用户名: 密码: 验证码:
精道梗阻与重建对附睾蛋白影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     评价显微外科在治疗梗阻性无精子症中的应用价值,明确梗阻时间与精道重建术后复通率、精液常规各项指标和受孕率之间的关系。方法:
     回顾性分析2005年1月-2009年5月应用显微外科手术治疗35例梗阻性无精子症的患者。分析梗阻时间与精液常规和受孕之间的关系。结果:
     梗阻性无精子症显微外科术后复通率为94.3%(33/35),总受孕率为51.4%(18/35)。比较受孕率和复通率,受孕率明显低于复通率。按术后是否使妻子受孕分为受孕组和未受孕组,受孕组的精液量(t=2.0823,P<0.05),精子密度(t=2.7147,P<0.05)、精子活动率(t=2.1982,P<0.05)、正常形态精子(t=6.6762,P<0.01)明显高于未受孕组;而年龄,配偶年龄和梗阻时间在受孕组和未受孕组之间比较无统计学差异。根据梗阻10年以下和10年以上分成两组。10年以下组的精液量(t=5.7390,P<0.01),精子密度(t=5.9538,P<0.01)、精子活动率(t=3.6776,P<0.01)、正常形态精子(t=3.9357,P<0.01)明显高于10年以上组。受孕率的随着梗阻时间延长有下降趋势。Logisti回归分析显示精子密度(OR:1.1079,95%CI:1.0157-1.2084,P<0.05),精子存活率(OR:1.1094,95% CI:1.0000-1.2308,P<0.05)和正常形态精子率(OR:1.4805,95% CI:1.0574-2.0729,P<0.05)对生育力恢复有显著性意义。
     结论:
     (1)显微外科是治疗梗阻性无精子症的有效方法。
     (2)显微外科术后,自然受孕率明显低于再通率。
     (3)精子密度、精子活动率、正常形态精子和受孕率随着梗阻时间延长降低。精子活动率、正常形态精子率是影响术后生育力的最主要因素。
     目的:
     模拟输精管结扎和输精管再吻合术,研究梗阻性无精子症对睾丸生精功能的影响,探索Wistar大鼠梗阻性无精子症与精道重建动物模型的建立方法。
     方法:
     将90只雄性Wistar大鼠随机分成6组(n=15),平均体重(250±20)g。在水合氯醛腹腔麻醉后,经腹腔行输精管结扎术。第1-3组分别在输精管结扎术后1个月、2个月、4个月后对睾丸标本进行组织切片HE染色光镜检查。第4-6组分别于输精管结扎术后1个月、2个月、4个月,在水合氯醛腹腔麻醉后,经腹腔行6针全层缝合法输精管再通术,术后1个月后行输精管造影,并对再通术成功的大鼠睾丸标本进行组织切片HE染色光镜检查。所有手术操作均在10倍显微镜下,运用显微器械完成。
     结果:
     全部大鼠术后饲养均无死亡,全部完成实验。六组大鼠睾丸HE染色光镜检查提示生精小管覆盖各级生精细胞和精子。三组精道重建组,输精管造影显示第4,第5和第6组双侧复通和单侧复通分别为12只和3只,10只和2只,8只和2只。三组总复通率分别为27/30(90%)、22/30(73.3%)和18/30(60%)。三组精道重建组的成功率应用卡方检验进行两两比较,第1组的总复通率明显高于第3组(P=0.015),三组的复通率差异有统计学意义(x2=7.13,P=0.028)。结论:
     (1)精道梗阻一定时间内睾丸的生精功能在组织病理学上无明显减退。
     (2)梗阻性无精子症行精道重建再通率随时间延长而下降。
     (3)经腹输精管结扎,显微镜下应用6针全层缝合法行输精管再通术,可以稳定建立大鼠梗阻性无精子症和精道重建模型,可以用于梗阻性无精子症和梗阻性无精子症精道重建术后的病理生理学研究。
     目的:
     研究精道梗阻对附睾蛋白的影响,探索精道梗阻影响精子成熟和获能的可能机制。
     方法:
     建立大鼠梗阻性无精子症的模型,分别于梗阻后1个月、2个月和4个月获取附睾,利用蛋白质二维电泳得到附睾差异蛋白,通过质谱技术及数据库检索确定候选蛋白,运用Western Blotting和Realtime PCR技术进一步鉴定差异蛋白并分析表达规律。
     结果:
     (1)蛋白质二维电泳显示在梗阻后HE2、Fertilin、FA-1、Clusterin、CRISP1和ERABP成分和含量都发生了一定变化,而且不同梗阻时间的样本间也存在差异。
     (2)通过Western Blotting验证了3个差异点:HE2、FA-1和Clusterin蛋白,这3种蛋白的含量在梗阻后都有显著下降。
     (3)定量PCR的结果表明HE2基因的mRNA转录受到精道梗阻的影响。结论:
     (1)附睾功能蛋白含量的下降说明精道梗阻引起了附睾功能的变化。
     (2)促进精子成熟和获能的附睾蛋白HE2、Fertilin、FA-1、Clusterin、CRISP1和ERABP蛋白含量下降,并随梗阻时间延长含量有持续下降趋势,精道梗阻引起的附睾蛋白下降可能是精子受精力下降的原因。
     (3)精道梗阻后引起的HE2蛋白的改变是由基因转录的改变引起,说明精道梗阻能调节附睾蛋白基因的转录。
     目的:
     研究输精管梗阻对附睾蛋白的影响,探索精道重建术对精子成熟和获能影响的可能机制,探索精道重建与梗阻时间的时效关系的可能机制。方法:
     建立大鼠精道梗阻模型,分别于梗阻后1个月、2个月和4个月施行精道重建术,并于1个月后获取附睾,利用蛋白质二维电泳得到附睾差异蛋白,通过质谱技术及数据库检索确定候选蛋白,运用Western Blotting和Realtime PCR技术进一步鉴定差异蛋白并分析表达规律。
     结果:
     (1)蛋白质二维电泳显示精道重建术后附睾的蛋白质成分和含量都发生了一定变化,其中Hyaluronidase PH-20蛋白含量不变,Fertilin, FA-1, CRISP1和ERABP持续下降,HE2和Clusterin含量回升,而且不同梗阻时间后精道重建的样本间也存在差异。
     (2) Hyaluronidase PH-20蛋白,这种蛋白的表达在精道重建前后没有显著变化。
     (3) Western Blotting及定量PCR的结果表明HE2基因在精道重建术后再次受到了mRNA水平的调控,一定程度上恢复了蛋白含量,但是这种恢复在精道梗阻短期内比较明显(结扎1个月和结扎2个月),长期结扎(结扎4个月)后则很难恢复。
     结论:
     (1)精道重建手术能使部分附睾蛋白得到一定的恢复,精道梗阻时间越短,附睾蛋白恢复越好。
     (2)附睾蛋白恢复与梗阻时间的时效关系可能是精道重建术后生育力恢复与梗阻时间的时效关系的原因,而HE2蛋白可能在其中起到重要作用。
Objectives:To estimate the application of microsurgery in obstructive azoospermia and to determine the relationship among obstructive interval, patency rate, semen analysis and pregnancy rate.
