用户名: 密码: 验证码:
仿真固沙灌木构型参数及防风固沙效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国干旱区面积约占陆地面积的32.8%,而风沙则是引发区域灾害的重要因素之一。控制风沙危害对于干旱区工农业生产和人居环境意义深远。由于水资源限制,沙障成为干旱区治沙的主要措施。选用替代材料,对于区域风沙危害防治具有现实意义。沙旱生灌木构型和防风固沙特性研究将对植物治沙理论完善、干旱区的植物治沙工程设计、风沙灾害防治和植物防风固沙工程评价提供参考。通过野外观测和风洞模拟实验,观测了民勤治沙综合实验站周围的7种灌木,分析了其构型与枝系格局;测定了仿真固沙灌木构型及其对风沙流作用,并对其构成的灌木林的水平和垂直梯度风速、输沙量、风蚀量或风积量进行了观测,分析了空气动力粗糙度、风沙流结构和输沙率等。初步确定了防风固沙灌木结构参数,比较了仿真固沙灌木的防风固沙效能。仿真固沙灌木以优良的固沙灌木为原型,结合多种植物构件优势组合而成,是化学固沙的立体化,也是植物固沙的工程应用。应用仿真固沙灌木建立防风固沙林随时可以栽植,基本不受立地条件约束,可以补充和优化防风固沙林,也为灌木林防风固沙机理的野外模拟研究提供了材料。通过观测分析7种沙旱生灌木以及仿真固沙灌木及其灌木林,获得如下结论。
     1)梭梭、花棒、沙拐枣、白刺、红砂、沙篙和油篙的构型可归为两类,而枝系格局也属于两种类型,灌木个体的空间结构影响其防风固沙能力。
     (1)从生物形态学特征分析,以叶的多少和相对大小,将白刺定为有叶型灌木,梭梭、沙拐枣、红砂、花棒、沙篙和油篙都归入叶特化类型。以枝的密度可分为密生型和疏生型灌木,红砂、白刺、油篙和花棒可归为密生型灌木,梭梭、沙拐枣和沙篙则可定为疏生型灌木。
     (2)从枝系格局分析,叶特化灌木的各级枝分枝角变化较小,有65.0%的分枝角为25o~50o,有叶灌木的冠层的一级枝的分枝角度大于叶特化灌木。7种灌木分枝角度平均值趋势是自冠层内向外分枝角度逐渐变大,枝序都可分为四级。油篙、花棒、沙拐枣、白刺和红砂为外层枝较短而内层枝较长,梭梭和沙篙则为外层枝较长,而中间枝较短的逐级增长型灌木,所有观测灌木枝长主要是5~30cm;分枝分维数都小于1,也就是说随着枝长的增加,分枝数增加的趋势变小,即枝长达到一定值时就不再产生分枝。除梭梭外,6种灌木的总体分枝率都小于1,说明6种灌木的枝条分布都是外密内疏。所观测灌木的积沙量与枝条分布的高度和密度均匀度相关,迎风面枝条的密度约在20%~30%积沙量相对较大。
     (3)白刺和红砂的树冠近似成坛状,白刺和红砂的侧影面积在高度10cm内最大,而红砂的侧影面积随高度变化幅度较白刺为小。花棒、梭梭和沙篙的侧影面积最宽处则为高度20-40cm范围,略成梭形。沙拐枣的侧影面积则随高度变化幅度与其他几种灌木相反,在最高处宽度最大,近乎扫帚形态。
     2)仿真固沙灌木采用高分子聚合材料加工而成,仿照固沙灌木结构制作,参考天然灌木的构型与枝系,制作了有叶仿真固沙灌木和无叶仿真固沙灌木两种。仿真固沙灌木可以单独应用建立防护林,也可与其它机械沙障、雨养植被配置,形成工程治沙为主的防护体系,也可形成以植物为主、仿真植物补充的植物治沙体系。
     (1)仿真固沙灌木总枝序为3~4级,分枝数自树体冠层内向冠层外逐级增加;分枝角介于25o~50o之间,自树冠层内向冠层外,分枝角逐级增大;枝长介于5~50cm之间;有叶仿真固沙灌木高度为50cm;叶披针形长4-7cm,无主干,主枝上不再分枝,直接在枝上连接叶,叶充当一级枝,形成二级枝序的独根仿真固沙灌木。无叶仿真固沙灌木高40cm,分为三级枝序,第三级枝全部集中凝结形成独根。两种仿真固沙灌木皆以钢丝为骨架,具有柔韧性,为无主干的丛枝灌木。
     (2)仿真固沙灌木的冠形为半球状,构型为内疏外密,侧影面的枝密度为25%-50%。仿真固沙灌木的冠幅覆盖面积为0.50-0.78m~2,侧影面积等于冠幅覆盖面积50%。可以设置成不同覆盖度纯林,也可以与其他植物或沙障等搭配组合,形成防风固沙体系。
     3)通过野外和风洞仿真固沙灌木个体对风速影响和积沙形态比较,仿真固沙灌木增大了地表粗糙度,降低了风速,减弱了风力,拦截运动沙粒形成积沙,仿真固沙灌木纯林及与梭梭混交林防风防风固沙效应显著。
     (1)在野外对照观测无叶仿真固沙灌木、有叶仿真固沙灌木和沙篙周围风速,仿真固沙灌木风速削减率随风速增大而增加;不同风速等级,仿真固沙灌木风速削减率不同。在20cm高度,无叶仿真固沙灌木最大降低风速达75.08%,有叶仿真固沙灌木最大风速削减率达50.23%。当风速大于5m/s时,有叶仿真固沙灌木风速削减率相对较大。有叶和无叶仿真固沙灌木的平均透风系数大于50%,最大可达92.23%,但小于对照观测的沙篙透风系数。
     (2)无叶仿真固沙灌木的积沙范围可达0.50m2,每株无叶仿真固沙灌木积沙体积约为其冠幅体积的3倍,无叶仿真固沙灌木的积沙以其为中心呈饼状。有叶仿真固沙灌木形成漏斗形积沙形态,每株有叶仿真固沙灌木积沙体积约为其冠幅体积的1.04倍。
     (3)无叶仿真固沙灌木纯林的防风效能低于有叶仿真固沙灌木林,但二者都随风速增加而增大。当风速为8.0-10.7m/s,有叶仿真固沙灌木林降低风速率约是无叶仿真固沙灌木林的1.5倍。不同风速和不同高度,两种仿真固沙灌木平均削弱风速差异显著。两种仿真固沙灌木纯林风速与高度变化关系都呈指数函数关系,仿真固沙灌木林粗糙度是流沙地2.01倍。
     (4)仿真固沙灌木+梭梭林平均降低风速率小于塑料方格沙障,但随着风速等级的增加,仿真固沙灌木与塑料方格沙障降低风速的差值缩小。在风速为8.1-8.9m/s时,仿真固沙灌木降低风速率达塑料方格沙障的80%。在20cm高度,梭梭+仿真固沙灌木林输沙率随高度变化为指数递减相关;裸沙地平均输沙率是梭梭+仿真固沙灌木林输沙率的4.13倍。在流沙地仿真固沙灌木林内,观测50cm高度输沙率,仿真灌木林密度越大,输沙率越小。裸沙地输沙率最小输沙率是仿真固沙灌木林输沙率的1355.70倍,仿真固沙灌木林具有显著的阻沙和固沙作用。
     (5)在7m/s、9m/s、12m/s、15m/s实验室控制风速下,有叶仿真固沙灌木在风洞内形成6个减速区和4个加速区。仿真固沙灌木的主枝条数量为16-20根,疏透度为30%-40%之间的防风阻沙效能相对较大,在不同风速下输沙率的变异系数较小,是相对较优的仿真固沙灌木构型。
