用户名: 密码: 验证码:
多农兽药残留检测的高通量悬浮芯片技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品安全已成为全球关注的焦点,在我国存在着严峻和突出的问题。其中,环境和食品中多种农兽药残留已引起人们的广泛关注。为解决一些现有常规技术达不到对多残留快速、灵敏和准确地检测,建立一种新型多农兽药残留的高通量悬浮芯片检测技术和方法,实现快速、准确、特异和高效的定量检测,为建立悬浮芯片高通量的多农兽药残留检测技术平台奠定基础。
     本研究以常用的4种兽药(氯霉素、克伦特罗、雌二醇和泰乐菌素)和3种农药(阿特拉津、吡虫啉和甲萘威)共7种农兽药为靶标物,基于间接竞争法的免疫学检测原理,改进了常规悬浮芯片技术在微球上固定抗体的方法,实现了一次检测可最多同时检出7种农兽药残留靶标物的目标;该技术还摒弃了常规悬浮芯片技术步骤繁琐、实验耗时长的不足,通过优化和筛选实验条件,基本达到抗原抗体的完全反应,在实验中无需常规Luminex实验所必需的昂贵的滤膜板和抽滤泵,仅需普通96孔细胞培养板或酶标板即可,也无需进行反复多次的抽滤步骤;因此,检测简便、快捷,缩短时间,节省了实验成本,结果获得稳定可靠。研究内容包括以下几方面:
     1、各种待测农兽药靶分子蛋白结合物的制备和鉴定
     2、农兽药蛋白结合物在羧基荧光微球上的偶联、确证和优化
     3、农兽药残留的悬浮芯片单通道检测方法建立
     4、SPR生物传感技术对抗原抗体反应动力学参数的测定
     5、微球表面形态结构的扫描电镜表征
     6、多农兽药残留检测的高通量悬浮芯片技术研究
     7、农兽药残留检测的方法学比对研究
     采用活性酯法、重氮化法、混合酸酐法和碳二亚胺法等合成各种农兽药的蛋白结合物;纯化后,对合成的产物进行紫外和质谱鉴定;采用氨基偶联法将7种蛋白结合物偶联于悬浮芯片检测的固相载体——聚苯乙烯荧光微球上,并进行偶联的确证。通过紫外和质谱法对7种农兽药蛋白结合物的检测,证实了各种农兽药抗原结合物的成功合成,获得了精确的偶联比,为结合物在微球上偶联量的计算提供了依据。
     在此基础上,对农兽药蛋白结合物的加入量、特异性生物素化抗体加入量、激活缓冲液的选择、抗体保护剂的引入、报告荧光分子链霉亲和素-藻红蛋白的稀释度等几个重要的实验条件进行了筛选和优化;通过优化条件、摸索各种待测靶标物的浓度梯度,绘制出7种农兽药靶标物单通道检测标准曲线,建立农兽药残留的悬浮芯片单通道检测方法。同时,采用SPR生物传感技术对各种农兽药抗原和其配对抗体进行了亲和力常数的测定。分别绘制出了7种农兽药残留单通道悬浮芯片检测的Logistic回归标准曲线方程,曲线关系良好,决定系数R2>0.99,获得每种靶标物的最小可检出浓度和检测区间。结果表明,各种农兽药残留的单通道检测方法简单、灵敏、快速。
     通过悬浮芯片的高通量检测的特异性识别实验,证明了多种特异性抗体和抗原探针之间可准确地相互识别;而且特异性竞争明显,无明显交叉反应;在有机溶剂对荧光微球的洗脱和干扰作用的实验中,证明了在有机溶剂的容积比不超过40%的情况下,微球有一定的抗有机溶剂的洗脱和干扰能力。在单通道检测法建立的基础上,依次进行3种兽药、6种农兽药和7种农兽药同时检测的多元分析,实验结果表明,各个标准曲线方程和相应的决定系数R2表现良好;对各种靶标物的检测区间和最低检出限低于国标;在悬浮芯片多元分析的特异度方面,悬浮芯片的检测特异度测试良好,与其他结构相似和非相似的多种药物无明显交叉和干扰反应;在对含有多种农兽药残留的不同盲样的检测中,检测浓度值与实际浓度的相对偏差较小。总体说来,悬浮芯片系统可用于对多农兽药残留实际样品的初步检测,整个检测过程仅耗时1~2h,基本上满足了多农兽药残留检测的灵敏、特异、快速和高效的需求。
     扫描电镜对微球表面微观结构的表征,也直观地确证了各种靶标农兽药结合物在微球上的成功偶联、抗原抗体的配对反应和报告荧光分子链霉亲和素-藻红蛋白在微球上的结合等一系列事件。
     采用传统的常规间接竞争ELISA法和LC-MS法检测各种农兽药残留,与悬浮芯片法进行比对研究,悬浮芯片法在检测区间、高通量和灵敏度与常规ELISA法相比有一定优势;和国标LC-MS法在灵敏度上相当,在检测区间上有一定优势。
     悬浮芯片技术在国内外多应用于对大分子蛋白质和核酸的检测,对多农兽药残留的检测未见系统报道,属方法和理论上的集成创新。本研究通过建立高通量的多农兽残留检测的悬浮芯片技术,实现了同时对多农兽药残留的高通量多元检测分析,可初步用于对实际样品中多农兽残留的高通量测试分析,检测灵敏、特异、快速和高效,与真实值比较,误差较小,为多农兽药残留的快速检测提供了新方法,为检测平台的建立奠定了基础,具有广阔的应用和发展前景。
All eyes have been focused on food safety globally especially in China are extremely and fiercely severe. Close and extensive concerns about pesticide and veterinary drug residues in environment and food are continuously arising. Some normal conventional technologies aren’t capable to detect multiple residues rapidly, sensitively and accurately. To resolve the problem, a novel high-throughput suspension array technology and method has been established for multiple pesticide and veterinary drug residues. The aim of the establishment is to implement quantitative detection of the multiple residues rapidly, accurately, specifically and efficiently and for the foundation of the technical platform.
