用户名: 密码: 验证码:
基于变形仿生鳍的机器人减摇控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋资源作为一种人类社会可持续发展的重要物质财富,已经发展成为各国重要的战略目标。同时,作为一种在海洋开发和应用领域的高新技术载体,海洋机器人已受到了越来越多的关注。在海洋机器人的帮助下,我们可以更好的保护地球上的海洋资源,以及有效的利用这些资源来为人类服务。由于工程作业时的实际需要,海洋机器人将不可避免的在水面及近水面操作,因此,对水面、近水面机器人的研究和设计已成为重要的发展方向。
     当海洋机器人在近水面低速航行作业时,与处于深海时不同,将受到近水面波浪的干扰。在这些扰动的作用下,机器人将产生摇摆运动,使其姿态平衡受到影响,进而威胁到机器人的工作及安全性能。由于海洋机器人具有航行速度过低、自身形体结构特殊及体积较小等特点,本文提出一种结合仿生学理论及变形鳍技术的新型减摇装置。该装置不仅具有更高的升力产生效率,同时能量消耗较小,适用于海洋机器人近水面低速航行时的姿态控制。
     为研究海洋机器人在近水面时的动力学特性,本文首先对机器人6自由度运动模型进行了分析。为简化控制系统的设计及便于对被控对象的分析,将系统方程在平衡点处线性化,建立具有状态空间形式的海洋机器人近水面运动方程。在对机器人外形结构进行简化的基础上,对近水面波浪干扰力及力矩进行理论分析,利用Morison方程建立干扰力的数学模型,并结合数值仿真确定海浪干扰对机器人的深度干扰范围。
     利用解耦及线性化方法建立用于横摇减摇控制的海洋机器人横摇运动模型。阐述海洋机器人在近水面低速航行时的横摇减摇原理,结合变结构控制理论、自适应控制理论、反馈线性化方法及非线性跟踪控制理论,设计了三种不同的横摇减摇控制策略。所设计的控制策略解决了在海洋机器人横摇减摇控制中,由于海浪干扰的随机性及变形仿生鳍升力模型非线性所带来的具体控制设计问题。通过理论分析及仿真实验,验证了控制器设计的稳定性及有效性。
     进一步,考虑由于水动力参数的不确定性和外界干扰对系统模型的影响,建立海洋机器人横摇、艏摇及横荡相耦合的水平面运动模型。依据舵、鳍联合控制原理,并结合自适应机制及Terminal滑模控制原理,设计针对海洋机器人航向及横摇姿态的综合控制器。建立基于航行阻力及能量消耗的性能指标,利用遗传算法对控制器参数进行优化,实现减摇控制效果及能量消耗的综合最优。理论分析及仿真结果表明,控制器是稳定的,且在保持一定的减摇效果的同时有效减小了系统能量消耗。
As an important sustainable wealth of human society, the ocean resources have become animportant strategy target of all countries. Meanwhile, as a high technology carrier in the fieldof marine resources development and utilization, marine robot has gain more and moreattention. Marine robot can help us better protect the ocean resources of the earth, andefficiently utilize them for human welfare. Due to the actual demand as in engineeringoperations, the research and development of mariner robot operating near surface has becomean important developing direction.
     When marine robot traveling near surface with low velocity, it will be disturbed by wave,which is different from the situation in deep ocean. As for the disturbance, the marine robotwill have swing motion which affects the attitude balancing, and then the robot’s security andworking performance will be damaged. Since the limits of robot’s low speed, special form andsmall size, a new kind of roll damping device is presented which is base on the theory ofbionics and deformation technology. This device has higher lift generate efficiency andsmaller energy consumption, which is suitable for attitude controlling of marine robotoperating near surface with low speed.
     In order to study the dynamic characteristics of marine robot navigating near surface, therobot’s6freedom motion model is firstly analyzed in this paper. To simplify the design of thecontrol system and facilitate analysis of the plant, the system equations are linearized about amean operating state, and the marine robot linear equations of motion in state form ispresented. Through the theoretical analysis of the near surface wave disturbance and thesimplification of robot’s outer structure, the wave force model is established by usingMorison’s equation, and the interference range is identified with the numerical simulation.