The32.8percent of total territory of China is located arid region with a common and strong harm from wind and sand. It is important to control wind-sand disaster for developing region economy and improve resident quality in arid area of China. As less water resource, it was still a main method in arid region to set up the sand barrier for controlling wind-sand harm. It would be worth to research and develop a new material and techniques on integration and experiment at harm area of arid region for the implement on enhanced function of control desertification damage, and a urgently task on wind-sand action, control wind and sand harm, especially the connection between structure of shrub and wind-sand flux. It would boost the study and give an actuality improve to support control theory of plant, design and management of combating project on wind-sand, disaster prevention and control and evaluation of engineering of combating wind and sand harm. The control efficiency of simulation shrub forest was effected relatively the wind-sand action and combating damage of wind and sand by an investigation in simulated plant of field and reference simulated experiment in wind tunnel. The architecture of seven shrubs and simulation shrub was measured in field and wind tunnel at Gansu Minqin National Studies Station for Desert Steppe Ecosystem with the Minqin Desert Botanical Garden and Sha Potou Desert Study Station. It was discussed that the architecture index of simulation shrub and the efficiency of simulation shrub forest to defend wind and sand damage. The architecture and ordination of branchs the relation between architecture of simulated shrub and wind-sand action, vertical and horizontal wind velocity, transporting sand, aeolian and traped sand were measured and aerodynamic roughness, structure of sand cloud and ratio of sand dischange were calculated. The simulated shrub, which modeled the shrub, combined goodness of constructions of psammophyteses with adaption architecture at wind-sand environment, and the techniques of control wind-sand disaster by simulated shrub that was a chemistry control wind-sand, as well as control wind-sand by biological method. It was not limited to establish windbreak for denfending wind-sand by forest that would be supplied by simulated shrub and gived a material for study on mechanism of desert control by shrub. The results were as follows to be taken by the study in field and wind tunnel on simulation shrub.
     1) The architectures of Haloxylon ammodendron, Hedysarum scoparium, Calligomtm mongolicum, Nitraria tangutorum, Reaumuria kaschgarica, Artemisia ordosica and A. arenaria were divided into two categories, as well as the branch ordination, which affected the ability to control wind-sand by shrub.
