用户名: 密码: 验证码:
HIV复合表位核酸和痘苗病毒载体疫苗构建及免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于当前获得性免疫缺陷综合征(Acquired immunodeficiency syndrome, AIDS)的流行态势和预防治疗现状,研发安全有效的艾滋病预防/治疗性疫苗刻不容缓。近些年来,很多科学家利用不同的疫苗载体和形式、不同的人免疫缺陷病毒(Human immunodeficiency virus,HIV)免疫原、不同的接种或免疫途径进行了大量的有益的尝试。本研究选择DNA质粒和痘苗病毒天坛株作为免疫原递送系统,开展艾滋病疫苗的免疫原性研究。
     本研究在本研究室多年来筛选获得的HIV复合多表位基因(MEGNp24)的基础上,在其上游引入CpG基序和CTB基因作为佐剂,构建了一种重组核酸疫苗pVL-CCMp24,将重组DNA质粒转染293T细胞,从RT-PCR和间接免疫荧光检测结果可知,重组质粒编码的目的基因CCMp24在哺乳动物细胞内得到正确转录和表达。肌肉注射途径免疫BALB/c小鼠,分析重组DNA疫苗的免疫原性,由对HIV特异性抗体、Th1型和Th2型细胞因子、T细胞亚型、淋巴细胞增殖等免疫指标的检测结果表明,重组DNA候选疫苗pVL-CCMp24可以诱导机体产生一定程度的细胞和体液免疫应答。
     基于多价疫苗的设计理念,本研究首先构建了一种含三个表达盒的痘苗病毒穿梭载体pSTKE,含有三个独立的外源基因表达盒,分别以VTT及其基因缺失突变株作为原始病毒,以增强型绿色荧光蛋白(EGFP)、红色荧光蛋白(RFP)和蓝色荧光蛋白(BFP)作为报告基因,分别对三个表达盒的功能进行验证。通过噬斑筛选,获得两株重组痘苗病毒(rVTT-EGFP、rdVTT-EGFP),利用PCR、实时荧光定量PCR、Western blot方法对重组病毒以及对外源基因的表达量和遗传稳定性进行分析。结果表明,成功构建了三基因表达盒痘苗病毒穿梭载体,成功筛选出两株重组痘苗病毒,EGFP基因在痘苗病毒内得到高水平表达,三个表达盒之间没有相互影响,而且重组病毒具有良好的遗传稳定性。
     将重组核酸疫苗pVL-CCMp24上的目的免疫原基因CCMp24连接到痘苗病毒穿梭载体pSTKE的第一个表达盒内即MCS1,由特异性引物扩增获得的含Loxp基因序列的EGFP基因(EGFP基因两端的Loxp基因方向相同)克隆到pSTKE的第三个表达盒MCS3中,重组质粒pCCMp24-LEL鉴定正确后,转染dVTT感染的BHK-21细胞,通过同源重组、病毒蚀斑筛选获得重组CCMp24和EGFP的E3L及TK基因缺失的痘苗病毒rddVTT-CCMp24G,然后利用Cre/Loxp重组系统将EGFP基因敲除,获得仅表达目的免疫原基因的双基因缺失重组痘苗病毒rddVTT-CCMp24。RT-PCR、间接免疫荧光、Western Blot检测结果表明,CCMp24融合基因在痘苗病毒感染的BHK-21细胞中得到高效转录和表达。
     痘苗病毒在长期的实践应用中具有毒副作用,存在安全隐患。本研究在缺失病毒毒力相关基因的痘苗病毒的基础上,通过痘苗病毒穿梭载体pSTKE携带的目的免疫原基因将TK基因缺失,筛选的基因缺失型重组痘苗病毒通过鼻腔感染和颅内注射感染途径感染BALB/c小鼠,通过监测感染小鼠的体征变化、体重变化、病毒感染后的死亡率等方面评价E3L基因和TK基因缺失的重组痘苗病毒在小鼠体内的毒性。监测结果表明,重组病毒rddVTT-CCMp24的毒力较野生型VTT有很大程度的减弱,提高了进一步研究或应用的安全性。说明缺失E3L基因和TK基因可以使痘苗病毒致弱,且外源基因的引入对病毒的毒力没有显著影响。
     在了解其毒力的基础上,以BALB/c小鼠为模型开展了重组病毒rddVTT-CCMp24的免疫原性分析。按照既定的免疫程序免疫后,通过对抗体、细胞因子及T细胞亚型等各项指标的检测,结果显示,rddVTT-CCMp24可诱导机体产生分泌IFN-γ的T细胞数量显著增加,CD4+和CD8+T细胞数增加,脾细胞体外接受HIV特异性抗原刺激下增殖能力显著提高。HIV特异性抗体检测结果显示,可诱导较高的HIV特异性抗体水平,且诱导IL-2和IL-4细胞因子的分泌。综合结果可知,重组病毒可激发机体细胞和体液免疫应答。
     同时,采用DNA/rddVTT-CCMp24prime-boost免疫策略在小鼠模型上检测免疫效果,结果相对于DNA疫苗或rddVTT-CCMp24疫苗分别单独免疫,可更好的刺激分泌IFN-γ产生T细胞的分化和增殖,IFN-γ ELISPOT检测结果显示,HIV特异性的分泌IFN-γ的记忆性T细胞数量显著高于单独免疫组。表明,prime-boost免疫策略诱导较强的免疫应答和免疫记忆形成,为下一步的实验研究提供了数据支持。
Respecting the currently epidemic of AIDS and its status quo of prevention and therapy, it isimminent to develop a safe and effective AIDS preventative or therapic vaccine. In these years,many scientists had carried out a large number of beneficial trials with various vaccine vectors andmodalities, HIV immunogens, or different routes of vaccination and immunifaction. In thisinvestigation, DNA plasmid and vaccinia virus Tian Tan strain as immunogen delivery systemwere used to launch the trial research of vaccines against HIV.
     In this study, we firstly constructed a eukaryotic expression vector of HIV multi-epitope genecontaining unmethylated CpG ODN sequence and cholera toxin B subunit (CTB) and expressionin vitro. CpG-CTB gene sequence (CC) was obtained by PCR using the primers of CTB genecontaining CpG ODN and Linker Sequence designed, and then was connected with pVL. HIVmulti-epitope gene (MEGNp24) from pVAX1-MEGNp24was inserted into the downstream of CCgene to construct pVL-CCMp24. After the recombination plasmid pVL-CCMp24was confirmedby enzyme digestion, it transfected into293T cells with liposome. The expression of CCMp24protein was confirmed by RT-PCR and indirect immunofluorescence. The results showed that theCTB and HIV multi-epitope gene were stably expressed in the293T cells transfected. And thenBALB/c mice were injected with the DNA vaccine by intramuscular injection, to evaluate theimmunogenicity of recombinant DNA vaccine. The immune effects induced by pVL-CCMp24were detected by measuring HIV-specific antibody, Th1type and Th2type cytokines in bloodserum, T cells subtype and lymphocyte proliferation. The results suggested that the recombinantDNA vaccine pVL-CCMp24can induced the production of cellular and humoral immunityresponses in some degree.
     Based on the idea of multivalent vaccines and preliminary findings, this study designed andconstructed a vaccinia virus shuttle vector pSTKE with Triple-gene expression cassette. Thevector used vaccinia virus thymidine kinase gene (TK) as screening marker, and contained threeseparate foreign gene expression cassettes. The derived recombinant vaccinia virus can express atleast three different target genes with high efficiency at the whole early and late stages. In addition,knocking out of TK attenuated the virus and improved the safety of clinical application. UsingChinese vaccinia virus Tian Tan strain (VTT) and vaccinia virus Tian Tan strain deleting E3Lgene (dVTT) as original viruses, and enhanced green fluorescent protein (EGFP), red fluorescentprotein (RFP) and blue fluorescent protein (BFP) as reporter gene, we verified the three expressioncassettes. By plaque screening, two recombinant vaccinia viruses (rVTT-EGFP and rdVTT-EGFP)were obtained, and the expression and genetic stability of recombinant virus and foreign genes were analyzed using PCR, real-time quantitative PCR, and Western blot. Results showedsuccessful construction of vaccinia virus shuttle vector with three-gene expression cassette. Twostrains of two recombinant vaccinia viruses were identified, EGFP gene was expressed in thevaccinia virus with a high level, and there was no interaction between the three expressioncassettes, and the two recombinant viruses had good genetic stability.