     The marine robot roll motion model that is used for roll damping control is established byusing the method of linearization and decoupling. According to the roll damping principal ofmarine robot navigating near surface with low speed,three different control strategies isdeveloped with theory of variable control,adaptive control,feedback linearization andnonlinear tracking control. The specific problems in the roll damping control of marine robotare solved by the proposed control strategies, which is caused by the randomness of wave andnonlinearity of deformation bionic fin’s lift model. The theoretical proof and the results fromsimulation experiments are presented to demonstrate the stability and validity of the controllaw proposed.
     Further, the marine robot motion model in horizontal plane with coupling of roll, yaw andsway is presented, and the effect from system’s uncertainty which is caused by hydrodynamiccoefficients and disturbance is considered. According to the principle of rudder/fin joinedcontrol, an adaptive controller for course keeping and roll damping is designed by using thetheory of terminal sliding mode control. Genetic algorithm is carried out to optimize thecontroller parameters based on the parameterization formula, aiming at getting comprehensiveoptimal of roll reduction and energy consumption. Through theoretical analysis and numericalsimulation, the presented controller is proved to be stable and effective, meanwhile, theenergy consumption is reduced.
引文
[1] Grasmueck M, Eberli G P, Viggiano D A, et al. Autonomous underwater vehiclemapping reveals coral mound distribution, morphology, and oceanography indeep water of the straits of Florida. Geophysical Research Letters,2006,33(L23616):1-6P
    [2] Willcox T S, Bellingham J G, Zhang Y W, et al. Performance metrics foroceanographic surveys with autonomous underwater vehicles. IEEE Journalof Oceanic engineering,2001,26(4):711-725P
    [3] Nicholson J W, Healey A J. The present state of Autonomous underwatervehicle application and technologies. Marine Technology Society Journal,2008,42(1):44-51P
    [4] Nguyen B, Hopkin D. Modeling autonomous underwater vehicle operations inmine hunting. Oceans2005-Europe,2005(1):533-538P
    [5] Nguyen B, Hopkin D, Yip H. Autonomous underwater vehicles:a transformationin mine counter-measure operation. Defense&Security Analysis,2008,24(3):247-266P
    [6] Bovio E, Cecchi D, Baralli F. Autonomous underwater vehicles for scientificand naval operations. Annual Reviews in Control,2006,30(2):117-130P
    [7]赵宁宁,徐德民,高剑.一种多AUV集群猎雷的任务协调算法.水雷战与舰船防护,2011,19(2):26-29P
    [8] Williams S B, Pizarro O, Jakuba M, et al. AUV benthic habitat mapping inSouth eastern Tasmania. Springer Tracts in Advanced Robotics,2010(62):276-284P
    [9] Stevenson P, Furlong F, Dormer D. AUV design-shape, drag and practicalissues. Sea Technology,2009,50(1):41-44P
    [10] English D C, Carder K L. Determining bottom reflectance and water opticalproperties using unmanned underwater vehicles under clear or cloudy skies.Journal of Atmospheric and Oceanic Technology,2006(23):314-324P