     (1) According to the biological characteristics such as leaf, Nitraria tangutorum was category with relative big leaf, and the others were classified into a type with especial leaf. Reaumuria kaschgarica, Nitraria tangutorum, Artemisia ordosica, Hedysarum scoparium, would be classified into a shrub with dense branching architature, as well as the spacing architecture of Haloxylon ammodendron, Calligonum mongolicum, Artemisia arenaria.
     (2) On the basis analysis of branche ordination,65.0%of branching angle was25°~50°. The changes of different grade branch's branching angle of shrub with leaf, were bigger than that of shrub with especial leaf. The mean of branching angle of seven shrubs was gradually bigger from inside to outer position of canopy. The branch ordination of all of seven shrubs was divided into four degrees, according to proportion of branching by degrees rate. The branch length of all observated shrubs was mainly5-30cm. The outer branches of canopy of Artemisia ordosica, Hedysarum scoparium, Calligonium mongolicum, Nitratia tangutorm and hololachne soongarica were shorter than that of ins id banches. It was shrub, such as Haloxylon ammodendron and Artemisia arenaria, that outer branches were gradually longer than that of middle branch and inside. The count of branching fractal dimension of shrubs observed all of was decimal, which showed that increased degree of length of branch decrease with that of branch length increase, and would not devided secondary branch as branch length achieved a certain value, but it had one branch at least. Except Haloxylon ammodendron, all of branching rate of six shrubs were smaller than one, which showed that branching distribution of the six shrubs was dense outside whereas thinned inside of canopy. The collection quantity of sand related with percent of windward density of branch distribution as20%-30%, and relatively collected larger number of sand.
     (3) The outline of Nitraria tangutorum and Reaumuria songarica was like a bomb one with the widest at the height of10cm, while the grade of change upwind projected area with height of Reaumuria songarica is smaller than that of Nitraria tangutorum. The canopy of Hedysarum scoparium, Haloxylon ammodendron and Artermisia sphaerocephala was like spindle with the widest at the height of20-40cm. It was opposite with measured other shrubs that wide of upwind projected area of Calligonum mongolicunl increase with height of canopy which showed the widest at the top and almost a shape like a broom.
     2) The simulation sand-fixed shrub was maded from polymer materials, and simulating architecture of sand-fixed shrub. The two kinds of simulation sand-fixed shrub modeled natural shrub were produced which one was simulation shrub with leaf, and another leafless simulation shrub, according to configuration and branching architecture. The simulation shrub had advantage of sand barrier and sand-fixed shrub. It could be a method to establish shelterbelt alone or collocate with other sand barrier or rain-fed vegetation by simulation shrub.The biological sand-control system and sand barrier was complemented by simulation shrub.
     (1) The branch ordination of simulation shrub should progressively reduce from the inside to outside of canopy, and the grade of general branch ordination was3-4levels. The branch angle of simulation shrubs should be better between25°to50°. The branch angle progressively became bigger from grade to grade at the inside to outside of canopy. The simulation shrub with leaf would be composed with lanceolate leaves at length of4-7cm, without trunck at height of5-50cm, and tall of50cm. The leaves connect directly the primary branch without secondary branch, which formed simulattion shrub with alone roots without the secondary branch ordination. The height of simulated shrubs without leaves is40cm, it can be divided into three-level branch ordination, the third-level branch all concentrate on the roots; the two kinds of simulated shrubs take the steel wire as its body, it has flexibility, is arbuscular without trunk.
     (2) The shape of simulation shrub was hemispherical canopy whith architecture of sparse inside and dense outside. The branch density of upwind projected area would be not less than0.25-0.50, and it was half that upwind projected area equal the canopy area of0.50-0.78m2. The simulation sand-fixed shrubs could be established windbreak by themself and combined sand-fixed forestry system with shrubs.
     3) Compared the impact on the wind velocity and the magnitude of transported and accumulated sand in experiment in the field and wind tunnel, it determined that the simulation shrubs increased the surface roughness, reduced the wind velocity, weakened wind power, and intercepted movement sand, and had evident function to control wind and fix shifting sands.
     (1) The wind velocity, surround the simulation no-leaf-shrub and the leaf simulation in the field, as well as Artemisia arenaria, decreased relatively with wind velocity increased. Under the different wind velocity grade, the ratio of weakened wind velocity of the simulation shrubs was different. At height of20cm, it was biggest ratio of75.08%to decrease wind velocity by no-simulation leaf-shrubs, as well as50.23%of the simulation leaf-shrubs. It was relatively large that simulation leaf-shrubs decraese ratio of wind velocity at the wind velocity more than5m/s. The average ventilation coefficient of the leaf and no-simulation leaf-shrubs was more than50%, and the largest was92.23%, while less than the ventilation coefficient of Artemisia arenaria.