     Four kinds of veterinary drugs, including chloramphenicol, clenbuterol, 17-β-estradiol, tylosin and three kinds of pesticide including atrazine, imidacloprid and carbaryl which are commonly used are regarded as the targets. The experiment was based on the theoretic indirect competitive method. The conventional suspension array method that fixation on the beads by anatibody is improved. The goal that up to 7 kinds of residues can be detected at the same time has been achieved by competition of the specific biotinylated antibodies between the multiple antigens of pesticides and veterinary drugs and conjugates which labeled on the fluorescent beads in liquid phase. In addition, the shortage of conventional suspension array technology was abandoned by optimization and screening the experimental conditions. Conventional millipore filter plate and pump were non-necessary during the whole procedures by antigen-antibody complete reactions. Furthermore, ordinary 96-hole cell culture plates or ELISA plates can satisfy the requirement and without repeated pumping. Therefore, it’s simple, rapid, saving lots of time, low-cost and reliable in the experiment. The followings have been concerned:
     1. Preparation and identification of the conjugates of pesticide and veterinary drugs
     2. Coupling, validation and optimization of the conjugate on fluorescent bead
     3. Determination of kinetic parameters of antigen-antibody reactions by SPR biosensor technology
     4. Characterization of the surface microstructure of the bead by scanning electron microscope
     5. Simultaneous detection for multiple pesticide and veterinary drug residues by high-throughput suspension array technology
     6. Methodological comparison of the detection for pesticide and veterinary drug residues
     Various chemical treatments such as active ester method, diazotization method, mixed anhydride and carbodiimide method, etc were carried out for the synthesis of the protein conjugates of the seven targets. The synthetic products were identified by ultraviolet spectrum and mass spectrum after purification of all the antibodies. The protein conjugates of the targets were identified by ultraviolet spectrum and mass spectrum. And the exact coupling ratios are obtained which provided criterion of conjugates amounts on the beads. And then, the seven protein conjugates were coupled and validated on the solid carrier-the polystyrene fluorescent beads by amino-coupling procedure.
     Afterwards, the important conditions such as adding amounts of the conjugates and the specific biotinylated antibodies, the activation buffers, antibody preservative and the dilution of streptavidin-phycoerythrin, etc are selected and optimized. By means of optimizing the condition and exploring a variety of the tested target concentration gradient, the standard curves of the single channel suspension array have been polted and the suspension array technique of single channel for the detection of pesticide and veterinary drug residues has been established. Logistic regression standard curves were able to be plotted respectively for the seven targets. All the coefficients of determination-R2 were high than 0.99, the minimum detection concentration and the detection arranges could be acquired respectively. The single channel detection method for pesticide and veterinary drug residue is simple, sensitive and rapid. At the same time, SPR biosensor technology was employed for the determination of antigen-antibody affinity constants of a variety of targets and their complementary antibodies.
     Specific recognition was carried on and it proved excellent recognition between various paired antigen-antibody on the beads. Meanwhile, specific competition occurred and no obvious cross-reactions with others in the high-throughput detection of suspension array. In the experiment of quenching and interfering by organic solvents, it indicated that when the volume ratio is not more than 40%, there is a degree of anti-quenching and anti-interference with the fluorescent beads.
     In the case of good response for the single channel of the suspension array, high-throughput detection and multi-analysis of suspension array for three kinds of veterinary drug residues, six kinds of pesticide and veterinary drug residues and seven pesticide and veterinary drug residues are respectively carried out. Standard curves of the multi-analysis were plotted and the coefficients of determination-R2 were investigated and performed well. All the detection range and the lowest detection limits of the targets were determined respectively. And in the aspect of specificity for multiplex analysis, it showed no significant cross-reaction and interference with other structurally similar and non-similar drugs. In the tests of different bland samples with multiple pesticide and veterinary drug residues, the relative standard deviations of the found and the real values are relatively small. Overall, suspension array can be employed for primary detection of real samples of pesticides and veterinary drug residues. It spends only 1 to 2 hours in the whole process. And the requirements for sensitive, specific, rapid and efficient detection for residues are basically satisfied.