    [11] Inzartsev A V, Pavin A M. AUV cable tracking system based on electromagneticand video data. Oceans2008-MTS/IEEE Kobe Technology,Kobe,2008:1-6P
    [12] Doi T, Takano M, Okamura K, et al. In-situ survey of nanomolar manganesein sea water using an autonomous underwater vehicle around a volcanic craterat Teishi Knoll, Sagami Bay, Japan. Journal of Oceanography,2008,64(3):471-477P
    [13] Wadhams P, Doble M J. Digital terrain mapping of the underside of sea icefrom a small AUV. Geophysical Research Letters,2008,35(L01501):1-6P
    [14] Caiti A, Munafo A, Viviani R. Adaptive on-line planning of environmentalsampling missions with a team of cooperating autonomous underwater vehicles.International Journal of Control,2007,80(7):1151-1168P
    [15] Hayes D R, Morison J H. Determining turbulent vertical velocity, and fluxesof heat and salt with an autonomous underwater vehicle. Journal ofAtmospheric and Oceanic Technology,2002,19(5):759-779P
    [16] Powell J, Powell J, G Maise, et al. NEMO: a mission to search for and returnto Earth possible life forms on Europa.Acta Astronautica,2005,57(2):579-593P
    [17] Miller T F, Walter J L, Kiely D H. A next-generation AUV energy system basedon aluminum-seawater combustion.Proceedings of the2002Workshop onAutonomous Underwater Vehicle,2002:111-119P
    [18] Pereira A, Heidarsson H, Oberg C, et al. A communication framework forcost-effective operation of AUVs in coastal regions. Springer Tracts inAdvanced Robotics,2010(62):433-442P
    [19] Lapierre L, Jouvencel B. Robust nonlinear path-following control of an AUV.Oceanic Engineering,2008,32(2):89-102P
    [20] Shupe L, McGeer T. A Fundamental mathematical model of the longitudinaland lateral/directional dynamics of the DOLPHIN type unmannedsemi-submersible. Proceedings of the1987EREP/RRMC Military RoboticApplications Workshop,Victorio,1987:171-181P
    [21] Ueno M, Nimura T. An analysis of steady descending motion of a launcherof a compact deep-sea monitoring robot system. Oceans2002Conference andExhibition,Tokyo,2002:277-284P
    [22] Krishnamurthy P, Khorrami F, Fujikawa S. A modeling framework for sixdegree-of-freedom control of unmanned sea surface vehicles. Proceedingsof the44th IEEE Conference on Decision and Control, and the EuropeanControl Conference.Seville,Spain,2005:2676-2681P
    [23] Caccia M. The Sea-surface autonomous modular unit project. Sea Technology,2004,45(9):46-51P
    [24] Caccia M, Bono R, Bruzzone G A. Design and exploitation of an autonomoussurface vessel for the study of sea-air interactions. Proceedings of the2005IEEE International Conference on Robotics and Automation, Barcelona2005. Piscataway: IEEE,3582-3587P
    [25] Caccia M, Bono R, Bruzzone G, et al. Sampling sea surfaces with SESAMO:an autonomous craft for the study of sea-air interactions.IEEE Robotics&Automation Magazine,2005,12(3):95-105P
    [26]吴立成孙富春袁海斌.水上行走机器人.机器人,2010,32(3):443-448页
    [27]燕奎臣,袁学庆,秦宝成.一种水面救助机器人.机器人,2001,23(6):493-497页
    [28] Richards R J, Stoten D P.Depth control of a submersible vehicle.International Shipbuilding Progress,1981:28,30–39P