     (2) The range of accumulating sand of simulation no-leaf-shrubs was up to0.5m2. The volume of accumulating sand of per simulation shrubs was about three times of its canopy volume, and shape accumulated sand of no-simulation leaf-shrubs with its center look like a discoid. The simulation leaf-shrubs formed a funnel-shaped accumulated sand shape, and the sand volume of per simulation leaf-shrubs was approximately1.04times of its canopy volume.
     (3) Windbreak efficiency of simulation no-leaf-shrubs forests was lower than the simulation leaf-shrubs forests, while efficiency of both increased with the wind velocity. At the wind velocity was8.0-10.7m/s, the rate of reducing the wind velocity of the simulation leaf-shrubs forest was about1.5times that of the simulation no-leaf-shrubs forest. At different wind speeds and at different heights, the difference of weakening the average wind speed of two kinds of simulation shrubs was significant. The wind velocity of two simulation shrubs forests had exponent function relationship with a high degree of change, and the roughness of simulation shrubs forest was more two times of that shifting sand-land.
     (4) The average reducing ratio of wind velocity of simulation shrubs+Haloxylon ammodendron forest was less than that of the plastic checkerboard barrier. Nevertheless, the compared ratio decreasing the wind velocity between simulation shrubs and plastic checkerboard barriers was less with the wind speed increasing. At8.1-8.9m/s of wind velocity, the ratio of decreasing wind velocity of the simulation shrubs was80%of plastic checkerboard barriers. At height of20cm, the transporting rate of Haloxylon ammodendron+simulation shrub forest was exponential decline correlation coefficient with height changes. The average transporting rate of the pure sand-land was4.13times of the Haloxylon ammodendron+simulation shrub forests. At moving sandland, the transport ratio of sand was measured. The results shown the transporting rate of sand in simulation shrub forest increased with the dencity of forest was less. The average transporting rate of the pure sandland was1355.70times of the simulation shrub forests with1.5×2.0m of spacing in the rows and spacing between rows.
     (5) At the7m/s,9m/s, of12m/s, and15m/s of wind velocity of laboratory, six deceleration zone and four acceleration zone of wind velocity were formed around simulation leaf-shrubs. The number of main branches of simulation shrubs was16-20branchs. The performance ratio of wind and sand prevention was relatively large with transparence degrees30%-40%of simulation leaf-shrubs. At different wind velocity, sand transport ratio of sand was relatively less, which was compared with better simulation shrubs architecture.
引文
[1]吴正等.风沙地貌与治沙工程学[M].北京:科学出版社.2009:91-153.
    [2]张奎壁,邹受益.治沙原理与技术[M].北京:中国林业出版社.1989:1-83.
    [3]治沙造林学编委会.治沙造林学[M].北京:中国林业出版社,1981,69-132.
    [4]朱朝云,丁国栋,杨明远.风沙物理学[M].北京:中国林业出版社.1992,2-23
    [5]刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社,1995:1-208.
    [6]董飞刘大有贺大良风沙运动的研究进展和发展趋势.力学进展,1995,25:368-391
    [7]王涛.走向世界的中国沙漠化防治的研究与实践[J].中国沙漠,2001,21(1):1-3.
    [8]中国科学院寒区旱区环境与工程研究所组编.中国科学院寒区旱区环境与工程科学50年[M].科学出版社,北京,2009:191-261.
    [9]董治宝.中国风沙物理50年[A].中国科学院寒区旱区生态与工程研究所沙坡头沙漠试验研究站.中国
    沙漠研究与治理50年[C].北京:海洋出版社,2005:87-105.
    [10]董治宝,王涛,屈建军.100a来沙漠科学的发展[J].中国沙漠,2003,23(1):1-9.
    [11]常兆丰,刘虎俊.综合治沙的实践及其讨论[J].防护林科技,1998,4:32-34.
    [12]董治宝.拜格诺的风沙物理学研究思想[J].中国沙漠,2002,22(2):4-10.
    [13]董治宝,苏志珠,钱广强,等.库姆塔格沙漠风沙地貌[M].北京,科学出版社,2011:272-287.
    [14]Bagnold RA.The Physics of Blown Sand and Desert Dunes[M].New York Methuen.1941,41-50
    [15]李振山,倪晋仁.风沙流研究的历史、现状及其趋势[J].干旱区资源与环境,1998,12(3):89-96.
    [16]李振山,董志宝,陈广庭.风沙运动模拟研究的进展[J].干旱区研究.1997,14(1):63-67.
    [17]郑晓静.风沙运动的力学机理研究[J].科技导报,2007,25(14):23-27.
    [18]张钛仁,宋振鑫,王金艳,等.植被参数变化对沙尘起沙影响机理的数值模拟[J].高原气象2008,27(2):392-401.
    [19]仿真植物、仿真树、仿真水果的制作技术专利大全[Z].http://w ww.ncpsjg.com/a_zlq w/a_09zhl/a92gyp/a9223. htm.