     A HIV immunogen (CCMp24) from pVL-CCMp24was first cloned into MCS1of vacciniavirus shuttle vector pSTKE, and a fragment (LoxP-EGFP-LoxP) containing Loxp sequence andEGFP gene obtained by PCR with the specific primers was inserted into MCS3of shuttle vectorpSTKE, resulting in the recombinant plasmid pCCMp24-LEL. the recombinant plasmid wastransfected into BHK21cells infected with dVTT, and the recombinant virus rddVTT-CCMp24Gwaspurified with plaque isolates expressing green fluorescent protein used as a selection marker, andEGFP gene in the genome of rddVTT-CCMp24Gwas deleted based on Cre/loxp site-specificrecombination, and plaque screeing was performed as described above to generate therecombinant vaccinia virus rddVTT-CCMp24. RT-PCR, indirect immunofluorescence and Westernblot were used to detected the expression of CCMp24in BHK-21cells infected by rddVTT-CCMp24,the results demonsteated that CTB and HIV MEGNp24were expressed in BHK-21cells.
     In this research, based on vaccinia virus of virulence related gene deletion, the deletion of TKwas implemented by homologous recombination. The virulence of recombinant virusrddVTT-CCMp24was evaluated in inbred BALB/c mice by the daily measurement of body weightchange after the mice were infected intranasally with rddVTT-CCMp24, ddVTT or VTT.Simultaneously, the neurovirulence of rddVTT-CCMp24was assessed by challenging BALB/c micevia intraperitoneal injection. The neurovirulence in infected mice was determined by measuring50%of the intracranial lethal infectious dose (ICLD50). These results suggest that rddVTT-CCMp24and ddVTT were attenuated due to the deletion of E3L and TK genes, and the introduction of CTBand HIV MEGNp24genes doesn’t alter the infectivity and virulence of the vaccinia virus vectors.
     Subsequently, in BALB/c models, the immunogenicity of rddVTT-CCMp24was analyzedthrough measuring HIV-specific antiboady, cytokines in peripheral blood, cellular surface antigenof splenocytes and the number of T cells secreting IFN-γ. We found that the expression of thisimmunogen was sufficient to facilitate the development of substantial number of antigen-specificT cells secreting IFN-γ, and the number of CD4+and CD8+T cells was significantly improved.And HIV-specific antibody, IL-2and IL-4were induced to produce after mmunization with therecombinant virus. Hence, rddVTT-CCMp24could induce robust immune responses.
     Then, in order to minimize the development of anti-vector immunity, heterologousprime–boost vaccine strategies have been implemented in mice to enhance the immune responseusing the DNA vaccnie pVL-CCMp24used for priming the immune system and recombinant viralvector vaccine rddVTT-CCMp24as booster. The results of ELISPOT assay had shown that thisprime–boost vaccination could induce to generate more number of antigen-specific IFN-γcompared with either a DNA vector or a live viral vector alone. This graduation thesis provides a foundation for the following empirical study about HIV vaccines.
引文
[1] FITZPATRICK AL, STANDISH LJ, BERGER J et al. Survival in HIV-1-positve adultspracticing psychological or spiritual activities for one year [J]. Alternative therapies in healthand medicine,2007,13(5):18-20,22-14.
    [2] MASCOLA JR, MONTEFIORI DC. The role of antibodies in HIV vaccines[J]. Annual reviewof immunology,2010,28:413-444.
    [3] BINLEY JM, LYBARGER EA, CROOKS ET et al. Profiling the specificity of neutralizingantibodies in a large panel of plasmas from patients chronically infected with humanimmunodeficiency virus type1subtypes B and C [J]. Journal of virology,2008,82(23):11651-11668.
    [4] DHILLON AK, DONNERS H, PANTOPHLET R et al. Dissecting the neutralizing antibodyspecificities of broadly neutralizing sera from human immunodeficiency virus type1-infecteddonors[J]. Journal of virology,2007,81(12):6548-6562.
    [5] KORBER B, GASCHEN B, YUSIM K et al. Evolutionary and immunological implications ofcontemporary HIV-1variation [J]. British medical bulletin,2001,58:19-42.
    [6] KWONG PD, DOYLE ML, CASPER DJ et al. HIV-1evades antibody-mediated neutralizationthrough conformational masking of receptor-binding sites [J]. Nature,2002,420(6916):678-682.
    [7] SODORA DL, GETTIE A, MILLER CJ, MARX PA. Vaginal transmission of SIV: assessinginfectivity and hormonal influences in macaques inoculated with cell-free and cell-associatedviral stocks [J]. AIDS Res Hum Retroviruses,1998,14Suppl1: S119-123.
    [8] ZHOU T, GEORGIEV I, WU X et al. Structural basis for broad and potent neutralization ofHIV-1by antibody VRC01[J]. Science,2010,329(5993):811-817.
    [9] SCANLAN CN, PANTOPHLET R, WORMALD MR et al. The broadly neutralizinganti-human immunodeficiency virus type1antibody2G12recognizes a cluster of alpha1-->2mannose residues on the outer face of gp120[J]. Journal of virology,2002,76(14):7306-7321.
    [10] BURTON DR, PYATI J, KODURI R et al. Efficient neutralization of primary isolates ofHIV-1by a recombinant human monoclonal antibody[J]. Science,1994,266(5187):1024-1027.
    [11] CARDOSO RM, ZWICK MB, STANFIELD RL et al. Broadly neutralizing anti-HIVantibody4E10recognizes a helical conformation of a highly conserved fusion-associatedmotif in gp41[J]. Immunity,2005,22(2):163-173.
    [12] ZWICK MB, BONNYCASTLE LL, MENENDEZ A et al. Identification and characterizationof a peptide that specifically binds the human, broadly neutralizing anti-humanimmunodeficiency virus type1antibody b12[J]. Journal of virology,2001,75(14):6692-6699.
    [13] MUSTER T, STEINDL F, PURTSCHER M et al. A conserved neutralizing epitope on gp41of human immunodeficiency virus type1[J]. Journal of virology,1993,67(11):6642-6647.
    [14] TRKOLA A, POMALES AB, YUAN H et al. Cross-clade neutralization of primary isolatesof human immunodeficiency virus type1by human monoclonal antibodies and tetramericCD4-IgG[J]. Journal of virology,1995,69(11):6609-6617.
    [15] WALKER BD, BURTON DR. Toward an AIDS vaccine[J]. Science,2008,320(5877):760-764.
    [16] SCHMITZ JE, KURODA MJ, SANTRA S et al. Control of viremia in simianimmunodeficiency virus infection by CD8+lymphocytes[J]. Science,1999,283(5403):857-860.
    [17] YANG OO, TRAN AC, KALAMS SA et al. Lysis of HIV-1-infected cells and inhibition ofviral replication by universal receptor T cells[J]. Proceedings of the National Academy ofSciences of the United States of America,1997,94(21):11478-11483.
    [18] JIN X, BAUER DE, TUTTLETON SE et al. Dramatic rise in plasma viremia after CD8(+) Tcell depletion in simian immunodeficiency virus-infected macaques[J]. J Exp Med,1999,189(6):991-998.
    [19] DETELS R. The search for protection against HIV infection[J]. Annals of epidemiology,2009,19(4):250-252.