    [29] Healey A J, Lienard D. Multivariable sliding-Mode control for autonomousdiving and steering of unmanned underwater vehicles. IEEE Journal ofOceanic Engineering,1993,18(3):327–339P
    [30] Bessa W M, Dutra M S, Kreuzer E. Depth control of remotely operatedunderwater vehicles using an adaptive fuzzy sliding mode controller.Robotics and Autonomous Systems,2008,56(8):670-677P
    [31] Singh H, Yoerger D, Bradley A. Issues in AUV design and deployment foroceanographic research. In: Proceedings of the1997IEEE InternationalConference on Robotics and Automation, Albuquerque, New Mexico, USA,1997:1857-1862P
    [32] Goodman L, Levine E R, Wang Z. Subsurface observations of surface wavesfrom an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering,2010,35(4):779-784P
    [33] Fang M C, Chang P E, Luo J H. Wave effects on ascending and descendingmotions of the autonomous underwater vehicle. Ocean Engineering,2006,33(14-15):1972-1999P
    [34] Ostafichuk P M. AUV hydrodynamic and modeling for improved control. Ph.Ddissertation. Canada: University of British Columbia,2004
    [35]吉向敏.基于仿生翼的小型潜器综合减摇技术研究.哈尔滨工程大学硕士学位论文,2009
    [36]张杰.近水面作业的机器人综合减摇机理研究.哈尔滨工程大学硕士学位论文,2010
    [37]潘立鑫.水下机器人近水面横摇减摇控制策略研究.哈尔滨工程大学博士学位论文,2010
    [38] Williams C D, Bose N, Butt M A, et al. Mast/Snorkel performance of theDOLPHIN AUV. Transaction Society of Naval Architects and MarineEngineers.2000,108(5):369-395P
    [39] Seto M L, Watt G D. The interaction dynamics of a semi-submersible towinga large towfish. International Offshore and Polar EngineeringConferenc,3ISOPE,Golden,1998,263-270P
    [40] Dallinga R P. Roll stabilization of motor yachts: use of fin stabilizersin anchored conditions. Project1999, Amsterdam,1999
    [41] Van Wieringen H M. Design considerations on at anchor stabilizing system.Project2002, Amsterdam,2002
    [42] Dallinga R P. Roll stabilization at anchor: Hydrodynamic aspects of thecomparison of anti-roll tanks and fins. Project2002, Amsterdam,2002
    [43] Gaillarde G, Toxopeus S, Verwoest T, et al. Hydrodynamics of large motoryachts: Past experience and future developments. Project2006,Amsterdam,2006
    [44] http://www.naiad.com
    [45] http://www.quantumhydraulic.com
    [46]金鸿章,綦志刚,罗延明等.基于Weis-Fogh机构的零航速减摇鳍升力模型的研究.系统仿真学报,2007,19(17):4079-4081页
    [47]金鸿章,罗延明,綦志刚等.基于Weis-Fogh机构的零航速减摇鳍升力特性研究.哈尔滨工程大学学报,2007,28(7):762-767页
    [48]王宇,金鸿章,綦志刚.船舶零航速Weis-Fogh减摇鳍升力仿真研究.海军工程大学学报,2007,19(3):21-25页
    [49]金鸿章,罗延明,张晓飞等.零航速减摇鳍电动伺服系统驱动功率研究.中国造船,2007,49(2):67-74页
    [50]姚绪梁,罗延明,张晓飞.基于Weis-Fogh机构的新型船舶电力推进装置研究.海洋工程,2007,25(2):114-121页
    [51] Jin H Z, Qi Z G, He J. Research on a Method to Reduce Ship Roll at ZeroSpeed.9th International Conference on Control, Automation, Robotics andVision,Singapore,2006:1812-1815P
    [52] Qi Z G, Jin H Z, Wang Y. Research on Ship Roll Stabilization at Zero Speed.SICE-ICASE International Joint Conference, Busan,2006. Institute ofElectrical and Electronics Engineers Computer Society,3920-3923P
    [53]王宇.船舶零航速仿生减摇鳍控制机理研究.哈尔滨工程大学博士学位论文,2008