    [20]王继和,马全林,吴春荣,等.仿真固沙植物[Z].中国,专利号:1038669[实用新型专利],2008.04.09.(http://www.cn5195.com/Page.asp?Language=Gb2312&ID=4953).
    [21]万四新.“仿真植物”在城市园林绿化中的应用研究[J].安徽农业科学,2007,35(11):32-34.
    [22]陈波,宋永昌.木本植物的构型及其在植物生态学研究的进展[J].生态学杂志.2002,21(3):52-56.
    [23]常杰,陈刚,葛滢.植物形态结构定量研究的新方法——分形模拟[J].植物学通报.1996,13(2):57-62
    [24]常杰.植物结构的分形特征及模拟[M].杭州:杭州大学出版社.1995,10-55.
    [25]安尼瓦尔,尹林克.柽柳属植物的生物量研究[J].新疆环境保护,1997,19(1):46-50.
    [26]苏金梅,李钢铁,秦富仓,等.梭梭人工林地上生物量预测研究.内蒙古林业科技,1997,(3):9-11.
    [27]何明珠.荒漠植物枝系构型分类研究[A].中国科学院寒区旱区生态与工程研究所沙坡头沙漠试验研
    究站.中国沙漠研究与治理50年[C].北京:海洋出版社,2005:285-292.
    [28]何明珠,王摇辉,张景光.民勤荒漠植物枝系构型的分类研究.西北植物学报,2005.25(9):1827-1832.
    [29]何明珠,张景光,王摇辉.荒漠植物枝系构型影响因素分析.中国沙漠,2006.26(4):625-630.
    [30]张德魁,王继和,马全林,等.油蒿与沙蒿枝构件特征研究[J].草原与草坪,2009,(1):43-46.
    [31]詹科杰,王继和,马全林,等.沙蒿、油蒿空间构件及固沙机制研究[J].甘肃林业科技,2005,30(5):1-4
    [32]屈志强,刘连友,吕艳丽.沙生植物构型及其与抗风蚀能力关系研究综述[J].生态学杂志,2011,30(2):357-362.
    [33]李建刚,王继和,蒋志荣,等.民勤县主要治沙造林树种空间结构及其防风作用[J].水土保持研究,2008.15(3):121-124.
    [34]刘小平,董治宝.空气动力学粗糙度的物理与实践意义[J].中国沙漠.2003,23(3):338-346.
    [35]刘小平,董治宝.直立植被粗糙度和阻力分解的风洞实验研究[J].中国沙漠.2002,22(1):82-87.
    [36]刘小平,董治宝.零平面位移高度的Marquard算法[J].中国沙漠.2002,22(3):233-235.
    [37]马世威.风沙流结构的研究[J].中国沙漠.1988,8(3):8-22.
    [38]丁国栋.野外风沙流结构的定量研究[J].内蒙古林业科,1994,1:38-40.
    [39]董治宝,钱广强.关于风沙流中风速廓线的进一步实验研究[J].中国沙漠,2003,23(6):71-824.
    [40]孙其成,王光谦.风沙运动的计算机模拟[J].科学通报.2001,46(3):254-256.
    [41]薛娴,张伟民,王涛.戈壁砾石防护效应的风洞实验与野外观测结果[J].地理学报,2000,55(3):375-383.
    [42]张克存,屈建军,俎瑞.下垫面条件对风沙活动层气流紊动性影响的风洞模拟[J].水土保持通报,2004,24(3):352-355.
    [43]张克存,屈建军,俎瑞平,等.不同下垫面对风沙流特性影响的风洞模拟研究[J].干旱区研究,2004,27(4):352-354.
    [44]邹学勇,朱久江,董光荣等.风沙流结构中起跃沙粒垂直初速度分布函数[J].科学通报.1992,37(23):2175-2177
    [45]刘连友,刘玉璋,李小雁,等.砾石覆盖对土壤吹蚀的抑制效应[J].中国沙漠,1999,19(1):60-62.
    [46]韩致文,王涛,董治宝.风沙危害防治的主要工程措施及其原理[J].地球科学进展,2004,23(1):13-21.
    [47]韩致文,陈广庭,胡英娣,等.塔里木沙漠公路防沙体系建设几个问题的探讨[J].干旱区资源与环境,2000,14(2):35-40.
    [48]韩致文,刘贤万,姚正义,等.复膜沙袋阻沙体与芦苇高立式方格沙障防沙机理风洞模拟实验[J].中国沙漠,2000,20(1):41-44.
    [49]姚正毅,陈广庭,韩致文,等.机械防沙体系防沙功能的衰退过程[J].中国沙漠,2006,26(2):226-231.
    [50]Qiu Guoyu, Lee In Bok, Shimizu Hi, et al. Principles of sand dune fixation with straw checkerboard technology and its effects on the environment[J]. Journal of Arid Environments,2004,56:449-464.
    [51]Wang Zhengting, Zheng Xiaojing. A numerical simulation of fluid flowing through a windbreak[J]. Key Engineering Materials,2003(243-244):607-612.