    [20] ROWLAND-JONES S, DONG T, KRAUSA P et al. The role of cytotoxic T-cells in HIVinfection[J]. Developments in biological standardization,1998,92:209-214.
    [21] FERRE AL, HUNT PW, CRITCHFIELD JW et al. Mucosal immune responses to HIV-1inelite controllers: a potential correlate of immune control[J]. Blood,2009,113(17):3978-3989.
    [22] SAEZ-CIRION A, LACABARATZ C, LAMBOTTE O et al. HIV controllers exhibit potentCD8T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyteactivation phenotype[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2007,104(16):6776-6781.
    [23] ROBINSON HL. New hope for an AIDS vaccine[J]. Nature reviews,2002,2(4):239-250.
    [24] QUINN TC, BROOKMEYER R, KLINE R et al. Feasibility of pooling sera for HIV-1viralRNA to diagnose acute primary HIV-1infection and estimate HIV incidence[J]. AIDS(London, England),2000,14(17):2751-2757.
    [25] BAROUCH DH, KUNSTMAN J, GLOWCZWSKIE J et al. Viral escape from dominantsimian immunodeficiency virus epitope-specific cytotoxic T lymphocytes in DNA-vaccinatedrhesus monkeys[J]. Journal of virology,2003,77(13):7367-7375.
    [26] CASIMIRO DR, WANG F, SCHLEIF WA et al. Attenuation of simian immunodeficiencyvirus SIVmac239infection by prophylactic immunization with dna and recombinantadenoviral vaccine vectors expressing Gag[J]. Journal of virology,2005,79(24):15547-15555.
    [27] DOUEK DC, BRENCHLEY JM, BETTS MR et al. HIV preferentially infects HIV-specificCD4+T cells[J]. Nature,2002,417(6884):95-98.
    [28] VIRGIN HW, WALKER BD. Immunology and the elusive AIDS vaccine[J]. Nature,464(7286):224-231.
    [29] CHAKRABARTI LA, SIMON V. Immune mechanisms of HIV control[J]. Current opinion inimmunology,2010,22(4):488-496.
    [30] YI JS, COX MA, ZAJAC AJ. T-cell exhaustion: characteristics, causes and conversion[J].Immunology,129(4):474-481.
    [31] PITISUTTITHUM P. HIV-1prophylactic vaccine trials in Thailand[J]. Current HIV research,2005,3(1):17-30.
    [32] FLYNN NM, FORTHAL DN, HARRO CD et al. Placebo-controlled phase3trial of arecombinant glycoprotein120vaccine to prevent HIV-1infection[J]. J Infect Dis,2005,191(5):654-665.
    [33] PITISUTTITHUM P, GILBERT P, GURWITH M et al. Randomized, double-blind,placebo-controlled efficacy trial of a bivalent recombinant glycoprotein120HIV-1vaccineamong injection drug users in Bangkok, Thailand[J]. J Infect Dis,2006,194(12):1661-1671.
    [34] RERKS-NGARM S, PITISUTTITHUM P, NITAYAPHAN S et al. Vaccination with ALVACand AIDSVAX to prevent HIV-1infection in Thailand[J]. N Engl J Med,2009,361(23):2209-2220.
    [35] SANDERS RW, VENTURI M, SCHIFFNER L et al. The mannose-dependent epitope forneutralizing antibody2G12on human immunodeficiency virus type1glycoprotein gp120[J].Journal of virology,2002,76(14):7293-7305.
    [36] CALARESE DA, SCANLAN CN, ZWICK MB et al. Antibody domain exchange is animmunological solution to carbohydrate cluster recognition[J]. Science,2003,300(5628):2065-2071.
    [37] OFEK G, TANG M, SAMBOR A et al. Structure and mechanistic analysis of the anti-humanimmunodeficiency virus type1antibody2F5in complex with its gp41epitope[J]. Journal ofvirology,2004,78(19):10724-10737.
    [38] HAYNES BF, FLEMING J, ST CLAIR EW et al. Cardiolipin polyspecific autoreactivity intwo broadly neutralizing HIV-1antibodies[J]. Science,2005,308(5730):1906-1908.
    [39] CORTI D, LANGEDIJK JP, HINZ A et al. Analysis of memory B cell responses and isolationof novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals[J].PloS one,2010,5(1): e8805.
    [40] MCMICHAEL AJ, BORROW P, TOMARAS GD, GOONETILLEKE N, HAYNES BF. Theimmune response during acute HIV-1infection: clues for vaccine development[J]. Naturereviews,10(1):11-23.
    [41] RANASINGHE C, TURNER SJ, MCARTHUR C et al. Mucosal HIV-1pox virusprime-boost immunization induces high-avidity CD8+T cells with regime-dependentcytokine/granzyme B profiles[J]. J Immunol,2007,178(4):2370-2379.
    [42] ALMEIDA JR, PRICE DA, PAPAGNO L et al. Superior control of HIV-1replication byCD8+T cells is reflected by their avidity, polyfunctionality, and clonal turnover[J]. J ExpMed,2007,204(10):2473-2485.
    [43] BELYAKOV IM, KUZNETSOV VA, KELSALL B et al. Impact of vaccine-induced mucosalhigh-avidity CD8+CTLs in delay of AIDS viral dissemination from mucosa[J]. Blood,2006,107(8):3258-3264.
    [44] LICHTERFELD M, YU XG, MUI SK et al. Selective depletion of high-avidity humanimmunodeficiency virus type1(HIV-1)-specific CD8+T cells after early HIV-1infection[J].Journal of virology,2007,81(8):4199-4214.
    [45] SEDER RA, DARRAH PA, ROEDERER M. T-cell quality in memory and protection:implications for vaccine design[J]. Nat Rev Immunol,2008,8(4):247-258.
    [46] DERBY M, ALEXANDER-MILLER M, TSE R, BERZOFSKY J. High-avidity CTL exploittwo complementary mechanisms to provide better protection against viral infection thanlow-avidity CTL[J]. J Immunol,2001,166(3):1690-1697.
    [47] BIHL F, FRAHM N, DI GIAMMARINO L et al. Impact of HLA-B alleles, epitope bindingaffinity, functional avidity, and viral coinfection on the immunodominance of virus-specificCTL responses[J]. J Immunol,2006,176(7):4094-4101.
    [48] RANASINGHE C, RAMSHAW IA. Immunisation route-dependent expression of IL-4/IL-13can modulate HIV-specific CD8(+) CTL avidity[J]. European journal of immunology,2009,39(7):1819-1830.
    [49] DZUTSEV AH, BELYAKOV IM, ISAKOV DV, MARGULIES DH, BERZOFSKY JA.Avidity of CD8T cells sharpens immunodominance[J]. International immunology,2007,19(4):497-507.
    [50] BULLOCK TN, MULLINS DW, ENGELHARD VH. Antigen density presented by dendriticcells in vivo differentially affects the number and avidity of primary, memory, and recallCD8+T cells[J]. J Immunol,2003,170(4):1822-1829.
    [51] KELSO A, GROVES P. A single peripheral CD8+T cell can give rise to progeny expressingtype1and/or type2cytokine genes and can retain its multipotentiality through many celldivisions[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,1997,94(15):8070-8075.
    [52] LA GRUTA NL, TURNER SJ, DOHERTY PC. Hierarchies in cytokine expression profilesfor acute and resolving influenza virus-specific CD8+T cell responses: correlation ofcytokine profile and TCR avidity[J]. J Immunol,2004,172(9):5553-5560.
    [53] TURNER SJ, LA GRUTA NL, KEDZIERSKA K, THOMAS PG, DOHERTY PC. Functionalimplications of T cell receptor diversity[J]. Current opinion in immunology,2009,21(3):286-290.
    [54] HANSEN SG, VIEVILLE C, WHIZIN N et al. Effector memory T cell responses areassociated with protection of rhesus monkeys from mucosal simian immunodeficiency viruschallenge[J]. Nature medicine,2009,15(3):293-299.