    [54]綦志刚.船舶零航速减摇鳍升力机理及系统模型研究.哈尔滨工程大学博士学位论文,2008
    [55]罗延明.船舶零航速减摇鳍及其电动伺服系统研究.哈尔滨工程大学博士学位论文,2007
    [56]姚绪梁.减摇鳍的动态水动力特性及电伺服系统研究.哈尔滨工程大学博士学位论文,2005
    [57]张晓飞.船舶零航速减摇鳍建模与控制策略研究.哈尔滨工程大学博士学位论文,2009
    [58]张海鹏.鲁棒滑模反步控制法及其在减摇鳍中的应用.哈尔滨工程大学博士学位论文,2004
    [59]赵为平.大型水面舰艇综合平衡系统研究.哈尔滨工程大学博士学位论文,2004
    [60] Sohna M H, Chang J W. Flow visualization and aerodynamic load calculationof three types of clap-fling motions in a Weis-Fogh mechanism. AerospaceScience and Technology,2007,11(2-3):119-129P
    [61] Ro K D, Zhu B, Kang H. Numerical Analysis of Unsteady Viscous Flow througha Weis-Fogh-Type Ship Propulsion Mechanism Using the Advanced Vortex Method.Journal of Fluids Engineering,2006,128(3):481-487P
    [62] Ro K D. Three dimensional aerodynamic characteristics of weis-foghmechanism. Journal of Mechanical Science and Technology,2009,23(1):262-268P
    [63] Ro K D. Performance Improvement of Weis-Fogh Type Ship's PropulsionMechanism Using a Wing Restrained by an Elastic Spring. Journal of FluidsEngineering,2010,132(4):041101-041106P
    [64] Ro K D. Performance improvement of weis-fogh type ship's propulsionmechanism using rubber type elastic wing. Journal of Mechanical Scienceand Technology,2009,23(3):836-844P
    [65]王献孚.空化泡和超空化泡流动理论及应用.北京:国防工业出版社,2009
    [66]章社生,卫加宁,陈绍平等.具有壁面Weis-Fogh机构流体动力多重网格并行计算.水动力学研究与进展(A辑),2004,19(1):13-18页
    [67]孙茂,黄华.微型飞行器的仿生力学-蝴蝶飞行的气动力特性.北京航空航天大学学报,2006,32(10):1146-1151页
    [68]吴江浩,王济康,孙茂.蜜蜂悬停飞行控制的仿生力学研究.航空学报,2007,28(4):776-782页
    [69]吴江浩,孙茂.熊蜂用于控制飞行的气动力和力矩.应用数学和力学,2008,29(3):301-315页
    [70]孙茂.微小昆虫飞行的力学机理.中国力学学会学术大会'2009,郑州,2009
    [71] Fish F E, Lauder G V. Passive and Active Flow Control by Swimming Fishesand Mammals. Annul. Rev. Fluid Mech.,2006,38:193-224P
    [72] Simpson A, Jacob J, Smith S. Flight Control of a UAV with Inflatable Wingswith Wing Warping.24th AIAA Applied Aerodynamics Conference, San Francisco,California,2006. Washington DC: AIAA Inc, AIAA2006-2831
    [73] Snyder M P, Sanders B, Eastep F E, et al. Vibration and FlutterCharacteristics of a Folding Wing. Journal of aircraft,2009,43(3):791-799P
    [74] Johnson T, Frecker M I, Abdalla M M, et al. Nonlinear Analysis andOptimization of Diamond Cell Morphing Wings. Journal of IntelligentMaterial Systems and Structures,2009,20(7):815-824P
    [75] Vos R, Gürdal Z, Abdalla M. Mechanism for Warp-Controlled Twist of aMorphing Wing. Journal of aircraft,2010,47(2):450-457P
    [76] Sofla A Y N, Meguid S A, Tan K T, et al. Shape morphing of aircraft wing:Status and challenges. Materials&Design,2010,31(3):1284-1292P
    [77] Loh B, Jacob J. Wing Warping and Its Impact on Aerodynamic Efficiency.60thAnnual Meeting of the Divison of Fluid Dynamics, Salt Lake City, Utah,2007.
    [78] Bandyopadhyay P R. Trends in biorobotic autonomous undersea vehicles. IEEEJournal of Oceanic Engineering,2005,30(1):109-139P
    [79] Lauder G V, Madden P G. Learning from fish: Kinematics and experimentalhydrodynamics for roboticists. International Journal of Automation andComputing,2006,3(4):325-335P
    [80] Videler J. Fish Swimming. London, U.K.: Chapman and Hall,1992.
