用户名: 密码: 验证码:
稀土分离过程环境协调性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着资源紧缺、环境问题突出,产品价格中环境价值缺失而引起的价值偏低现象普遍存在。环境协调性评价作为环境管理工具和预防性的环境保护手段,是一种重要的环境评价方法,已经广泛地应用在各个领域。尽管我国稀土分离技术达到了世界先进水平,但通过多种文献检索,国内尚没有研究机构或学者对稀土分离开展环境协调性评价方面的研究。本文以赣南特有的重稀土分离过程为研究对象,对其生产过程中的每个工序进行了环境协调性评价研究:如不同稀土分离工艺、工艺的清单分析、明确环境协调性评价的边界、目标和二级指标环境协调性评价体系,在体系中设立了资源因子量、能源因子量、废弃物因子、环境噪声因子、废弃物占用面积因子和产品性能因子作为一级指标,矿物资源、水资源、回收资源、成品原料、粉尘、废弃物等作为二级指标,评价稀土分离生产流程环境负荷主要是针对资源、能源和废弃物因子量进行评价;建立了综合相对环境指数模型,分别计算出P507和P204工艺的环境负荷综合值,从计算结果分析可知,采用P507工艺所产生的环境负荷更小;通过对输入/输出法(I/O)进行分析,推导出资源因子、能源因子、废弃稀土混合矿因子等环境因子累积模型,根据国际标准或国家标准结合当地标准对其资源因子当量系数进行了修正,并对稀土分离过程中环境负荷超标模型进行了计算,结果表明:采用P507工艺能降低环境负荷,减少环境排放量;为了评价更为科学,基于模糊理论对多目标环境负荷模型进行了优化;明确了稀土分离清洁生产技术与环境效益的关系及对环境负荷的影响,计算了稀土分离全流程实施清洁生产前后综合环境相对指数(IREI=0.748)。经分析,实施清洁生产可使稀土分离的环境负荷降低25.2%,其中以废气因子的减少量为主,减少95%;资源因子、能源因子、废水因子、废渣因子环境负荷各有降低,减少量分别为5%、12%、9%、5%,提出了推进清洁生产的对策。通过该课题的研究,为稀土分离过程环境影响改进评价提供参考依据,为环境协调性研究结果的实际应用提供一种新思路。
With the shortage of resources and environmental issues outstanding, the phenomenon of low value caused by lack of environment values in product prices is widespread. As a tool for environmental management and preventive measures, life cycle assessment is an important method of environmental assessment and it has been widely used in various fields. Although our skills of rare earth separation reach to the world advanced level, there are no research institutions and scholars to carry out life cycle assessment for rare earth separation in domestic through a variety of literature search.
     In this paper, it uses heavy rare earth separation process, which is only in Gannan of Jiangxi, as the research object, and makes life cycle assessment for each process of the production process: such as rare earth separation process; process of inventory analysis; and making clear the boundary, goals and second-rate index system of life cycle assessment. Resources factor, energy factor, waste factor, environmental noise factor, waste footprint and product performance factor will be the level indicators in the system, while mineral resources, water resources, recycling resources, raw materials, finished products, dust and waste will be the secondary indicators. Evaluation for environmental impact of rare earth separation process is mainly for resources, energy and waste factor. Integrated related environmental index model has been established and environmental load consolidated value of P507 and P204 has been calculated respectively, so we can analyze from the results that the environmental load is smaller when use the process of P507. Though the input/output method (I/O) analysis, we can deduce the accumulative environmental factor models such as resources, energy factor, mixed rare earth mine waste and other environmental factors. According to international standards or national standards with local standards, its resources factor equivalent coefficient is modified, and the accumulative environmental load models in rare earth separation process is calculated. The results show that P507 process could reduce the environmental load and reduce environmental emissions. In order to evaluate more scientific, multi-objective environmental load model which based on fuzzy theory has been optimized. The relationship between the cleaner production of rare earth separation process and environmental benefits has been cleared, and integrated environmental relative index of the whole rare earth separation process has been calculated(IREI=0.748). It is analyzed that environmental load of the rare earth separation can be reduced by 25.2% with the clearer production used. Waste factor reduces sharply by 95%; the environmental load of resources factor, energy factor, wastewater factor and waste factor reduces by 5%、12%、9%、5% respectively, which brings a strategy for cleaner production. This research provides new references for the improvement of the effect of the rare earth separation to the environment, and opens a new avenue for the application of research results of life cycle assessment.