     Patients and Methods:We undertook a retrospective analysis of 35 patients treated by microsurgical procedures performed between January 2005 and May 2009. Obstructive interval was compared with patency rate, semen analysis and pregnancy rate.
     Results:The overall patency rate and the overall pregnancy rate were 94.3% and 51.4% respectively. The overall patency rate was significantly higher than the overall pregnancy rate. The patients whether to make his wife pregnant after surgery were divided into pregnancy and non-pregnancy group. Semen volume(t=2.0823, P<0.05), sperm count (t=2.7147, P<0.05), sperm mobility (t=2.1982, P<0.05) and normal morphology sperm rate(t=6.6762, P<0.01) of the pregnancy group were significantly higher than the non-pregnancy group, respectively. Age, spouse age and obstructive interval in pregnany group and non-pregnancy group were no significant difference. According to obstructive interval less or more than 10 years, the patients were divided into two groups. Semen volume (t=5.7390, P<0.01), sperm count(t=5.9538, P<0.01), sperm mobility (t=3.6776, P<0.01) and normal morphology sperm rate (t=3.9357, P<0.01) of the group with obstructive interval less than 10 years were significantly higher, respectively. Logisti regression analysis showed that sperm count (OR:1.1079, 95% CI:1.0157-1.2084, P<0.05), sperm viability (OR:1.1094,95% CI: 1.0000-1.2308, P<0.05) and normal sperm morphology rate (OR:1.4805,95% CI: 1.0574-2.0729, P<0.05) were significant on the recovery of fertility.
     Conclusion:(1) This study confirms the effectiveness of microsurgery for obstructive azoospermia men who wish to father children. (2)After microsurgery, the natural pregnancy rate was significantly lower than the rate of re-canalization. (3) Semen volum, perm count, sperm motility, normal morphology sperm and pregnancy rate decreases as the obstructive interval extends. Sperm motility and normal morphology sperm rate play a key role on fertility recovery after vas reversal.
     Objective:To explore the method of establishing a stable model of obstructive azoospermia and reconstruction of the genital tract in Wistar rats and to study its influence on spermatogenic function of testes.
     Methods:Nighty male rats were randomly divided into six groups, each group had 15 rats with the average weight of (250±20) g. With intraabdominal anesthesia by chloral hydrate, we made obstructive azoospermia models by intraabdominal vasoligation. The testes of groupⅠtoⅢwere harvested 1 month,2 months and 3 months after suegery respectively. After hematoxylin and eosin stain, the pathology of testes under light microscope was performed. With intraabdominal anesthesia by chloral hydrate, the groupⅣtoⅥunderwent transabdominal six-needle full-thickness vasovasostomy 1 month,2 months and 3 months after vasoligation, respectively. After hematoxylin and eosin stain, the pathology of testes under light microscope was performed. Microsurgery was performed with Laica microscope of 10-time amplificatioin.
     Results:None of rats died after operation. The pathology of testes in all groups showed multiple layers of spermatogenic cells including sperm covering on seminiferous tubule. We observed the patency rates of three genital reconstruction groups by vasography. Bilateral patency and unilateral patency of the groupⅣtoⅥwere 12 and 3,10 and 2,8 and 2, respective. The total patency rate of three group was 27/30 (90%), (73.3%) and 18/30(60%) respectively. The statistical differences of patency rates were analyzed by chi-square test, the patency rate of groupⅣis significantly higher than groupⅥ(P= 0.015). The patency rate was significantly difference among three groups (x 2=7.13, P=0.028)..
     Conclusion:(1) Spermatogenesis was not impaired obviously on histopathological examination by obstruction of genital tract. (2)The patency rate of obstructive azoospermia after genital tract reconstruction decreases along with the obstructive interval. (3)We establshed a stable, homogeneous and repetitive obstructive azoospermia and genital tract reconstruction model in Wistar rats by transabdominal vasoligation and six-needle, full-thickness suture. This model can help to research the pathophysiology of obstructive azoospermia and genital tract reconstruction of obstructive azoospermia.
     Objective:To study the influence of genital tract obstruction on epididymal protein and explore the possible mechanism of the influence on sperm maturity and fertility caused by genital tract obstruction.
     Method:Rat models of genital tract obstruction were established and the epididymus were harvested after obstructive interval of 1 month,2 months and 4 months respectively. Two-dimensional gel electrophoresis was used to obtain the differentially expressed epididymal proteins. Candidate proteins were determined by mass-spectrometric technique and multi-database search. Differentially expressed proteins were identified by Western Blotting and the expression regulation was analysed by Realtime PCR.
     Results:(1) Two-dimensional gel electrophoresis of protein showed change of HE2, fertilin, FA-1, Clusterin, CRISP1 and ERABP after genital tract obstruction and there was difference among samples of different obstructive interval. (2) HE2, FA-1 and Clusterin were verified by Western Blotting. These proteins significantly decreased after obstruction. (3) The result of Realtime PCR revealed that the mRNA transcription of HE2 gene was influenced by genital tract obstruction.
     Conclusion:(1) Genital tract obstruction leaded to change of epididymal function which was showed by the decrease of epididymal functional proteins. (2)The content of HE2, Fertilin, FA-1, Clusterin, CRISP1 and ERABP which could promote sperm muturity and fertility deceasing along with the obstructive interval indicates that the fertility of sperm due to genital tract obstruction is caused by decrease of epididymal proteins. (3)The content change of HE2 after genital obstruction is caused by gene expression indicating that gene expression could be regulated by genital tract obstruction.
     Objective:To study the influence of re-canalization of genital tract obstruction on epididymal proteins. To explore the possible mechanism of the influence on sperm maturity and fertility caused by re-canalization of genital tract obstruction and the time-related effect for genital tract reconstruction.
     Method:Rat models of genital tract obstruction were established and genital tract construction was perfermed after 1 month,2 months and 4 months, respectively. The epididymus were harvested 1 month after genital tract reconstruction. Two-dimensional gel electrophoresis was used to harvested the differentially expressed epididymal proteins. Candidate proteins were determined by mass-spectrometric technique and multi-database search. Differentially expressed proteins were identified by Western Blotting and the expression regulation was analysed by Realtime PCR.
     Results:(1) Two-dimensional gel electrophoresis of protein showed change of protein compositons and content after genital tract obstruction. Hyaluronidase PH-20 protein remained unchanged. Fertilin, FA-1, CRISP1 and ERABP continued to decline. HE2 and Clusterin levels partially recovered. And there were differences among genital tract reconstruction samples of different obstructive interval. (2) Hyaluronidase PH-20 did not significantly change after genital tract reconstruction varified by Western blot and RT-PCR. (3)The result of Western blot and Realtime PCR revealed that the HE2 gene was regulated on the level of mRNA transcription by genital tract reconstruction and the HE2 content recovered in a certain extent. The recovery was obvious after short obstructive interval (1 month and 2 months), but recovery did not happened after long obstructive interval (4 months).