    [81] Triantafyllou M, Yue D, Tolkoff S, et al. Drag reduction and turbulencecontrol in swimming fish-like bodies. Inernational Symposium on SeawaterDrag Reduction, Newport,1998:463–469P
    [82] Yu J Z, Tan M, Wang S, et al. Development of a biomimetic robotic fish andits control algorithm. IEEE Transactions on Systems, Man, and Cybernetics,2004,34(4):1798-1810P
    [83] Morgansen K A, Riplett B I, Klein D J. Geometric methods for modeling andcontrol of free-swimming fin-actuated underwater vehicles. IEEETransactions on Robotics,2007,23(6):1184-1199P
    [84] Bandyopadhyay P R. Maneuvering hydrodynamics of fish and small underwatervehicles. Integrative and Comparative Biology,2002,42(1):102–117P
    [85] Triantafyllou M S, Techet A H, Zhu Q, et al. Vorticity control in fish-likepropulsion and maneuvering. Integrative and Comparative Biology,2002,42(5):1026-1031P
    [86] Read D A, Hover F S, Triantafyllou M S. Forces on oscillating foils forpropulsion and maneuvering,2003,17(1):163-183P
    [87] Alexandra H T. Propulsive performance of biologically inspired flappingfoils at high Reynolds numbers. Joural of Experimental Biology,2008(211):274-279P
    [88] Licht S, Polidoro V, Flores M, et al. Design and projected performance ofa flapping foil AUV. IEEE Journal of Oceanic Engineering,2004,29(3):786-794P
    [89]王龙金.零/低航速减摇鳍升力模型及控制系统研究.哈尔滨工程大学博士学位论文,2008
    [90]黄丹.零航速襟翼鳍升力模型.哈尔滨工程大学硕士学位论文,2010
    [91]潘艳.小攻角下驼背鲸减摇鳍的理论计算.哈尔滨工程大学硕士学位论文,2010
    [92]巩晋.船舶变形减摇鳍的升力机理及建模研究.哈尔滨工程大学硕士学位论文,2009
    [93]王帆.零航速减摇鳍仿生机理及控制关键技术.哈尔滨工程大学博士学位论文,2008
    [94] Fossen T I. Guidance and control of ocean vehicles. Chichester: John Wiley&Sons,1994
    [95]金鸿章,李国斌.船舶特种装置控制系统.北京:国防工业出版社,1995
    [96]戴余良,刘祖源,俞科云等.近水面潜艇波浪力计算研究评述.舰船科学技术,2007,29(2):41-46页
    [97]施生达.潜艇操纵性.北京:国防工业出版社,1995
    [98]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001
    [99] Wang Fan, Jin Hongzhang. Modeling for active fin stabilizers at zero speed.Ocean Engineering,2009(36):1425-1437P
    [100]金鸿章,张晓飞,罗延明等.零航速减摇鳍升力模型研究.海洋工程,2007,25,(3):83-87页
    [101]Kota S, Hetrick J A, et al. Adaptive structures: Moving into the mainstream.Aerospace America,2006:16-18P
    [102]金鸿章,巩晋,李冬松.仿驼背鲸减摇鳍升力数值计算.中国造船,2009,50(4):22-27页
    [103]D. M. Bushnell, K. J. Moore. Drag reduction in nature. Annual Review ofFluid Mechanics,1991(23):65-79P
    [104]F. E. Fish, J. M. Battle. Hydrodynamic design of the humpback whale flipper.Journal of morphology,1995,225(1):51-60P
    [105]E. A. van Nierop, S. Alben, M. P. Brenner. How bumps on whale flippers delaystall: an aerodynamic model. Physical Review Letters,2008(2):054502-1-4P
    [106]D. S. Miklosovic, M. M. Murray, L. E. Howle. Experimental evaluation ofsinusoidal leading edges. Journal of Aircraft,2007,44(4):1404-1407P
    [107]Simpson A. Aeromechanics of inflatable airfoils.34th AIAA Fluid DynamicsConference and Exhibit28Portland, Oregon,2004
    [108]Nakajima M. Aerostructual Study on Modified Inflatable Wing for a CompactRoadable Aircraft.38th Fluid Dynamics Conference and Exhibit
, Seattle,Washington,2008