引文
[1]雷兆武,申左元.清洁生产及应用[M].北京:化学工业出版社,2007
    [2]刘江龙.材料的环境影响评价[M].北京:科学出版社,2002
    [3]曹华林.产品生命周期评价(LCA)的理论及方法研究[J].西南民族大学学报·人文社科版,2004,25(2)
    [4]霍李江.生命周期评价(LCA)综述[J].中国包装,2003,(1)
    [5] J.Fava,R.Dennison,B.Jones.A Technical Framework for Life Cycle Assessment.SETACand SETAC Foundation for Environmental Education,Washington,DC,1991
    [6] ISO/DIS14040,Environmental Management-Life Cycle Assessment-Part 1:Principles and Framework,1997
    [7]曹华林.产品生命周期评价(LCA)的理论及方法研究[J].西南民族大学学报,2004,25(2)
    [8]宋慧.生命周期评价的要领与难点[J].科技资讯,2008,7:1-1.
    [9]武小娟.我国典型原镁生产工艺的生命周期评价研究[D],北京:北京工业大学,2008.
    [10] Catarina Ribeiro, JoséV. Ferreira,Paulo Partidário. Life cycle assessment of a multi-material car component; The International Journal of Life Cycle Assessment;2007,12(5):336-345
    [11] C.Koroneos,G.Roumbas,Z.Gabari,et al.Life cycle assessment of beer production in Greece,Journal of Cleaner Production; 2005,13:433-439
    [12] Fulvio Ardente,Giorgio Beccali,Maurizio Cellura,et al.Life cycle assessment of a solar thermal collector,Renewable Energy, 2005,30:1031–1054
    [13]吴迪冲.绿色纺织生产的生命周期评价框架体系研究[J].浙江理工大学学报
    [14]伍跃辉,陈爱燕,王震等.聚氯乙烯生产过程生命周期评价.环境科学与技术[J],2010,33(5):202-205
    [15]张承龙,郭翠香,邱媛媛等.碱浸-电解法生产锌粉过程的生命周期评价研究,环境科学研究[J]. 2008, 21(1):213-217
    [16]王文涛.国内先进钢铁企业生产过程环境协调性评价研究[D],北京:北京工业大学2005,5
    [17]谢明辉,李丽,黄泽春等.食用油聚酯包装的生命周期评价[J].环境科学研究,2010(3):288-292
    [18]黄桂文.我国稀土萃取分离技术的现状及发展趋势[J].江西冶金,2003,23(6)
    [19]韩旗英.稀土萃取分离技术现状分析[J].湖南有色金属,2010,26(1)
    [20]中色南方稀土(新丰)有限公司7000t/a稀土分离项目环境评价报告
    [21]张天柱.清洁生产-工业可持续发展的必由之路[J].环境保护,1995,(4)
    [22]杨作精.认清形式,转变观念,建立工业污染防治新战略.清洁生产论文集,中国环境科学出版社,1995:1~13
    [23]柯坚.我国清洁生产立法若干问题辨析[J].环境保护,2000(8):11~12
    [24]聂祚仁,王家诚,王瑛等.北京市新材料产业发展技术经济评价[M].冶金工业出版社,2002
    [25]李贵奇,周和敏,刘业翔.环境协调性评价研究进展[J].武汉理工大学学报,2002,24(2):79-81.
    [26]丁绍兰,陈鹏.生命周期评价新发展与工业应用[J].再生资源与循环经济,2008,1(12):36-38
    [27]徐李娜,付桂珍.作为清洁生产工具的生命周期评价:在中国的应用前景[J].广东化工.2009,36(3):83-85.