    [55] WIJESUNDARA DK, JACKSON RJ, RAMSHAW IA, RANASINGHE C. Humanimmunodeficiency virus-1vaccine design: where do we go now?[J]. Immunology and cellbiology,2010,89(3):367-374.
    [56] MACGREGOR RR, BOYER JD, UGEN KE et al. First human trial of a DNA-based vaccinefor treatment of human immunodeficiency virus type1infection: safety and host response[J].The Journal of infectious diseases,1998,178(1):92-100.
    [57] RANASINGHE C, RAMSHAW IA. Genetic heterologous prime-boost vaccination strategiesfor improved systemic and mucosal immunity[J]. Expert review of vaccines,2009,8(9):1171-1181.
    [58] ZHONG L, GRANELLI-PIPERNO A, CHOI Y, STEINMAN RM. Recombinant adenovirusis an efficient and non-perturbing genetic vector for human dendritic cells[J]. Europeanjournal of immunology,1999,29(3):964-972.
    [59] BUCHBINDER SP, MEHROTRA DV, DUERR A et al. Efficacy assessment of acell-mediated immunity HIV-1vaccine (the Step Study): a double-blind, randomised,placebo-controlled, test-of-concept trial[J]. Lancet,2008,372(9653):1881-1893.
    [60] SHIVER JW, FU TM, CHEN L et al. Replication-incompetent adenoviral vaccine vectorelicits effective anti-immunodeficiency-virus immunity[J]. Nature,2002,415(6869):331-335.
    [61] RAMSAY AJ, LEONG KH, RAMSHAW IA. DNA vaccination against virus infection andenhancement of antiviral immunity following consecutive immunization with DNA and viralvectors[J]. Immunology and cell biology,1997,75(4):382-388.
    [62] AMARA RR, VILLINGER F, ALTMAN JD et al. Control of a mucosal challenge andprevention of AIDS by a multiprotein DNA/MVA vaccine[J]. Science (New York, NY,2001,292(5514):69-74.
    [63] BELYAKOV IM, HEL Z, KELSALL B et al. Mucosal AIDS vaccine reduces disease andviral load in gut reservoir and blood after mucosal infection of macaques[J]. Nature medicine,2001,7(12):1320-1326.
    [64] RANASINGHE C, MEDVECZKY JC, WOLTRING D et al. Evaluation of fowlpox-vacciniavirus prime-boost vaccine strategies for high-level mucosal and systemic immunity againstHIV-1[J]. Vaccine,2006,24(31-32):5881-5895.
    [65] LIU J, YU Q, STONE GW et al. CD40L expressed from the canarypox vector, ALVAC, canboost immunogenicity of HIV-1canarypox vaccine in mice and enhance the in vitroexpansion of viral specific CD8+T cell memory responses from HIV-1-infected andHIV-1-uninfected individuals[J]. Vaccine,2008,26(32):4062-4072.
    [66] BOYER JD, ROBINSON TM, KUTZLER MA et al. SIV DNA vaccine co-administered withIL-12expression plasmid enhances CD8SIV cellular immune responses in cynomolgusmacaques[J]. Journal of medical primatology,2005,34(5-6):262-270.
    [67] DAY SL, RAMSHAW IA, RAMSAY AJ, RANASINGHE C. Differential effects of the typeI interferons alpha4, beta, and epsilon on antiviral activity and vaccine efficacy[J]. J Immunol,2008,180(11):7158-7166.
    [68] LILLARD JW, JR., BOYAKA PN, TAUB DD, MCGHEE JR. RANTES potentiatesantigen-specific mucosal immune responses[J]. J Immunol,2001,166(1):162-169.
    [69] VEAZEY RS, DEMARIA M, CHALIFOUX LV et al. Gastrointestinal tract as a major site ofCD4+T cell depletion and viral replication in SIV infection[J]. Science,1998,280(5362):427-431.
    [70] BRENCHLEY JM, PRICE DA, SCHACKER TW et al. Microbial translocation is a cause ofsystemic immune activation in chronic HIV infection[J]. Nature medicine,2006,12(12):1365-1371.
    [71] KEELE BF, GIORGI EE, SALAZAR-GONZALEZ JF et al. Identification andcharacterization of transmitted and early founder virus envelopes in primary HIV-1infection[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2008,105(21):7552-7557.
    [72] BELYAKOV IM, ISAKOV D, ZHU Q, DZUTSEV A, BERZOFSKY JA. A novel functionalCTL avidity/activity compartmentalization to the site of mucosal immunization contributes toprotection of macaques against simian/human immunodeficiency viral depletion of mucosalCD4+T cells[J]. J Immunol,2007,178(11):7211-7221.
    [73] KAUFMAN DR, LIU J, CARVILLE A et al. Trafficking of antigen-specific CD8+Tlymphocytes to mucosal surfaces following intramuscular vaccination[J]. J Immunol,2008,181(6):4188-4198.
    [74] PAL R, VENZON D, SANTRA S et al. Systemic immunization with anALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+T-cellloss and reduces both systemic and mucosal simian-human immunodeficiency virusSHIVKU2RNA levels[J]. Journal of virology,2006,80(8):3732-3742.
    [75] ALSHARIFI M, FURUYA Y, BOWDEN TR et al. Intranasal flu vaccine protective againstseasonal and H5N1avian influenza infections[J]. PloS one,2009,4(4): e5336.
    [76] FURUYA Y, CHAN J, REGNER M et al. Cytotoxic T cells are the predominant playersproviding cross-protective immunity induced by {gamma}-irradiated influenza A viruses[J].Journal of virology,84(9):4212-4221.
    [77] KOFF WC, JOHNSON PR, WATKINS DI et al. HIV vaccine design: insights from liveattenuated SIV vaccines[J]. Nature immunology,2006,7(1):19-23.
    [78] JOHNSON RP, DESROSIERS RC. Protective immunity induced by live attenuated simianimmunodeficiency virus[J]. Current opinion in immunology,1998,10(4):436-443.
    [79] COLE KS, STECKBECK JD, ROWLES JL, DESROSIERS RC, MONTELARO RC.Removal of N-linked glycosylation sites in the V1region of simian immunodeficiency virusgp120results in redirection of B-cell responses to V3[J]. Journal of virology,2004,78(3):1525-1539.
    [80] WODARZ D, ARNAOUT RA, NOWAK MA, LIFSON JD. Transient antiretroviral treatmentduring acute simian immunodeficiency virus infection facilitates long-term control of thevirus[J]. Philosophical transactions of the Royal Society of London,2000,355(1400):1021-1029.
    [81] GREENE JM, LHOST JJ, BURWITZ BJ et al. Extralymphoid CD8+T cells resident in tissuefrom simian immunodeficiency virus SIVmac239{Delta}nef-vaccinated macaques suppressSIVmac239replication ex vivo[J]. Journal of virology,84(7):3362-3372.
    [82] SCHOOLEY RT, SPRITZLER J, WANG H et al. AIDS clinical trials group5197: aplacebo-controlled trial of immunization of HIV-1-infected persons with areplication-deficient adenovirus type5vaccine expressing the HIV-1core protein[J]. J InfectDis,202(5):705-716.
    [83] EMERY S, KELLEHER AD, WORKMAN C et al. Influence of IFNgamma co-expression onthe safety and antiviral efficacy of recombinant fowlpox virus HIV therapeutic vaccinesfollowing interruption of antiretroviral therapy[J]. Human vaccines,2007,3(6):260-267.
    [84] HRUBY DE, GUARINO LA, KATES JR. Vaccinia virus replication. I. Requirement for thehost-cell nucleus[J]. Journal of virology,1979,29(2):705-715.
    [85] HRUBY DE. Vaccinia virus vectors: new strategies for producing recombinant vaccines[J].Clinical microbiology reviews,1990,3(2):153-170.