    [52]常兆丰,赵明.民勤荒漠生态研究[M].兰州:甘肃科学技术出版社[J],2006:1-197.
    [53]凌裕泉,金炯,邹本功等.栅栏在防治前沿积沙中的作用[J].中国沙漠,1984,4(3):16-25.
    [54]常兆丰,仲生年,韩福贵,等.粘土沙障及麦草沙障合理间距的调查研究[J].中国沙漠,2000,20(4):455-457.
    [55]孙显科,郭志中.沙障固沙原理的研究[J].甘肃林业科技,1999,24(2):7-12.
    [56]王振亭,郑晓静.草方格沙障尺寸分析的简单模型[J].中国沙漠,2002,22(3):229-232.
    [57]胡霞,刘连友,严平,等.不同地表状况对土壤风蚀的影响[J].水土保持研究,2006,13(4):116-119.
    [58]胡英娣.方格沙障麦草致腐因素与防腐方法的研究[J].干旱区资源与环境,1988,2(1):82-91.
    [59]马全林,王继和,刘虎俊,等.机械沙障在退化人工梭梭林恢复中的应用[J].干旱区研究,2005,22(4):526-532.
    [60]马全林,王继和,詹科杰,等.塑料方格沙障的固沙原理及其推广应用前景.水土保持学报,2005,19(1):36-39.
    [61]张克存,屈建军,俎瑞平,等.不同结构的尼龙网和塑料网防沙效应研究[J].中国沙漠,2005,25(4):483-487.
    [62]屈建军,凌裕泉,刘贤万,等.尼龙网栅栏防沙效应研究[J].兰州大学学报,2002,38(2):171-176.
    [63]屈建军,井哲帆,张克存,等.HDPE蜂巢式固沙障研制与防沙效应实验研究[J].中国沙漠,2008,28(4):599-604.
    [64]Qu jianjun,Zu ruiping.,Zhang kecun,et al. Field observations on the protective effect of semi-buried checkerboard sand barriers[J]. Geomorphology2007,88,193-200.
    [65]Qu Jianjun, Huang Ning, Dong Guangrong, et al. The role and significance of the gobi desert pavement in controlling sand movement on the cliff top near the Dunhuang Mogao Grottoes[J]. Journal of Arid Environments,2001,48:457-371.
    [66]胡英娣.几种化学固沙材料抗风蚀的风洞实验研究[J].中国沙漠,1997,17(1):103-106.
    [67]董智,李红丽,左合君,等.土壤凝结剂沙障防沙机理的风洞模拟实验研究[J].干旱区资源与环境,2004,18(3):154-159.
    [68]丁庆军,许祥俊,陈友治,等.化学固沙材料研究进展[J].武汉理工大学学报,2003,25(5):27.
    [69]严亮,杨久俊.新型化学固沙材料的研究现状及其展望[J].材料导报,2009,23(3):51-54.
    [70]王训明,董治宝.起沙风统计和工程输沙量计算中的若干问题[J].干旱区资源与环境.2000,14(3):41-45.
    [71]申建友,董光荣,李长治.风洞与野外输沙率的分析与讨论[J].中国沙漠.1988,8(3):23-30.
    [72]关德新.林带中阻力分布的理论与实验研究[J].应用生态学报.1996,7(2):129-133.
    [73]黄富祥,王明星,王跃思,等.植被覆盖对风蚀地表保护作用研究的某些研究进展[J].植物生态学报.2002,26(5):627-633
    [74]黄富祥,高琼.毛乌素沙地不同防风材料降低风速效益的比较[J].水土保持学报.2001,15(1):27-31.
    [75]黄富祥.毛乌素沙地植被覆盖率与风蚀输沙量定量关系[J].地理学报.2001,56(6):700-710
    [76]董治宝,Fryrear,D.W直立植物防沙措施粗糙特征的模拟实验[J].中国沙漠.2000,20(3):260-263.
    [77]董治宝,陈渭南.植被对风沙土风蚀作用的影响[J].环境科学学报.1996,20(4):437-443
    [78]张春来,邹学勇,董光荣,等.植被对土壤风蚀影响的风洞实验研究[J].水土保持学报.2003,20(3):260-263
    [79]程致力,高尚武,王志刚.人工绿洲防护体系对沙尘控制作用的研究[J].林业科学研究,1989,2(5):483-488.
    [80]高永,邱国玉,丁国栋,等.沙柳沙障的防风固沙效益研究[J].中国沙漠.2004,24(3):365-370.
    [81]何洪鸣,周杰.防护林对沙尘阻滞作用机理分析:建立微分的动态模型[J].中国沙漠,2002,22(2):197-200.
    [82]马瑞,王继和,刘虎俊,等.不同密度梭梭林对风速的影响[J].水土保持学报,2009,23(2):249-252.
    [83]董治宝,李红丽,左合君,等.土壤凝结剂沙障防沙机理的风洞模拟实验研究[J].干旱区资源与环境,2004,18(3):154-159.