     Scanning electron microscopy was employed for characterization on the micro-structure surface of the beads. It directly confirmed a series of events occurred, such as successful coupling of the conjugates on the beads, antigen-antibody reaction and the fluorescent reporter molecules-streptavidin-phycoerythrin in a combination on beads by biotinylated antibodies.
     In comparison with the conventional indirect ELISA, suspension array method takes relatively notable advantages in lowest detection limits, high-thought and spends less time. In comparison with LC-MS method, the lowest detection limits of the targets determined by suspension array are lower than national standard except Atrazine and Tylosin. When compared with LC-MS in practice, suspended array have a distinct advantage in the aspects of the lowest detection limit and detection range.
     The lowest detection limits of suspension array were lower than which of national standards by 2 order of magnitudes, and the detection ranges of suspension array exceeds 1~3 order of magnitudes which of the LC-MS method for imidacloprid and carbaryl detection. It can be concluded that suspension array technology takes the advantage in the detection of multiple pesticide and veterinary drug residues.
     Traditional indirect competitive ELISA method and LC-MS method have been employed for the detection of multiple pesticide and veterinary drug residues in comparison with suspension array. Compared with traditional indirect competitive ELISA method, suspension array has the advantage over the fomer method by broad detection ranges, high-throughput and sensitivities. Suspension array corresponds with LC-MS method in sensentivity and exceeds it in detection range. It hasn’t been systemically reported at home and abroad yet, and to be considered as integrated innovation methodologically and theoretically.
     By virtue of establishment of multiple pesticide and veterinary drug residues by high-throughput suspension array technology, simultaneous high-throughput multi-analysis has been achieved and can be primarily employed on sensitive, specific, rapid and efficient determination of real samples and the elative standard deviations of detection values are relatively small by comparison with real values. It provides a novel method and foundation of the technical platform for multiple pesticide and veterinary drug residues with broad and promising application and development prospects.
引文
[1]胡锦涛.中国共产党第十七次代表大会报告[M].北京:人民出版社, 2007.
    [2]我国农业标准化和食品安全问题研究——中共中央政治局第41次集体学习[M].北京:人民出版社, 2007.
    [3] www.WHO.org.
    [4] Conway, Claire BSC. Food Safety[J]. Nursing Standard, 2001, 27: 47-49.
    [5]沈明浩,任大勇,张作杰,等.除草剂敌草快所致的大鼠胎儿动脉管收缩与肾上腺皮质激素及受体的关系[J].中国兽医学报, 2006, 27(4): 435-438.
    [6]冯亚宾,崔朝勃.百草枯中毒的肺部损害[J].临床肺科杂志,2006, 11(5): 638-638.
    [7] Kasten M J. Clindamycin, Metronidazole, and Chloramphenicol[J]. Mayo Clin Proc, 1999, 74: 825-833.
    [8] Yunis A A, Chloramphenicol toxicity: 25 years of research[J]. Am J Med, 1989, 87(suppl 3N): 44N -48N.
    [9] Holt D E, Andrew C M, Payne J P, et al. The myelotoxicity of chloramphenicol: in vitro and in vivo studies: II: in vivo myelotoxicity in the B6C3F mouse[J]. Hum Exp Toxicol, 1998, 17(1): 8-17.
    [10] Diskin C. Paroxysmal nocturnal hemoglobinuria after chloramphenicol therapy[J]. Mayo Clin Proc, 2005, 80: 1389-1390.
    [11]孙长灏.营养与食品卫生学(第六版)[M].北京:人民卫生出版社, 2007.
    [12]石碧清,赵育,闾振华.环境污染与人体健康[M].北京:中国环境科学出版社, 2006.
    [13] Ding S Y, Shen J Z, Zhang S X, et al. Determination of cloramphenicol residue in fish and shrimp tissues by gas chromatography with a microcell electron capture detector[J]. J Assoc Off Anal Chem Int, 2005, 88(1): 57-60.
    [14] Andersen W C, Roybal J E, Gonzales S A, et al. Determination of tertracycline residues in shrimp and whole milk using liquid chromatography ultravilet detection and residue confirmation by mass spetrometry.
    [15] Mansilla A E, Pena A M, Gomez D G, et al. Determination of fluoroquinolones in urine and serum by using high performance liquid chromatography and multiemission scan fluorinetric detection[J]. Talanta, 2006, 68(4):1215-1221.