    [109]Jiang1Y,Ye Z, Zhan Z. A method of Inflatable Leading Edge for High Lift,Deicing and Noise Reduction. National Key Laboratory of Aerodynamic Designand Research,47th AIAA Aerospace Sciences Meeting Including The NewHorizons Forum and Aerospace Exposition, Orlando, Florida,2009
    [110]Daniel A R, Raymond P L. Numerical Study of Bumpy Airfoil Flow control forLow Reynolds Numbers.37th AIAA Fluid Dynamics Conference,Miami,2007
    [111]Perez T, Goodwin G C. Constrained predictive control of ship fin stabilizersto prevent dynamic stall. Control Engineering Practice,2008,16(4):482-494P
    [112]Tsutahara M, Kimura T, Ro K. Ship’s propulsion mechanism of Two-StageWeis-Fogh type. ASME Journal of Fluid Engineering,1994(2):278-286P
    [113]普朗特.流体力学概论.北京:科学出版社,1966
    [114]Potter M C, Wiggert D C. Mechanics of fluids.北京:机械工业出版社,2003
    [115]王献孚,熊鳌魁.高等流体力学.武汉:华中科技大学出版社,2003
    [116]金鸿章,张晓飞,罗延明等.零航速减摇鳍升力模型研究.海洋工程,2007,25(3):83-87页
    [117]金鸿章,王帆.零航速仿生减摇鳍水动力模型改进.机械工程学报,2010(23):89-92P
    [118]Wang F, Jin H Z. Modeling for active fin stabilizers at zero speed. OceanEngineering,2009(36):1425-1437P
    [119] Guglielmini L, Blondeaux P. Numerical experiments on the transient motionsof a flapping foil. European Journal of Mechanics B/Fluids,2009,28(1):136-145P
    [120]Zhang Y H, Jia L B, Zhang S W. Computational research on modular undulatingfin for biorobotic underwater propulsor.Journal of Bionic Engineering,2007,4(1):25-32P
    [121]夏国泽.船舶流体力学.武汉:华中科技大学出版社,2001
    [122]潘文全.流体力学基础.北京:机械工业出版社,1982
    [123]陈澜,安锦文,杨常伟.平流层飞艇建模关键问题研究.西北工业大学学报,2007,25(3):383-387页
    [124]金鸿章,潘立鑫,王琳琳.水下机器人近水面横摇运动的解耦控制.船舶工程.2010(2):32-35页
    [125]薛定宇.控制系统最优降阶技术与应用.控制与决策,1994,9(2):420-425页
    [126]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用,2007,24(3):407-418页
    [127]Shima T, Idan M, Golan O M. Sliding-Mode Control for Integrated MissileAutopilot Guidance. Journal of Guidance, Control, and Dynamics,2006,29(2):250-260P
    [128]Capisani L M, Ferrara A, Magnani L. Second order sliding mode motion controlof rigid robot manipulators.200746th IEEE Conference on Decision andControl,New Orleans,LA,2007:3691-3696P
    [129]Wai R J, Lin C M, Hsu C F. Adaptive fuzzy sliding-mode control forelectrical servo drive. Fuzzy Sets and Systems,2004,143(2):293-310P
    [130]Slotine J-J E, Li W P.应用非线性控制.程代展.北京:机械工程出版社,2006韩正之,陈彭年,陈树中.自适应控制.北京:清华大学出版社,2001
    [131]Narendra K S, Annasswamy A M. Stable adaptive systems. Prentice Hall,1989
    [132]Isidori A. Nonlinear control system: an introduction. Springer Verlag,1989
    [133]Brokett R W. Feedback invariants for Non-linear systems.Congress,1978
    [134]Shi J. Design of sliding mode autopilot with steady state error eliminationfor autonomous underwater veicles.2006IEEE Region10Conference on TENCON.Hong Kong,2006:1-4P
    [135]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996
    [136]潘立鑫,金鸿章,王琳琳.波浪干扰下AUV减摇的模糊自抗扰控制器设计.首届青蓝高校青年科技论坛,哈尔滨,2010
    [137]丁宝苍,席裕庚,李少远.具有输入非线性的离散时间系统预测控制稳定性分析.自动化学报,2003,29(6):827-834页
    [138]Bernstein D S, Haddad W M. Nonlinear controllers for positive real systemswith arbitrary input nonlinearities. IEEE Transactions on Automatic Control,1994,39(7):1513-1517P