    [84]黄强,雷加强,王雪芹.塔里木沙漠公路不同地貌部位的高立式沙障阻沙特征[J].干旱区地理,2000,23(3):227-232.
    [85]张伟民,王涛,薛娴,等.敦煌莫高窟风沙危害综合防护体系探讨[J].中国沙漠,2000,20(4):409-414.
    [86]王训明,陈广庭,韩致文,等.塔里木沙漠公路沿线机械防沙体系效益分析[J].中国沙漠,1999,19(2):120-127.
    [87]Wang Xunming, Dong Zhibao, Chen Guangting. On efficiency of sand-controlling system along the Tarim Desert High-way in Taklamakan Desert[J]. Journal of Arid Environments,2000,10(2):141-150.
    [88]孙庆伟,王涛,韩致文,等.北疆铁路沿线风沙危害的研究[J].中国沙漠,2004,24(2):182-186.
    [89]于云江,史培军,鲁春霞.青藏铁路客城区段风沙流特点及沙害防治措施的研究[J].自然灾害学报,2001,10(1):30-36.
    [90]李爱德,赵明,王耀琳,等.民勤地区不同梭梭林地水分平衡研究[A].王继和.甘肃治沙理论与实践[C].兰州:兰州大学出版社,1999:50-55.
    [91]哈伦,冯学平.几种防风固沙林对地下水位影响的初探[J]内蒙古林业科技,1998,1:33-44.
    [92]张华,李锋瑞,Yasuhito Shirato固沙林庇护区内土壤-植物系统的变化特征[J].水土保持学报,2003,17(3):144-148.
    [93]Wolfe S A, Nickling W G. The protective role of sparse vegetation in wind erosion[J]. Progress on Physical Geography,1993,17:50-68.
    [94]Musick H B, Trujillo S M, Truman C R. Wind tunnel modeling of the influence of vegetation structure on saltation threshold[J].Earth Surface Processes Landform,1996,21:589-605
    [95]Wilson J.D. On the choice of a windbreak porosity profile. Boundary-Layer. Meteorol.,1987,38,37-49.
    [96]Wen K.J., Wang, Y.S. The statistical analysis of shelterbelt structure and windproof efficiency. Agric. For. Meteorol.,1991,53,257-266.
    [97]Rui Ma,Jihe Wang,Jianjun Qua,et al. Effectiveness of shelterbelt with a non-uniform density distribution[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(12):767-771.
    [98]Zhou X.H., Brandle, J.R., Takle, E.S., et al. Estimation of the three dimensional aerodynamic structure of a green shelterbelt. Agric. For. Meteorol.,2002,111,93-108.
    [99]唐艳,刘连友,屈志强,胡霞,等.植物阻沙能力研究进展.中国沙漠,2011,31(1):44-48.
    [100]唐艳,刘连友,屈志强,胡霞,等.毛乌素沙地南缘3种灌草丛形态与阻沙能力的对比研究.水土保持研究,2008,15(2):44-49.
    [101]Bas Roels,Sebastiaan Dnoders等.风沙移动与植物生物量的关系以及植物固沙能力研究[J].植物学报.2001,43(9):979-982
    [102]胡隐樵,孙菽芬,郑元润.稀疏植被下垫面与大气相互作用研究进展[J].高原气象.2004,23(3):282-296.
    [103]廖空太.防风固沙林优化模式的树种选择及其配置[J].甘肃林业科技,1995,3:15-22.
    [104]王翔宇,赵名彦,丁国栋.天然灌草植被防治土壤风蚀机理[J].水土保持通报,2008,28(5):54-59.[105]乌拉,张国庆,辛智鸣.单个天然灌丛防风阻沙机理与效应[J].内蒙古林业科技,2008,34(2):36-39.
    [106]胡玉昆,徐新文,潘伯荣塔.塔克拉玛干沙漠腹地不同灌溉形式(投入)生物防护林建设效果分析[J].干旱区资源与环境,2002,16(2):45-49.
    [107]修竹奇,刘明义,刘艳军.植物网格沙障防风固沙试验研究[J],中国水土保持,1995,8:33-34.
    [108]刘艳军,刘明义,张力,等.华棒带状沙障防风固沙试验研究[J].中国水土保持.1994(4):23-25.
    [109]慕青松,陈晓辉.临界侵蚀风速与植被盖度的关系[J].中国沙漠,2007,27(4):534-538.
    [110]常兆丰,仲生年,韩富贵,等.民勤沙区风害及防风固沙林的效益观测研究[J].甘肃环境研究与监测,1997,10(4):11-14.
    [111]杨文斌,赵爱国,王晶莹.低覆盖度沙蒿群丛的水平配置结构与防风固沙效果研究[J].中国沙漠,2006,26(1):108-112.
    [112]杨文斌,卢琦,吴波.低覆盖度不同配置灌丛内风沙流结构与防风效果的风洞实验[J].中国沙漠,2007,27(5):791-796.