     Conclusion:(1) It is possible that genital tract reconstruction could lead to recovery of epididymal function to a certain extent. The shorter the interval of genital tract obstruction, the better the epididymal function recovers. (2) Time-effect relationship between epididymal protein restoration and obstructive interval could explain time-effect relationship between fertility restoration after genital tract obstruction and obstructive interval. HE2 proteins may play an important role in fertility restoration.
引文
1. Philip S Li, Qiang Dong, Marc Goldste.显微外科技术治疗梗阻性无精子症的新进展[J].中华男科学杂志,2009,10(9):643-650.
    2. Bolduc S, Fischer MA, Deceuninck G, et al. Factors predicting overall success:a review of 747 microsurgical vasovasostomies[J]. Can Urol Assoc J,2007,1(4): 388-394.
    3.刘涛,肖新民.梗阻性无精子症的外科治疗[J].临床心身疾病杂志,2007,13(5):409-410.
    4. Hay SA, Soliman HA, Abdel Rahman AH, et al. Laparoscopic classification and treatment of the impalpable testis[J]. Pediatr Surg Int,1999,15 (8):570-572.
    5. Teyschl O, Tuma J. Laparoscopy in the diagnosis, classification and therapy of nonpalpable undescended testes [J]. Rozhl Chir,2000,79 (11):557-560.
    6.杨旭凯,郑少斌,周海宽,等.先天性输精管畸形1例报告[J].中华男科学杂志,2008,14:754.
    7. Kumar R. Reproductive tract tuberculosis and male infertility [J]. Indian J Urol, 2008,24(3):392-395.
    8. Viswaroop BS, Kekre N, Gopalakrishnan G. Isolated tuberculous epididymitis:a review of forty cases[J]. J Postgrad Med,2005,51(2):109-111.
    9. Sheynkin YR, Hendin BN, Schlegelp N, et al. Microsurgical repair of iatrogenic injury to the vas deferens[J]. J Urol,1998,159:139-141.
    10. Fischer MA, Grantmyre JE. Comparison of modified one-and two-layer microsurgical vasovasostomy[J]. BJU Int,2000,85:1085-1088.
    11.黄永明.不用支撑物输精管吻合术32例[J].临床泌尿外科杂志,2000,15:120-121.
    12. Jarvi K, Grober ED, Lo KC, et al. Mini-incision microsurgical vasectomy reversal using no-scalpel vasectomy principles and instruments [J]. Urology,2008,72: 913-915.
    13. Werthman P. Mini-incision microsurgical vasoepididymostomy:a new surgical approach[J]. Urology,2007,70:794-796.
    14.郑天贵,张玉兰.聚四氟乙烯中空导管行输精管复通术42例报告[J].中华泌尿外科杂志.2006,27:134.
    15. Artyukhin AA. Deferent duct plasty from autologous testicular vaginal tunica propria on an arteriovenous pedicle[J]. Bull Exp Biol Med.2007,143:479-482.
    16. Belker AM, Thomas AJ Jr, Fuchs EF, et al. Results of 1,469 microsurgical vasectomy reversals by the vasovasostomy study group[J]. J Urol,1991,145: 505-511.
    17. Silber SJ. Microscopic vasoepididymostomy:specific microanastomosis to the epididymal tubule[J]. Fertil Steril,1978,30(5):565-571.
    18. Wagenknecht LV, Klosterhalfen H, Schirren C. Microsurgery in andrologic urology. I. refertilization[J]. J Microsurg,1980,1:370.
    19. Chan PT. Li PS. Goldstein M. Microsurgical vasoepididymostomy:a prospective randomized study of 3 intussusception technique in rats[J]. J Urol,2003,169(5): 1924-1929.
    20. Turek PJ, Magana JO, Lipshultz L I. Semen parameters before and after transurethral surgery for ejaculatory duct obstruction[J]. J Urol,1996,155 (4): 1291-1293.
    21. Yurdakul T, Gokce G, Kilic O, et al. Transurethral resection of ejaculatory ducts in the treatment of complete ejaculatory duct obstruction[J]. Int Urol Nephrol, 2008,40(2):369-372.
    22. Johnson CW, Bingham JB, Goluboff ET, et al. Transurethral resection of the ejaculatory ducts for treating ejaculatory symptoms[J]. BJU Int,2005,95 (1): 117-119.
    23. Deng CH, Qiu SP, Sun XZ, et al. Surgical therapy for azoospermia with ejaculatory duct obstruction[J]. Zhonghua Wai Ke Za Zhi,2005,15,43(22): 1464-1466.
    24. Guo HB, Zhang YH, Zhang CL, et al. Outcomes of ICSI with sperm from different sources:a retrospective study of 431 cycles[J]. Zhonghua Nan Ke Xue, 2009,15(10):925-928.
    25. Practice Committee of American Society for Reproductive Medicine in collaboration with Society for Male Reproduction and Urology. The management of infertility due to obstructive azoospermia[J]. Fertil Steril,2008, 90(5 Suppl):S121-S124.
    26. Semiao-Francisco L, Braga DP, Figueira Rde C, et al. Assisted reproductive technology outcomes in azoospermic men:10 years of experience with surgical sperm retrieval[J]. Aging Male,2010,13(1):44-50.
    27. Inci K, Hascicek M, Kara O, et al. Sperm retrieval and intracytoplasmic sperm injection in men with nonobstructive azoospermia, and treated and untreated varicocele[J]. J Urol,2009,182(4):1500-1505.
    28. Verza S Jr, Esteves SC. Sperm defect severity rather than sperm Source is associated with lower fertilization rates after intracytoplasmic sperm injection[J]. Int Braz J Urol,2008,34(1):49-56.
    29. Zorn B, Virant-Klun I, Stanovnik M, et al. Intracytoplasmic sperm injection by testicular sperm in patients with aspermia or azoospermia after cancer treatment[J]. Int J Androl,2006 Oct,29(5):521-527.
    30. Kupker W, Schlegel PN, Al-Hasani S, et al. Use of frozenthawed testicular sperm for intracytoplasmic sperm injection[J]. Fertil Steril,2000,73:453-458.
    31.Habermann H, Seo R, Cieslak J, et al. In vitro fertilization outcomes after intracytoplasmic sperm injection with fresh or frozenthawed testicular spermatozoa[J]. Fertil Steril,2000,73:955-960.
    32. Mercan R, Urman B, Alatas C, et al. Outcome of testicular sperm retrieval procedures in non-obstructive azoospermia:percutaneous aspiration versus open biopsy[J]. Hum Reprod,2000,15:1548-1551.
    33. Pavlovich CP, Schlegel PN. Fertility options after vasectomy:A cost-effectiveness analysis[J]. Fertil Steril,1997,67:133-141.
    34. Kolettis PN, Thomas AJ. Vasoepididymostomy for vasectomy reversal:a critical assessment in the era of intracytoplasmic sperm injection[J]. J Urol, 1997,158:467-470.
    35. Lee R, Li PS, Goldstein M, et al. A decision analysis of treatments for obstructive azoospermia[J]. Hum Reprod,2008,23(9):2043-2049.
    36. Jokelainen OS, Rintala E, Koskimies Al, et al. Vasovasostomy-a 15-year experience[J].Scand J Urol Nephrol,2001,35:132-135.