    [86] PANICALI D, PAOLETTI E. Construction of poxviruses as cloning vectors: insertion of thethymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus[J].Proceedings of the National Academy of Sciences of the United States of America,1982,79(16):4927-4931.
    [87] SMITH GL, MOSS B. Infectious poxvirus vectors have capacity for at least25000base pairsof foreign DNA[J]. Gene,1983,25(1):21-28.
    [88] SMITH GL, MURPHY BR, MOSS B. Construction and characterization of an infectiousvaccinia virus recombinant that expresses the influenza hemagglutinin gene and inducesresistance to influenza virus infection in hamsters[J]. Proceedings of the National Academyof Sciences of the United States of America,1983,80(23):7155-7159.
    [89] RADETSKY M. Smallpox: a history of its rise and fall[J]. Pediatr Infect Dis J,1999,18(2):85-93.
    [90] FORATTINI OP.[Smallpox, eradication and infectious diseases][J]. Revista de saude publica,1988,22(5):371-374.
    [91] TULMAN ER, DELHON G, AFONSO CL et al. Genome of horsepox virus[J]. Journal ofvirology,2006,80(18):9244-9258.
    [92] LEDERMAN E, MIRAMONTES R, OPENSHAW J et al. Eczema vaccinatum resulting fromthe transmission of vaccinia virus from a smallpox vaccinee: an investigation of potentialfomites in the home environment[J]. Vaccine,2009,27(3):375-377.
    [93] ECKART RE, LOVE SS, ATWOOD JE et al. Incidence and follow-up of inflammatorycardiac complications after smallpox vaccination[J]. Journal of the American College ofCardiology,2004,44(1):201-205.
    [94] KEMPER AR, DAVIS MM, FREED GL. Expected adverse events in a mass smallpoxvaccination campaign[J]. Eff Clin Pract,2002,5(2):84-90.
    [95] UPFAL MJ, CINTI S. Smallpox vaccination and adverse cardiac events[J]. Emerginginfectious diseases,2004,10(5):961-962; discussion962.
    [96] MONATH TP. Yellow fever vaccine[J]. Expert review of vaccines,2005,4(4):553-574.
    [97] KENNER J, CAMERON F, EMPIG C, JOBES DV, GURWITH M. LC16m8: an attenuatedsmallpox vaccine[J]. Vaccine,2006,24(47-48):7009-7022.
    [98] MCCURDY LH, LARKIN BD, MARTIN JE, GRAHAM BS. Modified vaccinia Ankara:potential as an alternative smallpox vaccine[J]. Clin Infect Dis,2004,38(12):1749-1753.
    [99] TAGAYA I, KITAMURA T, SANO Y. A new mutant of dermovaccinia virus[J]. Nature,1961,192:381-382.
    [100] TARTAGLIA J, COX WI, TAYLOR J et al. Highly attenuated poxvirus vectors[J]. AIDSRes Hum Retroviruses,1992,8(8):1445-1447.
    [101] PAOLETTI E, TARTAGLIA J, TAYLOR J. Safe and effective poxvirus vectors--NYVACand ALVAC[J]. Developments in biological standardization,1994,82:65-69.
    [102] TARTAGLIA J, COX WI, PINCUS S, PAOLETTI E. Safety and immunogenicity ofrecombinants based on the genetically-engineered vaccinia strain, NYVAC[J]. Developmentsin biological standardization,1994,82:125-129.
    [103] ZURKOVA K, HAINZ P, KRYSTOFOVA J et al. Attenuation of vaccinia virus by theexpression of human Flt3ligand[J]. Virology journal,2010,7:109.
    [104]董树林.天坛株痘苗毒种创始人齐长庆[J].微生物学免疫学进展,2009,37(3):1-3.
    [105]金奇,陈南海,陈淑霞et al.痘苗病毒天坛株全基因组结构特点的分析[J].中国科学C辑,1997,27(6):562-567.
    [106] BALL LA. Fidelity of homologous recombination in vaccinia virus DNA[J]. Virology,1995,209(2):688-691.
    [107] MACKETT M, SMITH GL, MOSS B. Vaccinia virus: a selectable eukaryotic cloning andexpression vector[J]. Proceedings of the National Academy of Sciences of the United Statesof America,1982,79(23):7415-7419.
    [108] HRUBY DE, BALL LA. Control of expression of the vaccinia virus thymidine kinasegene[J]. Journal of virology,1981,40(2):456-464.
    [109] DUBBS DR, KIT S. Isolation and Properties of Vaccinia Mutants Deficient in ThymidineKinase-Inducing Activity[J]. Virology,1964,22:214-225.
    [110] MACKETT M, SMITH GL, MOSS B. General method for production and selection ofinfectious vaccinia virus recombinants expressing foreign genes[J]. Journal of virology,1984,49(3):857-864.
    [111] BOYLE DB, COUPAR BE, BOTH GW. Multiple-cloning-site plasmids for the rapidconstruction of recombinant poxviruses[J]. Gene,1985,35(1-2):169-177.
    [112] CHAKRABARTI S, BRECHLING K, MOSS B. Vaccinia virus expression vector:coexpression of beta-galactosidase provides visual screening of recombinant virus plaques[J].Molecular and cellular biology,1985,5(12):3403-3409.
    [113] FRANKE CA, RICE CM, STRAUSS JH, HRUBY DE. Neomycin resistance as a dominantselectable marker for selection and isolation of vaccinia virus recombinants[J]. Molecular andcellular biology,1985,5(8):1918-1924.
    [114] BULLER RM, SMITH GL, CREMER K, NOTKINS AL, MOSS B. Decreased virulence ofrecombinant vaccinia virus expression vectors is associated with a thymidine kinase-negativephenotype[J]. Nature,1985,317(6040):813-815.
    [115]金宁一,刘东海,孙明et al.高效表达痘苗病毒载体的研究[J].生物技术通讯,1994,5(4):145-151.
    [116] COCHRAN MA, MACKETT M, MOSS B. Eukaryotic transient expression systemdependent on transcription factors and regulatory DNA sequences of vaccinia virus[J].Proceedings of the National Academy of Sciences of the United States of America,1985,82(1):19-23.
    [117] WEIR JP, MOSS B. Regulation of expression and nucleotide sequence of a late vacciniavirus gene[J]. Journal of virology,1984,51(3):662-669.
    [118] COCHRAN MA, PUCKETT C, MOSS B. In vitro mutagenesis of the promoter region for avaccinia virus gene: evidence for tandem early and late regulatory signals[J]. Journal ofvirology,1985,54(1):30-37.
    [119] WEIR JP, MOSS B. Nucleotide sequence of the vaccinia virus thymidine kinase gene andthe nature of spontaneous frameshift mutations[J]. Journal of virology,1983,46(2):530-537.
    [120] ROSEL J, MOSS B. Transcriptional and translational mapping and nucleotide sequenceanalysis of a vaccinia virus gene encoding the precursor of the major core polypeptide4b[J].Journal of virology,1985,56(3):830-838.
    [121] MACKETT M, YILMA T, ROSE JK, MOSS B. Vaccinia virus recombinants: expression ofVSV genes and protective immunization of mice and cattle[J]. Science,1985,227(4685):433-435.
    [122] JONES L, RISTOW S, YILMA T, MOSS B. Accidental human vaccination with vacciniavirus expressing nucleoprotein gene[J]. Nature,1986,319(6054):543.
    [123] YEWDELL JW, BENNINK JR, SMITH GL, MOSS B. Influenza A virus nucleoprotein is amajor target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes[J].Proceedings of the National Academy of Sciences of the United States of America,1985,82(6):1785-1789.
    [124] MCMICHAEL AJ, MICHIE CA, GOTCH FM, SMITH GL, MOSS B. Recognition ofinfluenza A virus nucleoprotein by human cytotoxic T lymphocytes[J]. The Journal of generalvirology,1986,67(Pt4):719-726.