    [113]梁海荣,王晶莹,卢琦,等.低覆盖度乔木两种分布格局内风速流场和防风效果风洞实验[J].中国沙漠,2007,27(5):791-796.
    [114]钟卫,孔纪名,杨涛.植被沙障对近地表风沙流特征影响的风洞实验[J].干旱区研究,2009,26(6):944-948.
    [115]陈世雄.沙坡头地区铁路两流沙上人工植被的生态效果[J].中国沙漠,1983,3(4):35-41.
    [116]李琦,孙根年,韩亚芬.植被防风固沙生态功能的时间同步性研究[J].陕西师范大学学报(自然科学版),2008,36(1):94-98.
    [117]胡孟春,屈建军,赵爱国,等.沙坡头铁路防护体系防护效益系统仿真研究[J].应用基础与工程科学学报,2004,12(2):140-147.
    [118]陈世雄.沙坡头地区铁路两侧流沙上人工植被的生态效果[J].中国沙漠.1983,3(4):35-41.
    [119]洗晓东,程致力,区柏森,等.防风固沙林阻沙效果的风洞模拟实验[J].林业科学研究,1992,5(2):219-224.
    [120]董治宝,陈渭南,董光荣,等.植被对风沙土风蚀作用的影响[J].环境科学学报.1996,16(4):437-443.
    [121]Lancaster N. Bass A. Influence of vegetation cover on sand transport by wind:field studies at Owens Lake.Califorma[J]. Earth Surface Processes and Landforms.1986.11:505-514.
    [122]Raine,J.K,Stevenson,D.C..Wind protection by model fences in a simulated atmospheric boundary layer[J]. J. Wind Eng. Ind. Aerodyn.,1977,2:159-180.
    [123]Satyanto Krido Saptomo,Yoshisuke Nakano,Kozue Yuge,et al. Observation and simulation of thermal environment in a paddy field[J]. Paddy Water Environ,2004,2:73-82.
    [124]Wasson R J.,Nanninga P M. Estimating transport of sand on vegetation surfaces[J]. Earth Surface Processes and Landforms.1986.11:505-514.
    [125]Chepil W.S., Woodruff N.P. and Siddoway F.H. et al. Vegetative and nonvegetative materials to control wind and water erosion[J]. Soil Sci. Soc. Am. Proc.1963,27(1):86-89.
    [126]Catherine Bressolier,Thomas Yves F. Studies on wind plant interactions on French Atlantic coastal dunes [J]. Journal of Sedimentary Petrology.l979,47(l):331-338.
    [127]Vigiak,O., Sterk,G., Warren,A, Hagen,L. J. Spatial modeling of wind speed around windbreaks. Catena,2003,52:273-288.
    [128]Fryrear D W. Soil cover and wind erosion [J].Transactioas of the ASAE.1985,28(3):781
    [129]张雅静,申向东.植被覆盖地表空气动力学粗糙度与零平面位移高度的模拟分析[J].中国沙漠.2008,28(1):21-26.
    [130]武胜利,李志忠,肖晨曦,等.灌草丛沙堆的研究进展与意义[J].中国沙漠.2006,26(5):734-738.
    [131]李志忠,武胜利,肖晨曦,等.新疆和田河流域灌丛沙堆风洞流场的实验研究(Ⅰ)[J].中国沙漠.2007,27(1):9-14.
    [132]李志忠,武胜利,肖晨曦,等.新疆和田河流域灌丛沙堆风洞流场的实验研究(Ⅱ)[J].中国沙漠.2007,62(5):462-470.
    [133]常兆丰,仲生年,韩富贵.民勤沙漠区气候特征的分析[J].防护林科技.1999,40(3):5-8.
    [134]韩富贵,常兆丰,仲生年.民勤沙区沙丘的基本特征及其移动规律研究[J].防护林科技.2005(3):4-6
    [135]黄兆华,刘媖心.我国沙区重要蒿属植物的特性及应用[J].干旱区资源与环境.1991,5(1):12-21.
    [136]刘媖心.中国沙漠植物志(第二卷)[M].北京:科学出版社,1987:120-127
    [137]刘媖心.中国沙漠植物志(第三卷)[M],.北京:科学出版社,1992:102-127
    [138]王铁娟,杨持,吕桂芬,等.中国北部六种沙蒿的地理替代规律及其主导生态因子.生态学报.2005,25(5):1012-1018.
    [139]贾志清,卢琦,郭保贵,等.沙生植物——梭梭研究进展[J].林业科学研究,2004,17(1):125-132.
    [140]李爱德,赵明,王耀林,等.民勤地区不同林龄梭梭林地水分平衡研究[A],王继和主编.甘肃治沙理论与实践[C].兰州:兰州大学出版社,1999,77-83.
    [141]王继和,马全林,刘虎俊,等.干旱区沙漠化土地逆转植被的防风固沙效益研究[J].中国沙漠,2006,26(6):903-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700