    [16] Maudens K E, Zhang G F, Lambert W E. Quantitative analysis of twelve sulfonamides in honey after acidic hydrolysis by high-performance liquid chromatography with post-column derivatization and fluorescence detection[J]. J Chromatogr A, 2004, 1047(1): 85-92.
    [17] Schugerl K, Seidel G. Monitoring of the concentration ofβ-lactam antibiotics and their precursors in complex cultivation media by high-performance liquid chromatography[J]. J Chromatogr A, 1998, 812(1-2): 179-189.
    [18]朱国念.农药快速检测技术[M].化学工业出版社, 2008,北京.
    [19]储晓刚,雍炜,凌云,等.超高效液相色谱-电喷雾串联质谱法同时测定大豆中107种除草剂残留[J].分析化学, 2007, 36(3): 325-329.
    [20]尉志文,贠克明,王玉瑾,等.薄层色谱扫描法和气相色谱/质谱法快速诊断有机磷农药中毒[J].中国药物与临床, 2006, 6(8): 594-596.
    [21]胡秋菊,朱若华,苏文斌,等.中药材中西维因残留量的薄层色谱法测定[J].首都师范大学学报(自然科学版), 2004, 25(2):38-41.
    [22] Pfenning A P, Roybal J E, Rupp H S, et al, Simultaneous determination of residues of chloramphenicol, florfenicol, florfenicol amine, and thiamphenicol in shrimp tissue by gas chromatography with electron capture detection[J]. J Assoc Off Anal Chem Int, 2000, 26(1): 26-30.
    [23] Andrzej P, Jan Z, Jolanta N. Evaluation of sample preparation for control of chloramphenicol residues in porcine tissues by enzyme-linked immunosorbent assay and liquid chromatography[J]. Anal Chim Acta, 483, 2003(1-2): 307-311.
    [24]应永飞,皮雄娥,吴平谷,等.气相色谱-质谱法同时测定动物尿样中莱克多巴胺和克伦特罗[J].质谱学报, 2006, 27(2): 74-78.
    [25] Regan F, Moran A, Fogarty B, et al. Development of comparative methods using gas chromatography-mass spectrometry and capillary electrophoresis for determination of endocrine disrupting chemicals in bio-solids[J]. J Chromatogr B,2002, 770(1-2): 243-253.
    [26] Yao W, Ning B A, Zhou H Y, et al. Recognition of staphylococcus enterotoxin via molecularly imprinted beads[J]. J Sep Sci, 2008, 31, 413-418.
    [27] Yao W, Fang Y J, Li G L, et al. Adsorption of carbaryl using molecularly imprinted microspheres prepared by precipitation polymerization[J]. Polym Adv Technol, 2008, 19(7): 812-816.
    [28] Haupt K, Mochach K. Plastic antibodies: developments and applications[J]. Tibtech, 1998, 15(11): 468-472.
    [29] Yan S L, Fang Y J, Gao Z X. Quartz crystal microbalance for the determination of daminozide using molecularly imprinted polymers as recognition element[J]. Biosens Bioelectron, 2007, 22(6): 1087-1091.
    [30] Brian B, Henrik B, Johan B, et al. Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers[J]. J Chromatogr A, 2007, 1174(1-2): 63-71.
    [31] Sergeyeva T A, Matuschewski H, Piletsky S A, et al. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization[J]. J Chromatogr A, 2001, 907(1-2): 89-99.
    [32] Schenek F J, Wagner R, Hennessy M K, et al. Screening procedure for organochlorine and organophosphorus pesticide residues in eggs using a solid-phase extraction cleanup and gas chromatographic detection[J]. J AOAC Int, 1994, 77(4): 1036-1040.
    [33]钱传范.免疫检测技术在农药残留分析中的应用[J].农药科学与管理, 1991, 4: 7-32.
    [34]韩佩珍.化学发光免疫分析[J].国外医学——放射医学核医学分册, 2000, 24(5): 196-201.
    [35]林金明,赵利霞,王栩,化学发光免疫分析[M].北京:北京化学工业出版社, 2008.
    [36]张莹,杨大进,方从容.农药残留量快速检测方法——农药速测卡的应用与验证[J].中国食品卫生杂志, 1998, 10(2): 12-14.
    [37]黄雁,郭中英.有机磷农药检测纸片的研制[J].广州医学院学报, 1994, 22: 65-67.
    [38] Frens G. Controlled nucleation for the regulation of the particle size in mono disperse gold suspensions[J].Nat phys Sci,1976, 241: 20-22.
    [39] Bendayan M. Protein-A gold electron microscopic immunocytochemistry: methods, applications, and limitations[J]. J Electron Microsc, 1984, 1: 243-270.
    [40]杨克敌,衡正昌.环境卫生学(第六版)[M].北京:人民卫生出版社, 2007.
    [41] Miller J C, Zhou H, Kwekel J, et al. Antibody microarray profiling of humanprostate cancer sera: antibody screening and identification of potential biomarkers [J]. Proteomics, 2003, 3(1): 56-63.