    [125] BENNINK JR, YEWDELL JW, SMITH GL, MOLLER C, MOSS B. Recombinant vacciniavirus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells[J]. Nature,1984,311(5986):578-579.
    [126] WIKTOR TJ, MACFARLAN RI, REAGAN KJ et al. Protection from rabies by a vacciniavirus recombinant containing the rabies virus glycoprotein gene[J]. Proceedings of theNational Academy of Sciences of the United States of America,1984,81(22):7194-7198.
    [127] BENNINK JR, YEWDELL JW, SMITH GL, MOSS B. Recognition of cloned influenzavirus hemagglutinin gene products by cytotoxic T lymphocytes[J]. Journal of virology,1986,57(3):786-791.
    [128] TOWNSEND AR, MCMICHAEL AJ, CARTER NP, HUDDLESTON JA, BROWNLEE GG.Cytotoxic T cell recognition of the influenza nucleoprotein and hemagglutinin expressed intransfected mouse L cells[J]. Cell,1984,39(1):13-25.
    [129] FLESCH IE, WOO WP, WANG Y et al. Altered CD8(+) T cell immunodominance aftervaccinia virus infection and the naive repertoire in inbred and F(1) mice[J]. J Immunol,2010,184(1):45-55.
    [130] RIMMELZWAAN GF, SUTTER G. Candidate influenza vaccines based on recombinantmodified vaccinia virus Ankara[J]. Expert review of vaccines,2009,8(4):447-454.
    [131] KREIJTZ JH, SUEZER Y, DE MUTSERT G et al. Recombinant modified vaccinia virusAnkara expressing the hemagglutinin gene confers protection against homologous andheterologous H5N1influenza virus infections in macaques[J]. J Infect Dis,2009,199(3):405-413.
    [132] MOSS B, SMITH GL, GERIN JL, PURCELL RH. Live recombinant vaccinia virus protectschimpanzees against hepatitis B[J]. Nature,1984,311(5981):67-69.
    [133] PAOLETTI E, LIPINSKAS BR, SAMSONOFF C, MERCER S, PANICALI D.Construction of live vaccines using genetically engineered poxviruses: biological activity ofvaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpessimplex virus glycoprotein D[J]. Proceedings of the National Academy of Sciences of theUnited States of America,1984,81(1):193-197.
    [134] CREMER KJ, MACKETT M, WOHLENBERG C, NOTKINS AL, MOSS B. Vaccinia virusrecombinant expressing herpes simplex virus type1glycoprotein D prevents latent herpes inmice[J]. Science,1985,228(4700):737-740.
    [135] KIENY MP, LATHE R, DRILLIEN R et al. Expression of rabies virus glycoprotein from arecombinant vaccinia virus[J]. Nature,1984,312(5990):163-166.
    [136] ELANGO N, PRINCE GA, MURPHY BR et al. Resistance to human respiratory syncytialvirus (RSV) infection induced by immunization of cotton rats with a recombinant vacciniavirus expressing the RSV G glycoprotein[J]. Proceedings of the National Academy ofSciences of the United States of America,1986,83(6):1906-1910.
    [137] SCHAFER B, HOLZER GW, JOACHIMSTHALER A et al. Pre-clinical efficacy and safetyof experimental vaccines based on non-replicating vaccinia vectors against yellow fever[J].PloS one,2011,6(9): e24505.
    [138] GOODMAN AG, HEINEN PP, GUERRA S et al. A human multi-epitope recombinantvaccinia virus as a universal T cell vaccine candidate against influenza virus[J]. PloS one,2011,6(10): e25938.
    [139] GOMEZ CE, NAJERA JL, KRUPA M, ESTEBAN M. The poxvirus vectors MVA andNYVAC as gene delivery systems for vaccination against infectious diseases and cancer[J].Current gene therapy,2008,8(2):97-120.
    [140] GOMEZ CE, NAJERA JL, JIMENEZ EP et al. Head-to-head comparison on theimmunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirusstrains MVA and NYVAC co-expressing in a single locus the HIV-1BX08gp120andHIV-1(IIIB) Gag-Pol-Nef proteins of clade B[J]. Vaccine,2007,25(15):2863-2885.
    [141] THONGCHAROEN P, SURIYANON V, PARIS RM et al. A phase1/2comparative vaccinetrial of the safety and immunogenicity of a CRF01_AE (subtype E) candidate vaccine:ALVAC-HIV (vCP1521) prime with oligomeric gp160(92TH023/LAI-DID) or bivalentgp120(CM235/SF2) boost[J]. J Acquir Immune Defic Syndr,2007,46(1):48-55.
    [142] WEBSTER DP, DUNACHIE S, VUOLA JM et al. Enhanced T cell-mediated protectionagainst malaria in human challenges by using the recombinant poxviruses FP9and modifiedvaccinia virus Ankara[J]. Proc Natl Acad Sci U S A,2005,102(13):4836-4841.
    [143] WOODLAND DL. Jump-starting the immune system: prime-boosting comes of age[J].Trends Immunol,2004,25(2):98-104.
    [144] MAYRHOFER J, COULIBALY S, HESSEL A et al. Nonreplicating vaccinia virus vectorsexpressing the H5influenza virus hemagglutinin produced in modified Vero cells inducerobust protection[J]. Journal of virology,2009,83(10):5192-5203.
    [145] DAI K, LIU Y, LIU M et al. Pathogenicity and immunogenicity of recombinant TiantanVaccinia Virus with deleted C12L and A53R genes[J]. Vaccine,2008.
    [146] REHM KE, ROPER RL. Deletion of the A35gene from Modified Vaccinia Virus Ankaraincreases immunogenicity and isotype switching[J]. Vaccine,2011,29(17):3276-3283.
    [147] JACOBS BL, LANGLAND JO, KIBLER KV et al. Vaccinia virus vaccines: past, presentand future[J]. Antiviral research,2009,84(1):1-13.
    [148] FANG Q, YANG L, ZHU W et al. Host range, growth property, and virulence of thesmallpox vaccine: vaccinia virus Tian Tan strain[J]. Virology,2005,335(2):242-251.
    [149]奥斯伯FM,布伦特R,金斯顿RE et al.精编分子生物学实验指南[M].北京:科学出版社2008.
    [150]李霄.重组鸡痘病毒肿瘤治疗性疫苗的构建及实验免疫研究[D].长春:吉林大学2005.
    [151] CHIN'OMBE N, BOURN WR, WILLIAMSON AL, SHEPHARD EG. Oral vaccinationwith a recombinant Salmonella vaccine vector provokes systemic HIV-1subtype CGag-specific CD4+Th1and Th2cell immune responses in mice[J]. Virology journal,2009,6:87.
    [152] TULLIUS MV, HARTH G, MASLESA-GALIC S, DILLON BJ, HORWITZ MA. AReplication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosisdesigned for human immunodeficiency virus-positive persons is safer and more efficaciousthan BCG[J]. Infection and immunity,2008,76(11):5200-5214.
    [153] SCIARANGHELLA G, LAKHASHE SK, AYASH-RASHKOVSKY M et al. A liveattenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe andimmunogenic in macaques and can be administered repeatedly[J]. Vaccine,2011,29(3):476-486.
    [154] LE TP, COONAN KM, HEDSTROM RC et al. Safety, tolerability and humoral immuneresponses after intramuscular administration of a malaria DNA vaccine to healthy adultvolunteers[J]. Vaccine,2000,18(18):1893-1901.
    [155] EARL PL, AMERICO JL, WYATT LS et al. Immunogenicity of a highly attenuated MVAsmallpox vaccine and protection against monkeypox[J]. Nature,2004,428(6979):182-185.
    [156] SOMEYA K, XIN KQ, MATSUO K et al. A consecutive priming-boosting vaccination ofmice with simian immunodeficiency virus (SIV) gag/pol DNA and recombinant vacciniavirus strain DIs elicits effective anti-SIV immunity[J]. Journal of virology,2004,78(18):9842-9853.