    37. Holman CD, Wisniewski ZS, Semmens JB, et al. Population-based outcomes after 28,246 in-hospital vasectomies and 1,902 vasovasostomies in Western Australia[J]. BJU Int,2000,86:1043-1049.
    38. Zhang yan, Huang Wen tao, Gao Xin, et al.2-suture transversal intussusception vasoepididymostomy:an effective procedure[J]. Chin J Endourology,2009,3(2): 154-156.
    39. Borges Junior E, Rossi-Ferragut LM, Pasqualotto FF, et al. Different intervals between vasectomy and sperm retrieval interfere in the reproductive capacity from vasectomized men[J]. J Assist Reprod Genet,2003,20(1):33-37.
    40. Nicopoullos JD, Gilling-Smith C, Almeida PA, et al. Effect of time since vasectomy and maternal age on intracytoplasmic sperm injection success in men with obstructive azoospermia after vasectomy[J]. Fertil Steril,2004, 82(2):367-373.
    41. Nandipati KC, Pasqualotto FF, Thomas AJ Jr, et al. Relationship of interleukin-6 with semen characteristics and oxidative stress in vasectomy reversal patients[J]. Andrologia,2005,37(4):131-134.
    42. Ba(?)ar MM, Kisa U, Tuglu D, et al. Testicular nitric oxide and thiobarbituric acid reactive substances levels in obstructive azoospermia:a possible role in pathophysiology of infertility[J]. Mediators Inflamm,2006,2006(3):27458.
    43. O'Neill DA, McVicar CM, McClure N, et al. Reduced sperm yield from testicular biopsies of vasectomized men is due to increased apoptosis[J]. Fertil Steril,2007, 87(4):834-841.
    44. Weinberg E D. Human lactoferrin:a novel therapeutic with broad spectrum potential[J]. J Pharm Pharmacol,2001,53 (10):1303-1310
    45. Doussau M, Lasserre A, Hammami-Hamza S, et al. Testicular and epididymal dual origin of hCAP-18/SOB3, a human sperm protein[J]. Fertil Steril,2008, 90(3):853-856.
    46. Zhou CX, Zhang YL, Xiao LQ, et al. An epididymis-specific β-defensin is important for the initiation of sperm maturation[J]. Nature cell biology,2004, 6(5):458-465.
    47. Malm J, Sorensen O, Persson T, et al. The human cationic antimicrobial protein (hCAP218) is expressed in the epithelium of human epididymis, is p resenting seminal plasma at high concentrations, and is attached to spermatozoa[J]. Infect Immun,2000,68(7):4297-4302.
    48. Zanetti M. The role of cathelicidins in the innate host defenses of mammals[J].Curr Issues Mol Biol,2005,7(2):179-196.
    49. Cohen DJ, Da Ros VG, Busso D, et al. Participation of epididymal cysteine-rich secretory proteins in sperm-egg fusion and their potential use for male fertility regulation[J]. Asian J Androl,2007,9(4):528-532.
    50. Hamil KG, Sivashanmugam P, Richardson RT, et al. HE2 beta and HE2 gamma, new members of an epididymis-specific family of androgen-regulated proteins in the human[J]. Endocrinology,2000,141 (3):1245-1253.
    51. Yenugu S, Hamil KG, French FS, et al. Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2betal and HE2beta2[J]. Reprod Biol Endocrinol,2004,24(2):61.
    52. Boue F, Duquenne C, Lassalle B, et al. FLB1, a human protein of epididymal origin that is involved in the sperm-oocyte recognition process [J]. Biol Rep rod, 1995,52 (2):267-278.
    53. GiulianiV, Pandolfi C, Santucci R, et al. Expression of gp20, a human sperm antigen of epididymal origin, is reduced in spermatozoa from subfertile men[J]. Mol Rep rod Dev,2004,69 (2):235-240.
    54. Flori F, Ermini L, La Sala GB, et al. The GPI-anchored CD52 antigen of the sperm surface interacts with semenogelin and participates in clot formation and liquefaction of human semen[J]. Mol Reprod Dev,2008,75(2):326-335.
    55.Nishimura H, Kim E, Nakanishi T, et al. Possible function of the ADAMla /ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface[J]. J Biol Chem,2004,279(33):34957-34962.
    56. Oh JS, Han C, Cho C. ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane[J]. Mol Cells,2009,28(5):441-446.
    57. Cuasnicu PS, Ellerman DA, Cohen DJ, et al. Molecular mechanisms involved in mammalian gamete fusion[J]. Arch Med Res,2001,32 (6):614-618.
    58. Zhang H, Jones R, Martin2DeLeon PA. Expression and secretion of rat SPAM1 (2B1 or PH-20) in the epididymis:role of testicular lumicrine factors[J]. Matrix Biol,2004,22 (8):653-661.
    59. Morin G, Sullivan R, Laflamme I, et al. SPAM1 isoforms from two tissue origins are differentially localized within ejaculated bull sperm membranes and have different roles during fertilization[J].Biol Reprod,2010,82(2):271-281.
    60. Yeung CH, Cooper TG. Developmental changes in signalling transduction factors inmaturing sperm during epididymal transit[J]. Cell Mol Biol,2003,49 (3): 341-349.
    61. Sahin E, Petrunkina AM, Ekhlasi-Hundrieser M, et al. Fibronectin type II-module proteins in the bovine genital tract and their putative role in cell volume control during sperm maturation[J]. Reprod Fertil Dev,2009,21(3):479-488.
    62. Zhou X, Wang J, Zhang YL, et al. Identification of the Gene imds-60 in Mouse Epididymis. Acta Biochimica et Biophysica Sinica,2007,39(12):939-946.
    63. Zhu CF, Liu Q, Zhang YL, et al. RNase9, an Androgen-Dependent Member of the RNase A Family, Is Specifically Expressed in the Rat Epididymis [J]. Biology of reproduction,2007,76:63-73.
    64. Cortes PP, Orihuela PA, Zuniga LM, et al. Sperm binding to oviductal epithelial cells in the rat:role of sialic acid residues on the epithelial surface and sialic acid-binding sites on the sperm surface[J]. Biol Reprod.2004,71(4):1262-1269.
    65. Wang Z, Widgren EE, Richardson RT, et al. Eppin:a molecular strategy for male contraception[J]. Soc Reprod Fertil Suppl,2007,65:535-642.
    66. O'Rand MG, Widgren EE, Wang Z, et al. Eppin:an epididymal protease inhibitor and a target for male contraception[J]. Soc Reprod Fertil Suppl,2007,63: 445-453.
    1. Jokelainen OS, Rintala E, Koskimies AI, et al. Vasovasostomy-a 15-year experience[J]. Scand J Urol Nephrol,2001,35:132-135.
    2. Holman CD, Wisniewski ZS, Semmens JB, et al. Population-based outcomes after 28,246 in-hospital vasectomies and 1,902 vasovasostomies in Western Australia[J]. BJU Int,2000,86:1043-1049.
    3. Lee R, Li PS, Goldstein M, et al. A decision analysis of treatments for obstructive azoospermia[J]. Hum Reprod,2008,23(9):2043-2049.