    [42] Belov L, De L V O, Remedios D C G, et al . Immunophenotyping of leukemias using a cluster of differentiation antibody microarray[J]. Cancer Res, 2001, 61(11): 4483-4489.
    [43] Wilson M, Derisi J, Kristensen H, et al. Exploring drug-induced alterations in gene expression in mycobacterium tuberculosis by microarray hybridization[J]. Proc Natl Acad Sci USA, 1999, 96(22): 12833-12838.
    [44] Du H, Wu M, Yang W, et al. Development of miniaturized competitive immunoassays on a protein chip as a screening tool for drugs[J]. Clin Chem, 2005, 51(2): 368-375.
    [45]高志贤.环境科学高科技丛书3——环境科学与生物芯片[M].北京:科学出版社, 2005.
    [46]陈福生,高志贤,王建华.食品安全检测与现代生物技术[M].北京:化学工业出版社, 2004.
    [47] Gao Z X, Liu N, Cao Q L, et al. Immunochip for the detection of five kinds of chemicals: atrazine, nonylphenol, 17-beta estradiol, paraverine and chloramphenicol[J]. Biosens Bioelectron, 2009, 24(1): 1445-1450.
    [48]张先恩.生物传感器[M].北京:化学工业出版社现代生物技术与医药科技出版中心, 2006.
    [49] Corry B, Uilk J, Crawley C. Probing direct binding affinity in electro-chemical antibody-based sensors[J]. Anal Chim Acta, 2003, 496: 103-116.
    [50] Wan L X, Li R. Portable fiber-optic immunosensor for detection of methsulfuron methyl[J]. Talanta, 2000, 52: 879-883.
    [1] James P T, Fidel Z. Multiple antigen peptide[J]. J Immun Meth, 1989, 124(1): 53-56.
    [2] Jamps P T. Recent advances in multiple antigen peptides-A novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays[J]. J Immun Meth, 1996(1), 196(3): 17-32.
    [3] Stanker L H, Bigbee C, Van E J, et al. An immunoassay for pyrethroids: detection of permethrin in meat[J]. J Agric Food Chem, 1989, 37(3): 834-849.
    [4]刘长武,王一茹,李治祥.对硫磷的人工抗原合成与鉴定[J].环境科学学报, 1992, 12(3): 377-381.
    [5]贾明宏,钱传范,韩丽君,等.甲基对硫磷人工抗原的合成与鉴定[J].农药学学报, 2003, 5(2): 22-32.
    [6]王刚剁,马兆杨,鱼涛,等.甲基对硫磷人工抗原的合成与鉴定[J].卫生研究, 2000, 29(2): 69-70.
    [7] McAdam D P, Hill A S, Beasley H L, et al. Mono-and polyclonal antibodies to organophosphate fenitrothion. Approaches to hapten-protein conjugation[J] J Agric Food Chem, 1992, 40(8): 1466-1470.
    [8] Manclus J J, Primo J, Montoya A. Development of enzyme-linked immunosorbent assays for the insecticide chlorpyrifos-monoclonal antibody production and immunoassay design[J]. J Agric Food Chem, 1996, 44(12): 4052-4070.
    [9] Schwalbe M, Dorn E, Beyermann K. Enzyme immunoassay and fluoro- immunoassay for the herbicide diclofop-methy[J]. J Agric Food Chem, 1984, 32(4): 734-741.
    [10] Marco M P, Gee S J, Cheng H M, et al. Development of an enzyme-linked immunosorbent assay for carbaryl[J]. J Agric Food Chem, 1993, 41(3): 423-430.
    [11]刘曙照,冯大和,陈美娟.对克百威具高度特异性的免疫分析技术研究[J].分析科学学报, 2000, 16(5): 373-378.
    [12]贾明宏,钱传范,韩丽君,等.甲基对硫磷人工抗原的合成与鉴定[J].农药学学报, 2003, 5(2): 22-32.
    [13] Shan G, Leeman W R, Stoutamire D W, et al. Enzyme-linked immunosorbent assay for the pyrethroid permethrin[J]. J Agric Food Chem, 2000, 48(9): 4032-4040.
    [14] Jung F, Meyer H H D, Hamm R T, et al. Development of a sensitive enzyme-linked immunosorbent assay for the fungi-cide fenpropimorph[J]. J Agric Food Chem, 1989, 37(4): 1183-1187.
    [15]陈来同,唐运.生物化学产品制备技术[M].北京:科学技术文献出版社, 2003. 56-73.
    [16]李俊锁,邱月明,王超.兽药残留分析[M].上海:上海科技出版社, 2002. 156-169.
    [17]杨利国,魏平华.酶免疫测定技术[M].南京:南京大学出版社, 1998. 114.
    [18] Tam J P. Recent advances in multiple antigen peptides[J]. J Immunol Meth, 1996, 196(1): 17-32.