    [157] TARTAGLIA J, PERKUS ME, TAYLOR J et al. NYVAC: a highly attenuated strain ofvaccinia virus[J]. Virology,1992,188(1):217-232.
    [158]李太生.国内外艾滋病抗病毒治疗研究进展[J].传染病信息,2008,21(6):324-326.
    [159] LISHU Z, NINGYI J, YINGJIN S et al. Immune responses of a designed HIV-1DNAvaccine on rhesus monkeys[J]. Chinese Science Bulletin,2006,51(13):1571-1577.
    [160] LI C, SHEN Z, LI X et al. Protection against SHIV-KB9Infection by Combining rDNA andrFPV Vaccines Based on HIV Multiepitope and p24Protein in Chinese Rhesus Macaques[J].Clinical&developmental immunology,2012:958404.
    [161]杜寿文,任大勇,王宇航et al.含CpG和CTB的HIV多表位基因真核表达载体的构建及表达[J].军事医学,2011,25(3):180-183.
    [162]王宇航,李霄,王浩然et al.缺失E3L苗基因减毒天坛株痘病毒的构建及筛选[J].中国兽医学报,2011,31(11):1619-1622.
    [163] MOSS B, COOPER N. Genetic evidence for vaccinia virus-encoded DNA polymerase:isolation of phosphonoacetate-resistant enzyme from the cytoplasm of cells infected withmutant virus[J]. Journal of virology,1982,43(2):673-678.
    [164] http://www.unaids.org.cn/pics/20120214160138.pdf
    [165] SMITH GL, MACKETT M, MOSS B. Infectious vaccinia virus recombinants that expresshepatitis B virus surface antigen[J]. Nature,1983,302(5908):490-495.
    [166] STOTT EJ, TAYLOR G, BALL LA et al. Immune and histopathological responses inanimals vaccinated with recombinant vaccinia viruses that express individual genes of humanrespiratory syncytial virus[J]. Journal of virology,1987,61(12):3855-3861.
    [167] KAPLAN C. Vaccinia virus: a suitable vehicle for recombinant vaccines?[J]. Archives ofvirology,1989,106(1-2):127-139.
    [168] MURPHY BR, COLLINS PL, LAWRENCE L et al. Immunosuppression of the antibodyresponse to respiratory syncytial virus (RSV) by pre-existing serum antibodies: partialprevention by topical infection of the respiratory tract with vaccinia virus-RSVrecombinants[J]. The Journal of general virology,1989,70(Pt8):2185-2190.
    [169] LANGLAND JO, JACOBS BL. The role of the PKR-inhibitory genes, E3L and K3L, indetermining vaccinia virus host range[J]. Virology,2002,299(1):133-141.
    [170] VIJAYSRI S, JENTARRA G, HECK MC et al. Vaccinia viruses with mutations in the E3Lgene as potential replication-competent, attenuated vaccines: intra-nasal vaccination[J].Vaccine,2008,26(5):664-676.
    [171] JENTARRA GM, HECK MC, YOUN JW et al. Vaccinia viruses with mutations in the E3Lgene as potential replication-competent, attenuated vaccines: scarification vaccination[J].Vaccine,2008,26(23):2860-2872.
    [172] LANGLAND JO, KASH JC, CARTER V et al. Suppression of proinflammatory signaltransduction and gene expression by the dual nucleic acid binding domains of the vacciniavirus E3L proteins[J]. Journal of virology,2006,80(20):10083-10095.
    [173] DENG L, DAI P, DING W, GRANSTEIN RD, SHUMAN S. Vaccinia virus infectionattenuates innate immune responses and antigen presentation by epidermal dendritic cells[J].Journal of virology,2006,80(20):9977-9987.
    [174] BROYLES SS. Vaccinia virus transcription[J]. The Journal of general virology,2003,84(Pt9):2293-2303.
    [175] BOONE RF, PARR RP, MOSS B. Intermolecular duplexes formed from polyadenylylatedvaccinia virus RNA[J]. Journal of virology,1979,30(1):365-374.
    [176] COLBY C, JURALE C, KATES JR. Mechanism of synthesis of vaccinia virusdouble-stranded ribonucleic acid in vivo and in vitro[J]. Journal of virology,1971,7(1):71-76.
    [177] LUDWIG H, SUEZER Y, WAIBLER Z et al. Double-stranded RNA-binding protein E3controls translation of viral intermediate RNA, marking an essential step in the life cycle ofmodified vaccinia virus Ankara[J]. The Journal of general virology,2006,87(Pt5):1145-1155.
    [178] MASTRANGELO MJ, EISENLOHR LC, GOMELLA L, LATTIME EC. Poxvirus vectors:orphaned and underappreciated[J]. The Journal of clinical investigation,2000,105(8):1031-1034.
    [179] MACKOWIAK M, MAKI J, MOTES-KREIMEYER L, HARBIN T, VAN KAMPEN K.Vaccination of wildlife against rabies: successful use of a vectored vaccine obtained byrecombinant technology[J]. Advances in veterinary medicine,1999,41:571-583.
    [180] HANKE T, MCMICHAEL AJ, MWAU M et al. Development of a DNA-MVA/HIVAvaccine for Kenya[J]. Vaccine,2002,20(15):1995-1998.
    [181] HANKE T, MCMICHAEL AJ, SAMUEL RV et al. Lack of toxicity and persistence in themouse associated with administration of candidate DNA-and modified vaccinia virus Ankara(MVA)-based HIV vaccines for Kenya[J]. Vaccine,2002,21(1-2):108-114.
    [182] PETERS BS, JAOKO W, VARDAS E et al. Studies of a prophylactic HIV-1vaccinecandidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming:effects of dosage and route on safety and immunogenicity[J]. Vaccine,2007,25(11):2120-2127.
    [183] VASAN S, SCHLESINGER SJ, CHEN Z et al. Phase1safety and immunogenicityevaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1B'/C candidatevaccine[J]. PloS one,2010,5(1): e8816.
    [184] WEE EG, PATEL S, MCMICHAEL AJ, HANKE T. A DNA/MVA-based candidate humanimmunodeficiency virus vaccine for Kenya induces multi-specific T cell responses in rhesusmacaques[J]. The Journal of general virology,2002,83(Pt1):75-80.
    [185] STEINHAGEN F, KINJO T, BODE C, KLINMAN DM. TLR-based immune adjuvants[J].Vaccine,2011,29(17):3341-3355.
    [186] TROSS D, KLINMAN DM. Effect of CpG oligonucleotides on vaccine-induced B cellmemory[J]. J Immunol,2008,181(8):5785-5790.
    [187]任学毅,朱成钢,张耀洲.霍乱毒素B亚单位的研究进展[J].中国人兽共患病杂志,2004,20(2):153-155.
    [188] FERRANTELLI F, CAFARO A, ENSOLI B. Nonstructural HIV proteins as targets forprophylactic or therapeutic vaccines[J]. Current opinion in biotechnology,2004,15(6):543-556.
    [189] WANG B, BOYER J, SRIKANTAN V et al. Induction of humoral and cellular immuneresponses to the human immunodeficiency type1virus in nonhuman primates by in vivoDNA inoculation[J]. Virology,1995,211(1):102-112.
    [190] WANG B, UGEN KE, SRIKANTAN V et al. Gene inoculation generates immune responsesagainst human immunodeficiency virus type1[J]. Proceedings of the National Academy ofSciences of the United States of America,1993,90(9):4156-4160.
    [191] YASUTOMI Y, ROBINSON HL, LU S et al. Simian immunodeficiency virus-specificcytotoxic T-lymphocyte induction through DNA vaccination of rhesus monkeys[J]. Journal ofvirology,1996,70(1):678-681.
