用户名: 密码: 验证码:
基于元胞自动机的交通流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的迅速发展和城市化进程的加快,城市交通堵塞日益严重。如何采取措施改善交通状况是一项亟待解决的问题,而交通流规律的研究和交通本质的认识可以为我们提供理论依据和参考。高速公路修建的指数增长更加需要精确和可靠的方法进行交通流的建模和预测,交通流的建模和仿真提供了对交通流的微观和宏观的观测,因而成为交通工程中的重要分析工具。
     本文首先介绍了元胞自动机理论的理论,元胞自动机模型把复杂系统量化为简单的个体。在元胞自动机模型中,空间、时间都被离散化,每一个相互作用的单元仅为有限的状态。以元胞自动机理论为基础,把车辆在路段上运动的变化规律表述为元胞自动机的演化规则,建立了基于元胞自动机理论的交通流模拟模型,标定了元胞长度和最大速度等参数,继而提出反映车辆在路段上自由行驶、跟驰行驶减速行驶等交通行为的元胞自动机规则,并对各种规则进行了详细说明。在元胞自动机交通NaSch模型和FI模型的基础上,基于交通流中实际车辆的慢起动行为,进一步提出一种新的一维交通流元胞自动机模型,在临界密度附近,存在着亚稳态和滞后现象。利用面向对象的JAVA语言,设计实现了CATS仿真系统,模拟了各种一维周期性边界条件下高速公路上车流运动,显示了交通流的各种现象。例如从自由相到堵塞相的相变行为、临界性和自组织临界性、亚稳态和相分离等。采用统计物理的分析方法进行了分析,其中应用平均场理论对交通流的流量、密度和速度间的基本关系进行了求解。最后,对拥挤交通的交通堵塞进行了分析,从交通崩溃的角度,例如交通从自由流线型交通到堵塞交通的过程,得到结论为:当堵塞流出量的车头时距大于高密度时的车头时距时,堵塞稳定存在。另外,对交通流的自组织的可能性进行了讨论,对交通流的分形和耗散进行了初步的研究。
     本论文的研究对交通组织和管理均具有重要的理论和实践意义。
As the national economics rapid developing and cities scale becoming larger and larger, it has became more and more serious that the problems of urban transportation block. How to improve the traffic state is a issue that must be dealed with, the studies and the nature of traffic flow can help solve it. The exponential rate of increase in freeway traffic is expanding the need for accurate and realistic methods to model and predict traffic flow. Traffic modeling and simulation facilitates an examination of both microscopic and macroscopic views of traffic flows and is therefore considered one of the most important analytical tools in traffic engineering.
    This paper presents some cellular automata models for traffic flow simulation. Firstly, the celluar automata theory was introduced, cellular autoata models quantize complex behavior into simple individual components. In general, CA are idealization of physical systems in which both space and time are assumed to be discrete and each of the interacting units can have only a finite number of discrete states. Based on the cellular automata theory, this paper describes the moving character of vehicles as changing rules of cellular automata, thus traffic flow simulation models based on cellular automata are presented. After calibrating the basic parameters such as cellular length, maximum speed and so on, the traffic behaviors such as free moving, following, decelerating are described by the special changing rules of cellular automata. All the rules are also explained in great detail including a minimal model of NaSch and FI which reproduce the basic features of real traffic. An improved one-dimensional CA traffic model was proposed to describe the freeway traffic under the periodic boundary conditions. This model was based on the NaSch model, it can describe stop-and-go traffic, which gives a better description of the phenomena observed on highways with a slow-to-start rule. It is found that there exists the metastability and hysteresis effect of traffic flow in the neighborhood of critical density under different initial conditions. A computer simulation system named CATS was fulfilled with all celluar automata models in JAVA language. It proved some of these phenomena, observed in vehicular traffic under different
    
    
    
    circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. Anslytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Mean field theory is proposed for analysis the relation of traffic flow density and speed. In the last, traffic jams in the congested traffic flow are investigated by the computer simulation and the analytical method, this paper looks at this question in particular from the perspective of breakdown behavior, i.e. the transtion from free, "laminar" traffic to congested traffic. The typical traffic jam instability is intuitively explained via the insight that stable jams exist once time headways at jam outflow are larger than time headway in dense traffic. In addition, the feasibility and rationality to apply self-organization theory on traffic flow study are discussed, fractality and dissipation in traffic flow are studied preliminary.
    In a word, the studies of this paper have a profound function to traffic control and management.
引文
1 徐吉谦 交通工程总论[M]北京:人民交通出版社.2001
    2 交通工程手册[M].交通工程委员会.北京:人民交通出版社.1998
    3 [美]丹尼尔L.鸠洛夫、马休丁.休伯著.交通流理论.蒋璜、任福田、肖秋生等译.北京:人民交通出版社.1983
    4 Nathan Gartner, Carroll J.Messer, Ajay K.Rathi,Monograph on Traffic Flow Theory[M]. US, 1996
    5 Ihor Lub Towards the fundamental of car following theory, e-print:Cond-mat/0212382
    6 冯蔚东等:交通流理论评述.系统工程学报,1998;13(3):71-82
    7 冯苏苇等:交通流的动力学模型与数值模拟.上海大学学报(自然科学版),1997;3(4):443-452
    8 宫晓燕等:高速公路交通流建模综述.交通运输工程学报,2002;2(1):74-79
    9 Mark Brackstone and Mike McDonald,car following:a historical review, T. Res F.2(4)pp 181-196.2000
    10 C.F. Daganzo,Remarks on traffic flow modeling and its applications, ", in Traffic and Mobility, Proc. Traffic and Mobility Simulation, Economics and Environment Conference (Brilon, Huber, Schreckenberg and Wallentowitz, eds.),pp. 105-115,Aachen, Germany, Springer-Verlag, New York, N.Y., 1999
    11 M.Waldrop著,陈玲译,复杂:诞生于秩序与混沌边缘的学科,三联书店,1997
    12 谢惠民,非线性科学丛书:复杂性与动力系统[M],上海科技教育出版社,1994
    13 Algers, S., Bernauer, E., Boero, M., Breheret, L., di Taranto, C., Dougherty, M., Fox, K., and Gabard, J. (1997) Review of micro-simulation models. Smartest Project deliverable D3. Leeds.
    14 W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Towards a realistic microscopic description of highway traffic. Journal of Physics A,33:L477, 2000.
    15 D. Wolf. Cellular automata for traffic simulations. Physica A,263:438-451,1999.
    
    
    16 P. Wagner, K. Nagel, and D. E.Wolf. Realistic multi-lane traffic rules for cellular automata. Physica A, 234:687-698, 1997.
    17 A.Schadschneider and M. Schreckenberg. Cellular automaton models and traffic flow J.phys A,26,1993
    18 王雷、汪秉宏、决定论性逐步加速交通流模型的渐近稳态行为[J].物理学报 1999,48(5):808-815
    19 汪秉宏、王雷、徐伯铭、胡斑比.高速车随机延迟逐步加速交通流元胞自动机模型[J].物理学报,2000,49(10):1926-1932
    20 汪秉宏等,逐步加速交通流模型的渐近稳态行为[J].深圳大学学报1999,16(2-3):36-41
    21 Matti Pursula,simulation of traffic systems-an overview J.GIDA 3(1999)pp. 1-8
    22 王殿海等,对交通流理论的再认识[J].交通运输工程学报,1(4):54-59,2001
    23 周成虎等著,地理元胞自动机研究[M],北京,科学出版社,1999
    24 史忠植,高级人工智能,北京:科学出版社,1998
    25 R. Barlovic,online traffic simulation with cellular automata,traffic and mobility:simulation-economics-environment,pp: 117-134,july 1999
    26 D J.Dailey, N Taiyab,acellular automata model for use with real freeway data,ITS Research program,final research report,January 2002
    27 J.Wahle,L.Neubert,M. Schreckenberg,modeling and simulation of traffic flow, computer physics communications 121-122(1999)402-404
    28 丁爱玲等,城市交通的计算机仿真设计[J]西安公路交通大学学报,20(3):70-74,2000
    29 邹智军等,道路交通仿真研究综述.[J]交通运输工程学报,1(2):88-91,2001
    30 邹智军等,动态交通状态微观仿真技术初探,[J]同济大学学报,27(3):305-308,1999
    31 张安胜等,城市道路交通流仿真算法研究,[J]计算机工程,28(8):102-104,2002
    32 K.Nagel,Particle hopping models and traffic flow theory, Los Alamos Unclassified Report 95:2908(1995),phys. Rev. E
    33 Kai Nagel and steel Rasmussen,traffic at the edge of chaos,ARTIFICIAL LIFE ,pp.222-235,1994
    