    4. Meng MV, Greene KL, Turek PJ. Surgery or assisted reproduction? A decision analysis of treatment costs in male infertility [J]. J Urol,2005,174:1926-31.
    5. Fischer MA, Grantmyre JE. Comparison of modified one-and two-layer microsurgical vasovasostomy[J]. BJU Int,2000,85:1085-1088.
    6.黄永明.不用支撑物输精管吻合术32例[J].临床泌尿外科杂志,2000,15:120-121.
    7. Donovan JF Jr, DiBaise M, Sparks AE, et al. Comparison of microscopic epididymal sperm aspiration and intracytoplasmic sperm injection/in-vitro fertilization with repeat microscopic reconstruction following vasectomy:is second attempt vas reversal worth the effort [J]? Hum Reprod,1998,13: 387-393.
    8. Fox M. Failed vasectomy reversal:is a further attempt using microsurgery worthwhile [J]? BJU Int,2000,86:474-478.
    9. Belker AM, Thomas AJ Jr, Fuchs EF, et al. Results of 1,469 microsurgical vasectomy reversals by the Vasovasostomy Study Group[J]. J Urol,1991,145: 505-511.
    10. Bolduc S, Fischer MA, Deceuninck G, et al. Factors predicting overall success: a review of 747 microsurgical vasovasostomies[J]. Can Urol Assoc J,2007,1(4): 388-394.
    11. Busato WF Jr. Vasectomy reversal:a seven-year experience [J]. Urol Int,2009, 82(2):170-174.
    12. Boorjian S, Lipkin M, Goldstein M. The impact of obstructive interval and sperm granuloma on outcome of vasectomy reversal[J]. J Urol,2004,171(1): 304-306.
    13.文任乾,刘美意,黄健初等.影响输精管吻合后生育力恢复相关因素的初探 [J].中国男科学杂志,2003,17(3):184-187.
    14. Lee R, Goldstein M, Ullery BW, et al. Value of serum antisperm antibodies in diagnosing obstructive azoospermia[J]. J Urol,2009,181(1):264-269.
    15. Chavez-Badiola A, Drakeley AJ, Finney V, et al. Necrospermia, antisperm antibodies, and vasectomy[J]. Fertil Steril,2008,89(3):723.e5-7.
    16. Dias PLR. The effect of vasectomy on testicular volume[J]. Br J Urol,1983,55: 83-84.
    17. Silber SJ. Reversal of vasectomy and the treatment of male infertility:Role of microsurgery, vasoepididymostomy, and pressure-induced changes of vasectomy[J]. Urol Clin NorthAm,1981,8:53-62.
    18. Peng B, Zhang RD, Dai XS, et al. Quantitative (stereological) study of the effects of vasectomy on spermatogenesis in rhesus monkeys (Macaca mulatta)[J]. Reproduction,2002,124:847-56.
    19. Raleigh D, Hons BS, O'Donnell L, et al. Stereological analysis of the human after vasectomy indicates impairment spermatogenic efficiency with increasing obstructive interval[J]. Fertil Steril,2004,81:1595-1603.
    20. Peng B, Wang YP, Shang Y, et al. Effect of vasectomy via inguinal canal on spermatogenesis in rabbits[J]. Asian J Androl,2008,10(3):486-493.
    21. Turner TT, Riley TA. P53 independent, region-specific epithelial apoptosis is induced in the rat epididymis by deprivation of luminal factors [J]. Mol Reprod Dev,1999,53(2):188-197.
    22. Turner TT, Riley TA, Vagnetti M, et al. Postvasectomy alterations in protein synthesis and secretion in the rat caput epididymidis are not repaired after vasovasostomy[J]. J Androl,2000,21(2):276-290.
    23. Roaiah MM, Mostafa T, Salem D, et al. alpha-1,4-Glucosidase activity in infertile oligoasthenozoospermic men with and without varicocele[J]. Andrologia,2007,39(1):28-32.
    24. Sandoval L, Diaz M, Rivas F. Alpha-1,4-glucosidase activity and the presence of germinal epithelium cells in the semen for differential diagnosis of obstructive and nonobstructive azoospermia[J]. Arch Androl,1995,35(2): 155-158.
    1. Lee R, Li PS, Goldstein M, et al. A decision analysis of treatments for obstructive azoospermia[J]. Hum Reprod,2008,23(9):2043-2049.
    2.李永廉,邱晓东,孟然.显微外科技术针头支架法输精管吻合术42例分析[J].中华显微外科杂志,2007,30(2):158-159.
    3.郑天贵,张玉兰.聚四氟乙烯中空导管行输精管复通术42例报告[J].中华泌尿外科杂志,2006,27:134.
    4. Artyukhin AA. Deferent duct plasty from autologous testicular vaginal tunica propria on an arteriovenous pedicle[J]. Bull Exp Biol Med,2007,143:479-482.
    5. Naughton CK, Thomas AJ Jr. Optimizing laboratory use of human vas deferens specimens for microsurgical practice[J]. Urololgy,2002,60:320-323.
    6. Bolduc S, Fischer MA, Deceuninck G, et al. Factors predicting overall success:a review of 747 microsurgical vasovasostomies[J]. Can Urol Assoc J,2007,1(4): 388-394.
    7.刘 涛,肖新民.梗阻性无精子症的外科治疗[J].临床心身疾病杂志.2007,13(5):409-410.
    8.邓春华,刘蔚普.梗阻性无精子症的诊断与治疗[J].医学新知杂志,2006,16(2):74-77.
    9. Peng B, Wang YP, Shang Y, et al. Effect of vasectomy via inguinal canal on spermatogenesis in rabbits[J]. Asian J Androl,2008,10(3):486-493.
    10. Fischer MA, Grantmyre JE. Comparison of modified one-and two-layer microsurgical vasovasostomy[J]. BJU Int,2000,85:1085-1088.
    11. Bolduc S, Fischer MA, Deceuninck G, et al. Factors predicting overall success:a review of 747 microsurgical vasovasostomies[J]. Can Urol Assoc J,2007,1(4): 388-394.
    12. Dias PLR. The effect of vasectomy on testicular volume[J]. Br J Urol,1983,55: 83-84.
    13. Bigazzi PE. Immunologic effects of vasectomy in men and experimental animals[J]. Prog Clin Biol Res,1981,70:461-476.
    14. Peng B, Zhang RD, Dai XS, et al. Quantitative (stereological) study of the effects of vasectomy on spermatogenesis in rhesus monkeys (Macaca mulatta) [J]. Reproduction,2002,124:847-856.
    15. Raleigh D, Hons BS, O'Donnell L, et al. Stereological analysis of the human after vasectomy indicates impairment spermatogenic efficiency with increasing obstructive interval[J]. Fertil Steril,2004,81:1595-603.
    16. Peng B, Wang YP, Shang Y, et al. Effect of vasectomy via inguinal canal on spermatogenesis in rabbits[J]. Asian J Androl,2008,10(3):486-493.
    1. Dacheux JL, Gatti JL, Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation [J]. Microsc Res Tech,2003,61(1):7-17.
    2.刘芙君,李建远.附睾蛋白的研究方法及进展[J].现代生物医学进展,2008,7:1374-1375.