    [139]Zekri M, Sadri S, Sheikholeslam F. Adaptive fuzzy wavelet network controldesign for nonlinear systems.Fuzzy Sets and Systems,2008,159(20):2668-2695P
    [140]Tao G, Kokotovic P. Adaptive control of systems with actuator and sensornonlinearities. New York: Wiley,1996
    [141]Battilotti S, Califano C. A constructive condition for dynamic feedbacklinearization. Systems&Control Letters,2004,52(5):329-338P
    [142]Hsu Kou-Cheng. Sliding mode control for uncertain nonlinear systems withmultiple inputs containing sector nonlinearities and deadzones. IEEEtransactions on systems, man, and cybernetics-part B: cybernetics,2004,34(1):374-380P
    [143]Fliegner T, Logemann H, Ryan E P. Low-gain integral control of continuous-time linear systems subject to input and output nonlinearities. Automatica,2003,39(3):455-462P
    [144]Tahara J I, Tsuboi K, Sawano T, et al. An adaptive VSS control method withintegral type switching gain. The IASTED International Conference Roboticsand Applications, Florida, USA,2001:106-111P
    [145]Cao W J, Xu J X. Nonlinear integral-type sliding surface for both matchedand unmatched uncertain systems. IEEE Transactions on Automatic Control,2004,49(8):1355-1360P
    [146]Ninomiya T, Yamaguchi I, Kida T. Feedback control of plants driven bynonlinear actuators via input-state linearization. Journal of Guidance,Control, and Dynamics,2006,29(1):20–24P
    [147]王新屏,张显库,关巍.船舶舵鳍联合控制的综述.中国造船,2009,32(2):20-25,29P
    [148]Perez T. Ship motion control: course keeping and roll stabilization usingrudder and fins.London:Springer,2005
    [149]Yu X H, Man Z H. Model reference adaptive control systems with terminalsliding modes. International Journal of Control,1996,64(6):1165-1176P
    [150]Man Z H, Yu X H. Terminal sliding mode control of MIMO linear systems. The35th Conference on Decision and Control,1996:4619-4624P
    [151]Tang Y. Terminal sliding mode control for rigid robots. Automatica,1998,34(1):51-56P
    [152]Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control forrobotic manipulators with terminal sliding mode. Automatica,2002,41(11):1957-1964P
    [153]Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigidmanipulators. Automatica,2002,38(12):2159-2167P
    [154]胡剑波.高级变结构控制理论及应用.西安:西北工业大学出版社,2008
    [155]Tao C W, Teruo T. Adaptive fuzzy terminal sliding mode controller forlinear systems with mismatched time-varying uncertainties.IEEETransaction on Systems, Man, and Cybernatics,2004,34(1):255-262P
    [156]庄开宇,张克勤,苏宏业等.高阶非线性系统的terminal滑模控制.浙江大学学报,2002,36(5):482-485P
    [157]Park K B, Teruo T. Termianl sliding mode control of second-order nonlinearuncertain system. International Journal of Robust and Nonlinear Control,1999(9):769-780P
    [158]Mcgookin E W, Murray-smith D J, Li Y, et al. Ship steering control systemoptimization using genetic algorithms. Control Engineering Practices,2000,8(4):429-443P
    [159]张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社,2000
    [160]周明,孙树栋.遗传算法原理与应用.北京:国防工业出版社,1999
    [161]雷英杰,张善文,李续武等.遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700