    [19]徐寿昌.有机化学[M].北京:高等教育出版社, 1993: 391-340.
    [20] Michel R. Analysis of the plant proteome[J]. Curr Opin Biotech, 2001, 12(2): 131-134.
    [21]高志贤,王艳,房彦军,等.小分子阿特拉津和罂粟碱检测的免疫芯片技术研究[J].分析化学, 2005, 33(4): 455-458.
    [22]朱国念,桂文君,郑尊涛,等.吡虫啉人工抗原的合成与鉴定[J].中国农业科学, 2005, 38(3): 511-515.
    [23]朱国念,吴银良,程敬丽.克百威人工抗原的合成与鉴定[J].浙江大学学报(农业与生命科学版), 2002, 28 (1): 47-53.
    [24]朱国念,吴刚,吴慧明.有机磷杀虫剂毒死蜱人工抗原的合成与鉴定[J].中国农业科学, 2003, 36(6): 657-662.
    [25]杨小姣,张建新,高志贤.用于检测氯霉素的免疫原和包被原的制备[J].解放军预防医学杂志, 2007, 25(2): 87-90.
    [26]陈存社,吕会田.盐酸克伦特罗残留酶联免疫吸附(ELISA)检测方法的研究[J].食品与发酵工业, 2006, 32(7): 91-94.
    [27]苏存举,陈福生,高志贤,等.胶体金法与酶联免疫法相结合快速检测克伦特罗[J].解放军预防医学杂志. 2008, 26(3): 176-179.
    [28]许春光,杨克军.胶体金法与ELISA法检测盐酸克伦特罗的比较试验研究[J].中国动物检疫, 2005, 22(1): 22-24.
    [29]张庆峰,高志贤,王升启.用于雌二醇检测的免疫芯片技术[J].中国生物工程杂志, 2004, 24(9): 86-89.
    [30]许艇,邵晓龙,秦治翔,等.杀虫剂西维因单克隆抗体的研制及鉴定[J].免疫学杂志, 2004, 20 (1): 61-64.
    [31] Zhang Q, Li T, Zhu X, et al. Determination of N-methylcarbamate insecticide metolcarb by enzyme-linked immunosorbent assay[J]. Chin J Anal Chem, 2006, 34(2):178-183.
    [32] Moreno M J, Abad A, Montoya A. Production of monoclonal antibodies to the N-methylcarbamate pesticides propoxur[J].J Agri Food Chem, 2001, 49(1): 72-78.
    [33] Zhang Q, Wang L, Ahn K C, et al. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion[J]. Anal Chim Acta, 2007, 596(2): 303-311.
    [34] Zhang Q, WuY, Wang L, et al. Effect of hapten structures on speci?c and sensitive enzyme-linked immunosorbent assays for N-methylcarbamate insecticide metolcarb[J]. Anal Chim Acta, 2008, 625(1): 87-94.
    [35] Bradford M M. A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1-2): 248-254.
    [36]韩森,程敬丽,马国霞,等.不同载体蛋白制备克伦特罗人工抗原的比较[J].上海畜牧兽医通讯, 2006, 5: 23-25.
    [1] http://www.luminexcorp.com/products/reagents/microplex_microspheres.html.
    [2] http://www.luminexcorp.com/products/reagents/xtag_microspheres.html.
    [3] http://www.luminexcorp.com/products/reagents/magnetic_microspheres.html.
    [4] http:// bio-rad.com.
    [5] http://www.luminexcorp.com/uploads/data/Protein%20Protocols%20FAQs/ PROTEIN%20BUFFERS%20LIST%200507%2010227.pdf.
    [6] http://www.luminexcorp.com/uploads/data/Protein%20Protocols%20FAQs/ Washed%20Capture%20Sandwich%20Immunoassay%20Protocol%200106%2010248.pdf.
    [7] http://www.luminexcorp.com/uploads/data/Protein%20Protocols%20FAQs/ No-Wash%20Capture%20Sandwich%20Immunoassay%20Protocol%200106%2010251.pdf.
    [8] http://www.luminexcorp.com/uploads/data/Protein%20Protocols%20FAQs/ CompetitiveImmunoassayforAntibody-CoupledMicrospheresProtocol-0106-10253.pdf.
    [9] http://www.luminexcorp.com/uploads/data/Nucleic%20Acids%20Protocols% 20FAQs/Oligonucleotide%20Coupling%20Protocol%200407%2010208.pdf.
    [10] http://www.luminexcorp.com/uploads/data/Nucleic%20Acids%20Protocols% 20FAQs/Probe-Primer%20Design%20for%20Direct%20Hybridization%20of%20Nucleic%20Acids%200106%2010216.pdf.
    [11] http://www.luminexcorp.com/uploads/data/Nucleic%20Acids%20Protocols% 20FAQs/Washed%20Direct%20DNA%20Hybridization%20Protocol%200106%2010255.pdf.