    3. Yuan H, Liu A, Zhang L, et al. Proteomic profiling of regionalized proteins in rat epididymis indicates consistency between specialized distribution and protein functions[J]. J Proteome Res,2006,5:299-307.
    4. Goldstein M, Tanrikut C. Microsurgical management of male infertility [J]. Nat Clin Pract Urol,2006,3(7):381-391.
    5. Bolduc S, Fischer MA, Deceuninck G, et al. Factors predicting overall success:a review of 747 microsurgical vasovasostomies[J]. Can Urol Assoc J,2007,1(4): 388-394.
    6. Thimon V, Calvo E, Koukoui O, et al. Effects of vasectomy on gene expression profiling along the human epididymis[J]. Biol Reprod,2008,79(2):262-273.
    7. Liu BJ, Su SF, Wang ZJ, et al. Progress in the studies of human epididymal secretive proteins[J]. Zhonghua Nan Ke Xue,2009,15(7):646-50.
    8. Yenugu S, Hamil KG, Birse CE, et al. Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family, salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli[J]. Biochem J,2003,372(Pt 2):473-483.
    9. Doiron K, Legare C, Saez F, et al. Effect of Vasectomy on Gene Expression in the Epididymis of Cynomolgus Monkey[J]. Biol Reprod,2003,68(3):781-788.
    10. Williams J, Samuel A, Naz RK. Presence of antisperm antibodies reactive with peptide epitopes of FA-1 and YLP12 in sera of immunoinfertile women[J]. Am J Reprod Immunol,2008,59(6):518-524.
    11. Griffiths GS, Galileo DS, Aravindan RG, et al. Clusterin facilitates exchange of glycosyl phosphatidylinositol-linked SPAM1 between reproductive luminal fluids and mouse and human sperm membranes[J]. Biol Reprod,2009,81(3):562-570.
    12. Turner TT, Riley TA, Vagnetti M, et al. Postvasectomy alterations in protein synthesis and secretion in the rat caput epididymidis are not repaired after vasovasostomy[J]. J Androl,2000,21(2):276-290.
    13. Lavers AE, Swanlund DJ, Hunter BA, et al. Acute effect of vasectomy on the function of the rat epididymal epithelium and vas deferens[J]. J Androl,2006, 27(6):826-836.
    14. Roberts KP, Ensrud KM, Wooters JL, et al. Epididymal secreted protein Crisp-1 and sperm function[J]. Mol Cell Endocrinol,2006,250(1-2):122-127.
    15. Da Ros VG, Maldera J A, Willis WD, et al. Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1)[J]. Devl Biol,2008, 320:12-18.
    16. Sipila P, Jalkanen J, Huhtaniemi IT, et al. Novel epididymal proteins as targets for the development of post-testicular male contraception[J]. Reproduction,2009, 137(3):379-389.
    17. Lareyre JJ, Mattei MG, Kasper S, et al. Structure and putative function of a murine epididymal retinoic acid-binding protein (mE-RABP)[J]. J Reprod Fertil Suppl,1998,53:59-65.
    18. Zhou X, Wang J, Zhang YL, et al. Identification of the Gene imds-60 in Mouse Epididymis[J]. Acta Biochim Biophys Sin,2007,39(12):939-946.
    19. Zhu CF, Liu Q, Zhang YL, et al. RNase9, an Androgen-Dependent Member of the RNase A Family, Is Specifically Expressed in the Rat Epididymis[J]. Biology of reproduction,2007,76:63-73.
    20. Zhou CX, Zhang YL, Xiao LQ, et al. An epididymis-specific β-defensin is important for the initiation of sperm maturation[J]. Nature cell biology,2004,6(5): 458-465.
    1. Lee R, Li PS, Goldstein M, et al. A decision analysis of treatments for obstructive azoospermia[J]. Hum Reprod,2008,23(9):2043-2049.
    2. Hollingsworth MR, Sandlow JI, Schrepferman CG, et al. Repeat vasectomy reversal yields high success rates[J]. Fertil Steril,2007,88(1):217-219.
    3. Schrepferman CG, Carson MR, Sparks AE, et al. Need for sperm retrieval and cryopreservation at vasectomy reversal[J]. The Journal of Urology,2001,166(5): 1787-1789.
    4. Thimon V, Calvo E, Koukoui O, et al. Effects of vasectomy on gene expression profiling along the human epididymis[J]. Biol Reprod,2008,79(2):262-273.
    5.文任乾,刘美意,黄健初等.影响输精管吻合后生育力恢复相关因素的初探[J].中国男科学杂志,2003,17(3):184-187.
    6. Turner TT, Riley TA, Vagnetti M, et al. Postvasectomy alterations in protein synthesis and secretion in the rat caput epididymidis are not repaired after vasovasostomy[J]. J Androl,2000,21(2):276-290.
    7. Ekhlasi-Hundrieser M, Schafer B, Kirchhoff C,et al. Structural and molecular characterization of equine sperm-binding fibronectin-II module proteins[J]. Mol Reprod Dev,2005,70(1):45-57.
    8. Kirchhoff C, Obermann H, Behnen M, et al. Role of epididymal receptor HE6 in the regulation of sperm microenvironment[J]. Mol Cell Endocrinol,2006, 250(1-2):43-48.
    9. Kirchhoff C, Osterhoff C, Samalecos A. HE6/GPR64 adhesion receptor co-localizes with apical and subapical F-actin scaffold in male excurrent duct epithelia[J]. Reproduction,2008,136(2):235-245.
    10. Davies B, Behnen M, Cappallo-Obermann H, et al. Novel epididymis-specific mRNAs downregulated by HE6/Gpr64 receptor gene disruption[J]. Mol Reprod Dev,2007,74(5):539-553.
    11. Turner TT, Riley TA, Vagnetti M, et al. Postvasectomy alterations in protein synthesis and secretion in the rat caput epididymidis are not repaired after vasovasostomy[J]. J Androl,2000,21(2):276-290.
    12. Zhang H, Jones R, Martin-DeLeon PA. Expression and secretion of rat SPAM1 (2B1 or PH-20) in the epididymis:role of testicular lumicrine factors[J]. Matrix Biol,2004,22 (8):653-661.
    13. Morin G, Sullivan R, Laflamme I, et al. SPAM1 isoforms from two tissue origins are differentially localized within ejaculated bull sperm membranes and have different roles during fertilization[J].Biol Reprod,2010,82 (2):271-281.
    14. Sipila P, Jalkanen J, Huhtaniemi IT, et al. Novel epididymal proteins as targets for the development of post-testicular male contraception[J]. Reproduction,2009, 137(3):379-389.
    1. Ostermeier Gc, Miller D, Huntriss JD, et al. Reproductive biology:delivering spermatozoan RNA to the oocyte[J]. Nature,2004,429(6988):154.
    2. Dacheux JL, Gatti JL, Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation [J]. Microsc Res Tech,2003,61(1):7-17.
    3. Foucheconrt S, Metayer S, Locatelli A. Stallion epididymal fluid proteome: Qualitative and quantitative characterization, secoretion and dynamic changes of major proteins[J]. Bio Reprod,2000,62:1790-1830.