    [28]李静,王艳丽,周美华等.棉织品的生命周期影响评价.纺织导报[J],2010,2:20-23页
    [29]薛峰.论我国稀土产业应走可持续发展之路[J].稀土信息,2008,14(8):26-28
    [30]李蔓.聚乙烯塑料生产和废聚乙烯塑料资源化技术生命周期评价[D].哈尔滨:哈尔滨工业大学,2008.6
    [31] Morais, Sérgio, Mata, Teresa M, Martins, António A. Simulation and life cycle assessment of process design alternatives for biodiesel production from waste vegetable oils. Journal of Cleaner Production;2010, 18(13): 1251-1259
    [32]阮仁满,衷水平,王淀佐.生物提铜与火法炼铜过程生命周期评价.矿产综合利用[J],2010(3):33-37
    [33]王晓霞,龚先政,王志宏.无铅焊料的环境协调性评价.中国建材科技[J].2008,1:41-43.
    [34]魏晓明.做好节能减排工作促进稀土产业的健康发展.稀土信息[J],2007,7:9-12
    [35]廖春发,聂华平,焦芸芬,梁勇.萃取色层技术分离提纯稀土的现状与展望[J].过程工程学报,2006,6(1)
    [36]红枫.中国稀土发展态势研究、问题和建议[A].第九届中国稀土企业家联谊会会议论文集[C].全国稀土信息网.2002.1—47.
    [37]黄桂文,曾晓荣,等.LaCePrNd四组份串级萃取Ce/Pr分离系数的研究及其在工艺设计中的应用[J].稀土,2001,22(2):22—25.
    [38]
    [39]钟盛华,廖晓宁.萃取预分离法分离富铕中钇矿新工艺[J].中国有色金属学报,2005,15(9):1 476—1 481
    [40]高新华,吴文远,涂赣峰.四组分体系“组合式”萃取分离工艺[J]有色矿冶,2000,16(2):21—25.
    [41]王梓柱.利用硫化钡制取稀土皂化剂的方法[P].中国专利200610047115.1.2006—06—30.
    [42]胡建康.稀土萃取分离酸性萃取剂皂化有机相的制作方法[P].中国专干0:ZL200410050948.4,2004—08—04.
    [43]龙志奇,黄小卫,彭新林等.一种非皂化体系萃取分离稀土元素的工艺[P].中国专利:ZL200610072668.2,2006—04—07.
    [44]吴声,廖春生,贾江涛等.离子吸附型稀土矿非皂化预分组萃取分离方法[P].中国专利:ZL200510134767.4,2005—12-21.
    [45]胡建康,钟德强,肖定为.酸性萃取剂直接萃取分离碳酸稀土氧化稀土的方法[P].中国专利:2003tO112363.6,2003—11—28.
    [46]付子忠,郑剑平,赵瑞卿,等.用草酸溶液从负载钕的P507中直接反萃取沉淀钕[J].湿法冶金,2004,23(1):6—14
    [47]赵春辉,乔丽萍.三代酸法工艺中草酸反萃钐铕钆试验研究[J].稀土,2001,22(5):19—22
    [48]刘光复.绿色设计与绿色制造[M].机械工业出版社
    [49]郑大中.稀土的提取分离工艺研究现状与发展动向[J].四川化工与腐蚀控制,2000,3(4)
    [50]宋丹娜.基于生命周期评价的铝工业环境负荷研究[D].湖南:中南大学,2007.
    [51]周和敏,高怀,李贵奇.钢铁生产环境负荷的累积对比分析评价[J].钢铁,2002,37(2).
    [52]刘普寅,吴孟达.模糊理论及其应用[M].北京:国防科技大学出版社,2001.
    [53]聂祚仁,高峰,崔素萍等.材料环境协调性评价的发展及在节能减排中的应用[J].新材料产业, 2007, 12:47-50.
    [54]安静,薛向欣,姜涛.硼铁矿火法分离过程的生命周期环境影响评价.过程工程学报[J], 2010,10(2): 321-326
    [55]陈珏.我国稀土产业发展现状及其对策建议[J].湖南有色金属,2007,23(3):77-80
    [56]涂星,廖列文.稀土元素的分离技术[J].贵州化工,2003,28(3):3~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700