    [192] GRAHAM BS, KOUP RA, ROEDERER M et al. Phase1safety and immunogenicityevaluation of a multiclade HIV-1DNA candidate vaccine[J]. J Infect Dis,2006,194(12):1650-1660.
    [193] BAROUCH DH, SANTRA S, SCHMITZ JE et al. Control of viremia and prevention ofclinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination[J]. Science,2000,290(5491):486-492.
    [194] BRAVE A, GUDMUNDSDOTTER L, SANDSTROM E et al. Biodistribution, persistenceand lack of integration of a multigene HIV vaccine delivered by needle-free intradermalinjection and electroporation[J]. Vaccine,28(51):8203-8209.
    [195] HIRAO LA, WU L, KHAN AS et al. Intradermal/subcutaneous immunization byelectroporation improves plasmid vaccine delivery and potency in pigs and rhesusmacaques[J]. Vaccine,2008,26(3):440-448.
    [196] YIN J, DAI A, LECUREUX J et al. High antibody and cellular responses induced to HIV-1clade C envelope following DNA vaccines delivered by electroporation[J]. Vaccine,2008,29(39):6763-6770.
    [197] HIRAO LA, WU L, KHAN AS et al. Combined effects of IL-12and electroporationenhances the potency of DNA vaccination in macaques[J]. Vaccine,2008,26(25):3112-3120.
    [198] LORI F, CALAROTA SA, LISZIEWICZ J. Nanochemistry-based immunotherapy forHIV-1[J]. Current medicinal chemistry,2007,14(18):1911-1919.
    [199]申镇维.新型HIV多表位重组疫苗的构建、纯化及其实验免疫研究[D].长春:吉林大学2009.
    [200] SCHNEIDER J, GILBERT SC, BLANCHARD TJ et al. Enhanced immunogenicity forCD8+T cell induction and complete protective efficacy of malaria DNA vaccination byboosting with modified vaccinia virus Ankara[J]. Nature medicine,1998,4(4):397-402.
    [201] DE MARE A, LAMBECK AJ, REGTS J et al. Viral vector-based prime-boost immunizationregimens: a possible involvement of T-cell competition[J]. Gene therapy,2008,15(6):393-403.
    [202] LIU MA. Gene-based vaccines: Recent developments[J]. Current opinion in moleculartherapeutics,12(1):86-93.
    [203] LU S. Heterologous prime-boost vaccination[J]. Current opinion in immunology,2009,21(3):346-351.
    [204] MASCOLA JR, SAMBOR A, BEAUDRY K et al. Neutralizing antibodies elicited byimmunization of monkeys with DNA plasmids and recombinant adenoviral vectorsexpressing human immunodeficiency virus type1proteins[J]. Journal of virology,2005,79(2):771-779.
    [205] KOUP RA, ROEDERER M, LAMOREAUX L et al. Priming immunization with DNAaugments immunogenicity of recombinant adenoviral vectors for both HIV-1specificantibody and T-cell responses[J]. PloS one,2010,5(2): e9015.
    [206] BERTLEY FM, KOZLOWSKI PA, WANG SW et al. Control of simian/humanmmunodeficiency virus viremia and disease progression after IL-2-augmentedDNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates[J]. J Immunol,2004,172(6):3745-3757.
    [207] MANRIQUE M, MICEWICZ E, KOZLOWSKI PA et al. DNA-MVA vaccine protectionafter X4SHIV challenge in macaques correlates with day-of-challenge antiviral CD4+cell-mediated immunity levels and postchallenge preservation of CD4+T cell memory[J].AIDS Res Hum Retroviruses,2008,24(3):505-519.
    [208] HEL Z, NACSA J, TRYNISZEWSKA E et al. Containment of simian immunodeficiencyvirus infection in vaccinated macaques: correlation with the magnitude of virus-specific pre-and postchallenge CD4+and CD8+T cell responses[J]. J Immunol,2002,169(9):4778-4787.
    [209] SCHELL J, ROSE NF, FAZO N et al. Long-term vaccine protection from AIDS andclearance of viral DNA following SHIV89.6P challenge[J]. Vaccine,2009,27(7):979-986.
    [210] SUH YS, PARK KS, SAUERMANN U et al. Reduction of viral loads by multigenic DNApriming and adenovirus boosting in the SIVmac-macaque model[J]. Vaccine,2006,24(11):1811-1820.
    [211] ASMUTH DM, BROWN EL, DINUBILE MJ et al. Comparative cell-mediatedimmunogenicity of DNA/DNA, DNA/adenovirus type5(Ad5), or Ad5/Ad5HIV-1clade Bgag vaccine prime-boost regimens[J]. J Infect Dis,2010,201(1):132-141.
    [212] SANTRA S, KORBER BT, MULDOON M et al. A centralized gene-based HIV-1vaccineelicits broad cross-clade cellular immune responses in rhesus monkeys[J]. Proceedings of theNational Academy of Sciences of the United States of America,2008,105(30):10489-10494.
    [213] MATANO T, KOBAYASHI M, IGARASHI H et al. Cytotoxic T lymphocyte-based controlof simian immunodeficiency virus replication in a preclinical AIDS vaccine trial[J]. J ExpMed,2004,199(12):1709-1718.
    [214] KAWADA M, IGARASHI H, TAKEDA A et al. Involvement of multiple epitope-specificcytotoxic T-lymphocyte responses in vaccine-based control of simian immunodeficiencyvirus replication in rhesus macaques[J]. Journal of virology,2006,80(4):1949-1958.
    [215] BRAVE A, BOBERG A, GUDMUNDSDOTTER L et al. A new multi-clade DNAprime/recombinant MVA boost vaccine induces broad and high levels of HIV-1-specificCD8(+) T-cell and humoral responses in mice[J]. Mol Ther,2007,15(9):1724-1733.
    [216] SHEPHARD E, BURGERS WA, VAN HARMELEN JH et al. A multigene HIV type1subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to aDNA vaccine in mice[J]. AIDS Res Hum Retroviruses,2008,24(2):207-217.
    [217] JAOKO W, KARITA E, KAYITENKORE K et al. Safety and immunogenicity study ofMulticlade HIV-1adenoviral vector vaccine alone or as boost following a multiclade HIV-1DNA vaccine in Africa[J]. PloS one,2010,5(9): e12873.
    [218] SUN Y, SANTRA S, BUZBY AP et al. Recombinant vector-induced HIV/SIV-specificCD4+T lymphocyte responses in rhesus monkeys[J]. Virology,2010,406(1):48-55.
    [219] GOMEZ CE, NAJERA JL, JIMENEZ V et al. Generation and immunogenicity of novelHIV/AIDS vaccine candidates targeting HIV-1Env/Gag-Pol-Nef antigens of clade C[J].Vaccine,2007,25(11):1969-1992.
    [220] GOEPFERT PA, ELIZAGA ML, SATO A et al. Phase1safety and immunogenicity testingof DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1virus-likeparticles[J]. J Infect Dis,2011,203(5):610-619.
    [221] CASIMIRO DR, BETT AJ, FU TM et al. Heterologous human immunodeficiency virus type1priming-boosting immunization strategies involving replication-defective adenovirus andpoxvirus vaccine vectors[J]. Journal of virology,2004,78(20):11434-11438.
    [222] LEMCKERT AA, SUMIDA SM, HOLTERMAN L et al. Immunogenicity of heterologousprime-boost regimens involving recombinant adenovirus serotype11(Ad11) and Ad35vaccine vectors in the presence of anti-ad5immunity[J]. Journal of virology,2005,79(15):9694-9701.
    [223] KRESGE KJ, MCENERY R. A change of tune[J]. IAVI Rep,2010,14(5):4-12.
    [224] WANG S, KENNEDY JS, WEST K et al. Cross-subtype antibody and cellular immuneresponses induced by a polyvalent DNA prime-protein boost HIV-1vaccine in healthy humanvolunteers[J]. Vaccine,2008,26(8):1098-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700