    4. Syntin P, Dacheux F, Druart X. Characterization and identification of proteins secreted in the various regions of the adult boar epididymis[J]. Bio Reprod,1996, 55:956-974.
    5. Yuan H, Liu A, Zhang L, et al. Proteomic profiling of regionalized proteins in rat epididymis indicates consistency between specialized distribution and protein functions[J]. J Proteome Res,2006,5:299-307.
    6. Kappler-Hanno K, Kirchhoff C. Rodent epididymal cDNAs identified by sequence homology to human and canine counterparts [J]. Asian J Androl,2003,5: 277-286.
    7. Gebhardt K, Ellerbrock K, Pera I. Differential expression of novel abundant and highly rcgionalized mRNAs of the canine epididymis[J]. J of Repro and Fertili, 1999,116:391-402.
    8. Norton EJ, Diekman AB, Westbrook VA, et al. A male genital tract-specific carbohydrate epitope on human CD52:implications for immunocontraception[J]. Tissue Antigens,2002,60:354-364.
    9. Seenundun S, Robaire B. Cloning and characterization of the 5alpha-reductase type 2 promoter in the rat epididymis[J]. Biol Reprod,2005,72:851-861.
    10. Obermaun H, Samalecos A, Osterhoff C, et al. HE6, a two-aubunit heptahelical receptor associated with apical membranes of efferent and epididymal duct epithelia[J]. Mol Reprod,2003,64:13-26.
    11. Turner TT, Riley TA, Vagnetti M, et al. Postvasectomy alterations inprotein synthesis and secretion in the rat caput epididymidis are not repaired after vasovasostomy[J]. J Androl,2000,21(2):276-290.
    12. Gatti JL, Castella S, Dacheux F, et al. Post-testicular sperm environment and fertility[J]. Animal Reprod Sci,2004,82-83(7):321-339.
    13. Seaton GJ, Hall L, Jones R. Rat sperm 2B1 glycoprotein (PH20) contains a C-terminal sequence motif for attachment of a glycosylphosphatidylinositol anchor Effects of endoproteolytic cleavage on hyaluronidase activity[J]. Biol Reprod,2000,62(6):1667-1676.
    14. Moskovtsev SI, Jarvi K, Legare C, et al. Epididymal P34H protein deficiency in men evaluated for infertility[J]. Fertil Steril,2007,88(5):1455-1457.
    15. Cohen DJ, Da Ros VG, Busso D, et al. Participation of epididymal cysteine-rich secretory proteins in sperm-egg fusion and their potential use for male fertility regulation[J]. Asian J Androl,2007,9(4):528-532.
    16. Cuasnicu PS, Ellerman DA, Cohen DJ, et al. Molecularmechanisms involved in mammalian gamete fusion[J]. Arch Med Res,2001,32 (6):614-618.
    17. Miyazaki S, Ito M. Calcium signals for egg activation in mammals[J]. J Pharmacol Sci,2006,100(5):545-552.
    18. Zhang H, Jones R, Martin-DeLeon PA. Expression and secretion of rat SPAM1 (2B1 or PH-20) in the epididymis:role of testicular lumicrine factors[J]. Matrix Biol,2004,22(8):653-661.
    19. Kaji K, Kudo A. The mechanism of sperm-oocyte fusion in mammals [J]. Rep roduction,2004,127(4):423-429.
    20. Evans EA, Zhang H, Martin2DeLeon PA. SPAM1 (PH20) protein and mRNA expression in the epididymides of humans andmacaques:utilizing lasermicrodissection/RT2PCR[J]. Rep rod Biol Endocrinol,2003,1 (2):54-56.
    21. Morin G, Sullivan R, Laflamme I, et al. SPAM1 isoforms from two tissue origins are differentially localized within ejaculated bull sperm membranes and have different roles during fertilization[J]. Biol Reprod,2010,82(2):271-281.
    22. Sahin E, Petrunkina AM, Ekhlasi-Hundrieser M, et al. Fibronectin type Ⅱ-module proteins in the bovine genital tract and their putative role in cell volume control during sperm maturation[J]. Reprod Fertil Dev,2009,21(3):479-488.
    23. Batova IN, IvanovaMD, Mollova MV, et al. Human sperm surface glycoprotein involved in spermzona pellucida interaction[J]. Int J Androl,1998,21(3): 141-153.
    24. Griffiths GS, Galileo DS, Aravindan RG, et al. Clusterin facilitates exchange of glycosyl phosphatidylinositol-linked SPAM1 between reproductive luminal fluids and mouse and human sperm membranes[J]. Biol Reprod,2009,81(3):562-570.
    25. O'Rand MG, Widgren EE, Wang Z, et al. Eppin:an effective target formale contraception[J]. Mol Cell Endocrinol,2006,250:157-162.
    26. Wang Z, Widgren EE, Richardson RT, et al. Characterization of an Eppin protein complex from human semen and spermatozoa[J]. Biol Rep rod,2007,77(3): 476-484.
    27. Wang Z, Widgren EE, Richardson RT, et al. Eppin:a molecular strategy for male contraception[J]. Soc Reprod Fertil Suppl,2007,65:535-642.
    28. O'Rand MG, Widgren EE, Wang Z, et al. Eppin:an epididymal protease inhibitor and a target for male contraception[J]. Soc Reprod Fertil Suppl,2007,63: 445-453.
    29. Wang Z, Widgren EE, Sivashanmugam P, et al. Association of Eppin with Semenogelin on human spermatozoa[J]. Biol Rep rod,2005,72(5):1064-1070.
    30. Yenugu S, Hamil KG, French FS, et al. Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2betal and HE2beta2[J]. Reprod Biol Endocrinol,2004,24,2:61.
    31. Weinberg E D. Human lactoferrin:a novel therapeutic with broad spectrum potential[J]. J Pharm Pharmacol,2001,53(10):1303-1310.
    32. Malm J, Sorensen O, Persson T, et al. The human cationic antimicrobial protein (hCAP218) is expressed in the epithelium of human epididymis, is p resenting seminal plasma at high concentrations, and is attached to spermatozoa[J]. Infect Immun,2000,68(7):4297-4302.
    33. Yeung C H, Perez2Sanchez F, Schroter S, et al. Changes of the major sperm maturation-associated epididymal protein HE5(CD52) on human ejaculated spermatozoa during incubation[J]. Mol Hum Rep rod,2001,7(7):617-624.
    34. Boue F, Duquenne C, Lassalle B, et al. FLB1, a human protein of epididymal origin that is involved in the sperm-oocyte recognition process[J]. Biol Rep rod, 1995,52(2):267-278.
    35. Doussau M, Lasserre A, Hammami-Hamza S, et al. Testicular and epididymal dual origin of hCAP-18/SOB3, a human sperm protein[J]. Fertil Steril,2008, 90(3):853-856.
    36. GiulianiV, Pandolfi C, Santucci R, et al. Expression of gp20, a human sperm antigen of epididymal origin, is reduced in spermatozoa from subfertile men[J]. Mol Rep rod Dev,2004,69(2):235-240.