    
    34 K.Nagel.From particle hopping models to traffic flow theory. Transportation Research Records, 1644:1-9, 1999.
    35 D. Helbing. Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 73:1067-1141, 2001.
    36 Nagel K,Schreckcnberg M. A cellular automation for freeway traffic[J].JPhys (France),1 992,2:2 2 2 1
    37 Andreas Schadschneider, The Nagel-Schreckenberg model revisited,cond-mat/9902170
    38 Satoshi YUKAWA and Macoto KIKUCHI,Density Fluctuations in traffic flow, J. phys. soc.jpn 65(1996),pp. 916-919
    39 Fukui M,Ishibashi Y. Traffic flow in 1D cellular automata model including cars moving with high speed[J].J Phys Soc(Japan), 1996,65:1868-1870
    40 A.Schadschneider and M. Schreckenberg.Traffic flow models with 'slow-to-start' rules. Annals of Physics, 6:541, 1997
    41 诌智军等,城市道路交通仿真系统软件设计,[J]交通运输工程学报,1(3):86-88,2001
    42 蒋熙等,城市交通仿真系统柔性构建技术研究,[J]中国公路学报,15(3):96-100,2002
    43 [美]L Lemay著,王国良译,Java2编程21天自学通,北京:清华大学出版社,2002
    44 靳文舟等,基于细胞自动机理论的交通流模拟模型,[J]华南理工大学学报,29(8):93-96,2001
    45 钟邦秀等,面向对象微观交通仿真系统的研究与实现,[J]系统仿真学报,14(4):418-421,2002
    46 靳文舟等,交通流模拟中的随机输入模型,[J]华南理工大学学报,29(11):92-97,2001
    47 C.F.Daganzo,M.J.Cassidy,and R.L.Bertini,Possible explanations of phase transitions in highway traffic,Transportation Research A,33:365-379,1999
    48 R.Barlovic,L.Santen,A. Schadschneideer,and M. Schreckenberg. Metastable states in cellular automata. European Physical Journal B,5(3):793-800,10 1998
    49 B. Kerner. Traffic flow: Experiment and theory. In M. Schreckenberg and D.Wolf, editors, Traffic And Granular Flow '97, pages 239-267. Springer,
    
    1998.
    50 D. Helbing. Gas-kinetic derivation of Navier-Stokes-like traffic equations. Physical Review E, 53(3):253-282, 1996.
    51 Nagel and M.Paczuski,emergent traffic jams,phys. Rev. E,51:2909,1995
    52 B S Kerner and H Rehborn 1997 Experimental properties of phase transitions in traffic flow, Phys. Rev. Lett 79 4030
    53 Takashi Nagatani Propagation of jams in congested traffic flow J.Phys. Soc. Jpn,65 (1996),pp.2333-2336
    54 B.H.Wang, Y.F. Woo and P.M.Hui Mean field theory of traffic flow problems with overpasses and asymmetric distributions of cars J.Phys. Soc. Jpn,65(1996), pp.2345-2348
    55 A. Schadschneider and M. Schreckenberg, Car-oriented mean-field theory for traffic flow models, J. Phys. A, 30, L69 (1997).
    56 B S Kerner 1998 Experimental features of self-organization in traffic flow Phys. Rev. Lett. 81 3797
    57 K nagel,P Wagner, R Woedler, still flowing:old and new approaches to traffic flow and traffic jam modeling,www.ethz.ch
    58 Debashish Chowdhury,Ludger Santen,Andreas Schadschneider,statistical physica of vehicular traffic and some related systems,phtsics reports 329,199(2000)
    59 D Helbing and M Schreckenberg 1999 Cellular automata simulating experimental properties of traffic flow Phys. Rev. E59 R2505
    60 Schreckenberg, M., schreckenberg, A., Nagel, K. and N. Ito, "Discrete Stochastic Models for Traffic Flow, Physical Review E, Vol. 51, No. 4, pp 2939-2949, 1995.
    61 D. Helbing , Empirical traffic data and their implications for traffic modelling,Phys. Rev. E, 55, R25 (1997).
    62 Nagatani, T., "Self Organization and Phase Transition in the Traffic Flow Model of a Two-Lane Roadway," Journal of Physics A, Vol. 26, pp. 781-787,1993.
    63 B.S. Kerner and H. Rehborn, Phys. Rev. E 53, R1297 (1996)
    64 B.S. Kerner and H. Rehborn, Phys. Rev. E 53, R4275 (1996)
    65 K. Nagel, C. Kayatz, and P. Wagner. Breakdown and recovery in traffic flow
    
    models. In Y. Sugiyama et al, editor, Traffic and granular flow '01. Springer Heidelberg, in press.
    66 王秉宏、毛丹、王雷、徐伯铭,交通流中的自组织临界性研究[J],广西师范大学学报,2002,20(1).pp.45-50
    67 J.M.Castillo,P. Pintado and F.G. Benitez,the reaction time of drivers and the stability of traffic flow, Transpn. Res.-B.Vol.28B,No. 1,pp.35-60,1994
    68 Shin-ichi Tadaki and Macoto Kikuchi Self-organization in a two-dimensional cellular automaton model of traffic flow J.Phys. Soc. Jpn, 64(1995),pp.45044508
    69 B.H.Wang and P.M. Hui One-dimensional traffic flow problems:a microscope approach J.Phys, Soc. Jpn,66(1997),pp. 1238-1241
    70 Satoshi Yukawa and Macoto Kikuchi Density fluctuations in traffic flow J. Phys. Soc. Jpn,65( 1996)pp. 916-919
    71 冯威东、贺国光、刘豹,基于自组织理论的交通流初步研究,[J]系统工程学报,13(1998),PP.104-108
    72 李作敏等,高速公路交通流分形特性分析,[J] 中国公路学报,13(3)82-85,2000
    73 贺国光 冯蔚东,ITS与自组织理论,[J]公路交通科技,15(3):8-12,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700