimaging sensors in industry, cultural heritage, medicine, and criminalinvestigation,Sensors,2009,9:568~601
    [99] M. C. Reaves,L. G. Horta,M. R. Waszak and et al.,Model update of a micro airvehicle (MAV) flexible wing frame with uncertainty quantification,NASA/TM-2004-213232,2004
    [100] Y. Yu and X. Wang,SIFT features for tracking a moving object with flexibleaerodynamic shape based on stroboscopic imaging technique,Infrared andLaser Engineering,2011,40(9):1823~1828
    [101] X. Wang and Y. Yu,Three-dimensional visual measurement for MAVaerodynamic shape based on stroboscopic imaging technique,Nanotechnologyand Precision Engineering,2011,9(6):509~514
    [102] D. G. Lowe,Distinctive image features from scale-invariant keypoints,International Journal of Computer Vision,2004,60(2):91~110
    [103] T. Lindeberg,Scale-space theory: a basic tool for analysing structures atdifferent scales,Journal of Applied Statistics,1994,21(2):224~270
    [104] K. Mikolajczyk,Detection of local features invariant to affine transformations:
    [Ph.D thesis],France:Institute National Polytechnique de Grenoble,2002
    [105] B. Schiele and J. L. Crowley,Recognition without correspondence usingmultidimensional receptive field histograms,International Journal of ComputerVision,2000,36:31~50
    [106] C. Wang and M. Tsuzuki,Representation of curves and surfaces in B-rep solidmodelers,ABCM Symposium Series in Mechatronics,2004,1:498-507
    [107] G. A. Fleming,S. M. Bartram,M. R. Waszak and et al.,Projection moireinterferometry measurements of micro air vehicle wings,SPIE Paper,2001,4448-16
    [108] J. Montagnat,H. Delingette,Nicolas Scapel and et al.,Representation, shape,topology and evolution of deformable surface. Application to3D medicalimage segmentation,INRIA,2000,1:RR-3954
    [109] X. Shen and D. Hogg,Shape models from image sequences,Lecture Notes inComputer Science,1994,800:225~230
    [110] E. Catmull and J. Clark,Recursively generated B-spline surface on arbitrarytopological meshes,Computer Aided Design,1978,10(6):350~355
    [111] D. Doo and M. Sabin, Behaviour of recursive division surfaces nearextraordinary points,Computer Aided Design,1978,10(6):356~360
    [112] C. T. Loop,Smooth subdivision surfaces based on triangles:[Master’s thesis],USA:University of Utah,1987
    [113] J. P. Hakenberg,Smooth subdivision for mixed volumetric meshes:[Master’sthesis],USA:Rice University,2004
    [114] J. Warren and S. Schaefer,A factored approach to subdivision surface,Computer Graphics and Applications,2004,24(3):74~81
    [115] S. Schaefer and J. Warren, On C2Triangle/Quad Subdivision, ACMTransactions on Graphics,2005,24(1):28~36
    [116] H. Suzuki,S. Takeuchi and T. Kanai,Subdivision surface fitting to a range ofpoints,7th Pacific Conference on Computer Graphics and Applications,1999,158~167
    [117] D. Terzopoulos and A. Witkin,Physically based models with rigid anddeformable components,IEEE Computer Graphics and Applications,1998,8(6):41~51
    [118]尹洪涛,刘成,李一兵等,相机标定误差因素分析,信息通信,2012,1:28~30
    [119]曾晓明,杨军,Catmull-Clark细分曲面的误差分析,厦门大学学报(自然科学版),2004,43(1):1~3
    [120] Y. Yu,Q. Yang and X. Wang,Flight stability study of micro air vehicle withelastic aerodynamic shape, I2MTC Instrumentation and MeasurementTechnology Conference,2012,200~204
    [121] Torus,http://en.wikipedia.org/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700