    37. Nishimura H, Kim E, Nakanishi T, et al. Possible function of the ADAM1a /ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface [J]. J Biol Chem,2004,279(33):34957-34962.
    38. Zhou X, Wang J, Zhang YL, et al. Identification of the Gene imds-60 in Mouse Epididymis[J]. Acta Biochim Biophys Sin,2007,39(12):939-946.
    39. Zhu CF, Liu Q, Zhang YL, et al. RNase9, an Androgen-Dependent Member of the RNase A Family, Is Specifically Expressed in the Rat Epididymis[J]. Biology of reproduction,2007,76:63-73.
    40. Zhou CX, Zhang YL, Xiao LQ, et al. An epididymis-specific β-defensin is important for the initiation of sperm maturation[J]. Nature cell biology,2004,6(5): 458-465.
    41. Oh J, Woo JM, Choi E, et al. Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28[J]. Biochem Biophys Res Commun,2005,17,331(4):1374-1383.
    42. Kim T, Oh J, Woo JM, et al. Expression and relationship of male reproductive ADAMs in mouse[J]. Biol Reprod,2006,74(4):744-750.
    43. Oh JS, Han C, Cho C. ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane[J]. Mol Cells,2009,28(5):441-446.
    44. Cortes PP, Orihuela PA, Zuniga LM, et al. Sperm binding to oviductal epithelial cells in the rat:role of sialic acid residues on the epithelial surface and sialic acid-binding sites on the sperm surface[J]. Biol Reprod,2004,71(4):1262-1269.
    1. Jarow JP, Espeland MA, Lipshultz LI. Evaluation of the azoospermic patient[J]. J Urol.1989,142:162.
    2. Belker AM, Thomas AJ Jr., Fuchs EF, Konnak JW, Sharlip ID:Results of 1,469 microsurgical vasectomy reversals by the vasovasostomy study group. J Urol. 1991,145:505-511.
    3. Bolduc S, Fischer MA, Deceuninck G, et al. Factors predicting overall success:a review of 747 microsurgical vasovasostomies[J]. Can Urol Assoc J.2007, 1(4):388-94.
    4.刘涛,肖新民.梗阻性无精子症的外科治疗.临床心身疾病杂志[J].2007,13(5):409-410.
    5. Turek PJ, Magana JO, Lipshultz L I. Semen parameters before and after transurethral surgery for ejaculatory duct obstruction. J Urol,1996,155 (4):1291-1293.
    6. Yurdakul T, Gokce G, Kilic O, et al. Transurethral resection of ejaculatory ducts in the treatment of complete ejaculatory duct obstruction[J]. Int Urol Nephrol. 2008,40(2):369-372.
    7. Johnson CW, Bingham JB, Goluboff ET, et al. Transurethral resection of the ejaculatory ducts for treating ejaculatory symptoms. BJU Int,2005,95 (1): 117-119.
    8. Deng CH, Qiu SP, Sun XZ, et al. Surgical therapy for azoospermia with ejaculatory duct obstruction. Zhonghua Wai Ke Za Zhi.2005,15,43(22): 1464-1466.
    9. Guo HB, Zhang YH, Zhang CL, et al. Outcomes of ICSI with sperm from different sources:a retrospective study of 431 cycles. Zhonghua Nan Ke Xue. 2009,15(10):925-928.
    10. Practice Committee of American Society for Reproductive Medicine in collaboration with Society for Male Reproduction and Urology. The management of infertility due to obstructive azoospermia. Fertil Steril.2008,90(5 Suppl):S121-4.
    11. Palermo GD, Schlegel PN, Hariprashad JJ, et al. Fertilization and pregnancy outcome with intracytoplasmic sperm injection for azoospermic men[J]. Hum Reprod.1999,14:741-748.
    12. Kupker W, Schlegel PN, Al-Hasani S, et al. Use of frozenthawed testicular sperm for intracytoplasmic sperm injection[J]. Fertil Steril.2000,73:453-458.
    13. Habermann H, Seo R, Cieslak J, et al. In vitro fertilization outcomes after intracytoplasmic sperm injection with fresh or frozenthawed testicular spermatozoa[J]. Fertil Steril.2000,73:955-960.
    14. Mercan R, Urman B, Alatas C, et al. Outcome of testicular sperm retrieval procedures in non-obstructive azoospermia:percutaneous aspiration versus open biopsy[J]. Hum Reprod.2000,15:1548-1551.
    15. Semiao-Francisco L, Braga DP, Figueira Rde C, et al. Assisted reproductive technology outcomes in azoospermic men:10 years of experience with surgical sperm retrieval. Aging Male.2010,13(1):44-50.
    16. Inci K, Hascicek M, Kara O, et al. Sperm retrieval and intracytoplasmic sperm injection in men with nonobstructive azoospermia, and treated and untreated varicocele. J Urol.2009,182(4):1500-1505.
    17. Belker AM, Sherins RJ, Bustillo M, et al. Pregnancy with microsurgical vas sperm aspiration from a patient with neurologic ejaculatory dysfunction [J]. J Androl.1994,15 (Supplement):6S-9S.
    18. Jarow JP. Seminal vesicle aspiration of fertile men[J]. J Urol 1996,156:1005-1007.
    19. Verza S Jr, Esteves SC. Sperm defect severity rather than sperm Source is associated with lower fertilization rates after intracytoplasmic sperm injection. Int Braz J Urol.2008,34(1):49-56.
    20. Schlegel PN, Girardi SK. Clinical review 87:In vitro fertilization for male factor infertility [J]. J Clin Endocrinol Metab.1997,82:709-716.
    21. Bassil S, Godin PA, Stallaert S, et al. Ovarian hyperstimulation syndrome. A review[J]. Assist Reprod Rev.1995,5:90-96.
    22. Devroey P, Aboulghar M, Garcia-Velasco J, et al. Improving the patient's experience of IVF/ICSI:a proposal for an ovarian stimulation protocol with GnRH antagonist co-treatment. Hum Reprod.2009,24(4):764-774.
    23. Pandian Z, Templeton A, Serour G, et al. Number of embryos for transfer after IVF and ICSI:a Cochrane review. Hum Reprod.2005,20(10):2681-2687.
    24. Society for Assisted Reproductive Technology and the American Society for Reproductive Medicine. Assisted reproductive technology in the United States: 1996 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril. 1999,71:798-807.
    25. Wilcox LS, Keily JL, Melvin CL, et al. Assisted reproductive technologies: estimates of their contribution to multiple births and newborn hospital days in the United States[J]. Fertil Steril.1996,65:361-366.
    26. Lee R, Li PS, Goldstein M, et al. A decision analysis of treatments for obstructive azoospermia. Hum Reprod.2008,23(9):2043-9.
    27. Kolettis PN, Thomas AJ. Vasoepididymostomy for vasectomy reversal:a critical assessment in the era of intracytoplasmic sperm injection[J]. J Urol. 1997,158:467-470.
    28. Hull MGR, Fleming CF, Hughes AO, et al. The age-related decline in female fecundity:a quantitative controlled study of implanting capacity and survival of individual embryos after in vitro fertilization. Fertil Steril.1996,65:783-790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700