    [12]裘法祖.现代免疫学实验技术(第2版)[M].武汉:湖北科学技术出版社, 2002.
    [13]吴萍.藻胆蛋白与荧光免疫分析[J].生理科学进展, 2000, 31(1): 82-84.
    [14]裴仁军,崔小强,杨秀荣,等.实时生物分子相互作用分析技术用于链霉亲和素-生物素化抗体的层层组装研究[J].高等学校化学学报, 2003, 23(2): 195-198.
    [15]王义琴,孙勇如.生物素-亲合素系统及其应用[J].高技术通讯, 2000, 3: 95-97.
    [16]吴萍,顾铭,戚艺华,等.桥式生物素-亲合素标记提高藻胆蛋白免疫荧光法灵敏度的研究[J].细胞与分子免疫学杂志, 2001, 17(4): 321-323.
    [17] Rucklidge G J, Milne G, Chaudhry S M, et al. Preparation of biotinylated,af?nity-puri?ed antibodies for enzyme-linked immunoassays using blotting membrane as an antigen support[J]. Anal Biochem, 1996, 243:158-164.
    [18]邱广明,杨春雁,孙宗华.单分散亚微米级磁性微球的合成[J] .功能高分子学报, 1996, 9(4): 565-571.
    [19] Anthony J P. Dispersion polymerization of styrene in polar solvents[J]. J Polym Sci, Part A, 1990, 28: 2485-2500.
    [20]黄金满,杨梅林,沈家骢.沉淀聚合制备聚二乙烯基苯微粒[J].功能高分子学报, 1996, 9(3): 377-382.
    [21]张凯,雷毅,王宇光,等.单分散聚苯乙烯微球的制备及影响因素研究[J].功能高分子学报, 2002, 15(2): 189-193.
    [22] Ugelstsd J, Mfutakamba H R. Swelling polymerization of oligomer-polymer particles[J]. J Polym Sci, Part A, 1985, 72: 225-240.
    [23]曹同玉.聚合物乳液合成原理、性能及应用[M].北京:化学工业出版社, 1997.
    [24]徐常龙,严平,王琳,等. N-羟基琥珀酰亚胺生物素酯的合成与应用[J].化工中间体, 2007, 1: 15-16, 24.
    [25] Rich R, Myszka D G. Advances in surface plasmon resonance biosensor analysis[J]. Curr Opin Biotech, 2000, 11(1): 54-61.
    [26] Mifumi S, Yoko N. Simple and rapid detection method using surface plasmon resonance for dioxis polychlorinated biphenylx and atrazine[J]. Analytica Chimica Acta, 2001, 434(2): 223-230.
    [27] Mauriz E, Calle A. Real-time detection of chlorpyrifos at part per trilli on levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor[J]. Anal Chim Acta, 2006(1-2), 561: 40-47.
    [28] Jiri H, Jakub D, Chen S F, et al. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk[J]. Int J Food Microbiol, 2002, 75(1): 61-69.
    [29] Webster D M, Henry A H, Rees A R. Antibody-antigen interactions[J]. Curr Opin Struc Biol, 1994, 4(1): 123-129.
    [30] Tulip W R, Varghese J N, Laver W G, et al. Refined crystal structure of the influenza virus N9 neuram inidase-NC41 Fab complex[J]. J Mol Biol, 1992, 227 (1): 122-148.
    [31]金伯泉.细胞和分子免疫学实验技术[M].西安:第四军医大学出版社, 2002.
    [32] http://www.luminexcorp.com/uploads/data/Technology%20Tips%20FAQs/ Incompatible%20Buffers%20and%20Solvents%200106%2010206.pdf.
    [33] http://www.luminexcorp.com/uploads/data/Protein%20Protocols%20FAQs/Antibody%20Coupling%20Confirmation%20Protocol%200106%2010250.pdf.
    [34] www.piercenet.com/files/0475as4.pdf.
    [35] Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters[J]. Anal Biochem, 1990, 185(1): 131-135.
    [36]金声,周浣芳,常文保,等.酶联免疫吸附法直接测定血清雌二醇[J].分析化学, 1994, 22 (2): 115-120.
    [37] Li B, Chen J, Long M. Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique [J]. Anal Biochem, 2008, 377(2): 195-201.
    [38] Robert K, Anders F. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors[J]. J Immunol Meth, 1997, 200(1-2): 121-133.
    [39] Lars N, Anke K, Andreas P. Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics[J]. Anal Biochem, 1996, 234(2): 155-165.
    [1]肖新李,黄飞平,臧清华,等.盐酸克伦特罗引起食物中毒225例[J].广东预防医学, 2002, 23(10): 1004-1004.
    [2]李利东,宓晓黎,袁建兴,等.盐酸克伦特罗的酶联免疫吸附分析试剂盒的研制——Ⅰ克伦特罗人工抗原及抗体的制备[J].中国卫生检验杂志, 2004, 14(1): 124-126.
    [3]赵静,李刚,王保民,等.氯霉素酶联免疫检测方法的研究[J].生物技术, 2005, 15(1): 57-59.
    [4] Marina D D, Gabriella C, Antonio B, et al. Estradiol activation of human colon carcinoma-derived Caco-2 cell growth[J]. Cancer Res,1996, 56: 4516-4521.
    [5] Sigeo M, Kenji N, Satoshi I, et al. Overexpressions of c-fos/jun mRNA and their oncoproteins (Fos/Jun) in the mouse uterus treated with three natural estrogens[J]. Cancer Lett, 1995, 97(2): 225-231.
    [6]李华,安江燕.一起盐酸克伦特罗引起食物中毒的调查[J].解放军预防医学杂志, 2003, 21 (2): 143-143.
    [1]蒋成淦.酶免疫测定法[M].北京:人民卫生出版社, 1984.
    [2]许艇,秦治翔,王文,等.甲萘威ELISA方法的建立及初步应用[J].应用环境生物学报, 2004, 10 (5): 569-572.
    [3]石德时,周斌,覃雅丽,等.氯霉素间接竞争ELISA (ciELISA)检测方法的立[J].中国兽医学报, 2002, 22 (1): 77-79.
    [4]胥传来,王武康,贺铁明.酶联免疫吸附检测克伦特罗条件优化[J].中国公共生, 2004, 20(11): 1285-1286.
    [5]南方地区雨雪冰冻灾后重建实用技术手册(第二批:雨雪冰冻灾后重建实用术)[M].北京:科学出版社, 2008.
    [6] http://www.r-biopharm.com.
    [7] Karin S, Andreas B, Guenter G. Studies on the biotin-avidin multilayer adsorption by spectroscopic ellipsometry[J]. J Colloid Interf Sci, 1997, 196(2): 128-135.
    [8] Jacob P, Andreas B, Guenter G. Affinity detection of low molecular weight analytes[J]. Anal Chem, 1996, 68(1): 139-143.
    1 Dunbar SA. Clin. Chim. Acta., 2006, 363: 71~82
    2 Joubert O, Keller D, Pinck A, Olivier J, Daniel K, Anne P, Henri M, Gilles P, J. Clin. Microbiol., 2005, 43(3): 1076~1080
    3 Wilson W, Erler A, Nasarabadi S, Shanavaz L, Evan W, Paula M, Mol Cell. Probes., 2005(2), 19(2): 137~144
    4 Zoltan L, Alexandra D, Rainer G, Alfried K, Rudolf K, Clin. Chem. Lab. Med., 2005, 43(2): 141~145
    5 Dirk D, Scott A G, Sandor D, John P, Shailja B, Kimberley M, Mohit K, J. Virol. Meth., 2006, 136(1): 17~23
    6 Dirk D, Tara L, Furukawa S, Kara L, John P, Kimberley M, Kathleen H, Shailja B, Mohit K, J. Virol. Meth., 2006, 137(1): 88~94
    7 Marie C, Howard M, Francis F, Kathryn L, Robert F, Ronald B, Kenneth A, Gerald E, Carleton C, Harry H, Cytometry, 2002, 50: 239~242
    8 Kristan K, Karen C, Patti T, Larry M, Chuan S, Margaret M F, Beverly A T,Cancer Res., 2002, 62, 5597~5602
    9 Jun L, Gad G, Eric A M, Ezequiel A S, Justin L, David P, Alejandro S C, Benjamin L E, Raymond H M, Adolfo A F, James R D, Tyler J, Robert H, Todd R G, Nature , 2005, 435(9): 834~838
    10 Wang Yajie(王雅杰),Zhang Kun(张锟), Qi Jun(齐军), Fang Fang(方芳), Lu Hong(吕虹), Li Guoxiang(李国祥), Zheng Yanying(郑艳颖), Zhou XunLei (周雪雷),Cai Yonghua (蔡勇华),Li Jiutong(李久彤),Luo Zhaoling (罗朝领),Mao Liujuan (茅柳娟),Sun Yanyan(孙艳艳),Suo Fengshuang(索凤霜),Yao Jianer(姚见儿), Kang Xixiong(康熙雄),2006, 29(5): 431~432
    11 Zhou Xuelei (周雪雷),Luo Zhaoling (罗朝领),Cai Yonghua (蔡勇华),Mao Liujuan (茅柳娟),Chinese Patent: 200410054257.1
    12 Wang Lei (王蕾),Chen Shukun (陈书琨), Qin Zhifeng (琴智锋),Wang Zhaohui(汪朝晖),Cui Zhijun(崔志君),Lin Mingxiang(林明祥), Chen Dajun(陈大军),Chinese Patent: 200610067180.0
    13 Bai Yanjun(白艳军),Yao Jianer(姚见儿), Li Jiutong(李久彤),Chinese Patent: 200510030338.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700