用户名: 密码: 验证码:
快速生产蝇蛆饲用蛋白与有机肥的鲜猪粪二步堆酵技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪粪规模化生猪产业的副产物,量大面广,既是有机肥的重要来源,又是不可忽视的环境污染源。围绕利用蝇蛆对鲜猪粪进行生物脱水的主题,本研究较系统地考查了蝇蛆生物脱水堆肥过程中蝇蛆产量、蝇蛆品质、堆肥样品的理化性质、酶活、植物毒性及低分子有机物质等指标的动态变化,形成了利用鲜猪粪快速生产饲用蝇蛆和合格有机肥的二步堆酵技术。主要结果摘要如下:
     初孵蝇蛆(家蝇Musca domestica一龄幼虫)与麦麸组成的接种体(每克含蛆约2000头),按0.25%-1.5%的重量比接种到平堆于水泥池(2.4×2.3×0.2m)中的200kg鲜猪粪中,每接种量处理三次重复,常温堆酵7天后收获蝇蛆。结果表明,0.5%接种量处理的蝇蛆产量最高,达鲜猪粪重量的11.5%。收获蝇蛆的蛋白质含量为54.62%,蛋氨酸MET含量为1.23%,赖氨酸LYS含量为4.16%,重金属含量As≤10mg/kg, Pb≤10mg/kg, Hg≤0.5mg/kg, Cd≤2.0mg/kg, Cr≤8.0mg/kg,均符合国家鱼粉标准GB13078-2001和GB/T19164-2003三级品的相应要求。经蝇蛆处理的粪渣呈小颗粒状,含水率由初始的72.3%降至56.3%,符合堆酵生产有机肥的含水率要求(50%-60%)。
     将上述优化的蝇蛆接种量用于扩大的二步堆酵试验中,鲜猪粪总量为1.8吨,分装于三个大水泥池(7.3×2.3×0.2m)中,常温堆酵7天后收获蝇蛆193kg,即鲜猪粪总重量的10.7%,与接种量试验中的蝇蛆产量相近。蝇蛆收获后,所有粪渣堆成长4.5m、宽2.2m、高0.8m的峰堆,并设无蝇蛆处理的相应粪堆作为对照,进行为期12周的第二步堆酵。整个堆酵期间,定期取样测定各种理化、酶活和生物指标,以考查温度、pH、含水率、水溶性碳、总氮、过氧化氢酶、多酚氧化酶、脱氢酶、碱性磷酸酶、脲酶、硝酸还原酶、亚硝酸还原酶、转化酶活性和发芽指数随堆肥过程的动态变化。结果表明,第一步为期一周的蝇蛆处理能有效降低猪粪含水率,第6天后含水率降至50-60%之间;堆肥快速升温,第10天堆温上升至50℃以上,连续9天保持平均温度55℃左右,而对照在第17天的温度才上升至50℃。与对照相比,蝇蛆处理的粪堆最终水溶性碳损失为35%,总氮损失16%。用定期抽取的堆肥样品进行大白菜和黄瓜种子的发芽试验,结果表明,蝇蛆处理样品的大白菜和黄瓜发芽指数分别在第10天和第25天达到71.4%和86.5%,其熟化比对照提早20天左右。在测定的酶活指标中,过氧化氢酶活更有堆肥腐熟的指标意义。
     为了研究堆肥过程中低分子有机物质随堆肥时间的变化情况,探索出顶空固相微萃取(HS-SPME)的优化条件为:CAR/PDMS萃取头,萃取温度60℃,萃取时间30min。堆酵过程中被检测到的化学物质有87种,而且大部分低分子有机物质在堆酵22天后已检测不出,此后苯环类和烷类等有害物质的含量却增大。因此,基于蝇蛆处理的鲜猪粪二步堆酵的时间应控制在22-25天,如此生产的堆肥中吡啶和吲哚类物质含量较高而具有一定的抗病促生长作用。
A burst of pig industry in China has brought about a huge amount of manure that is not only a reservoir of pathogens, parasites and weed seeds but also a favorable substrate for breeding the larvae (maggots) of the housefly Musca domestica. This study sought to develop a two-stage composting technology for the use of fresh pig manure in the production of maggots as feed supplement and organic fertilizer. The objective was to maximize maggot production in the first stage and accelerate the composting to maturity in the second stage by monitoring changes in temperature, moisture, pH, phytotoxicity, microbial enzyme activities, and low-molecular organic substances. Harvested maggots were also evaluated for the quality of their feed-purpose application in terms of the contents of nutrients and heavy metal ion. The results are summarized below.
     A triplicate experiment was conducted to determine a proper level of wheat bran-vectoring maggot inoculum (~2000neonate maggots per gram) for the composting of fresh pig manure (with72.3%moisture) at Deqing Pig Farm (Hangzhou, Zhejiang, China). Batches of200kg manure were flatly piled to~7cm thickness in cement trays (2.4x2.3x0.2m) under greenhouse conditions and inoculated with maggot inoculum at the weight ratios of0.25%,0.5%,0.75%,1.0%and1.5%respectively, forming five treatments plus control (not inoculated). After7-day composting under ambient conditions, the yields of aging maggots (near pupation) harvested by means of their photophobotaxis differed significantly among the treatments. A maximal yield of23±1.7kg aging maggots per tray (Fig. la) resulted from the inoculum treatment of0.5%(w/w) fresh manure weight, accompanied by moisture reduction to56.2%(±1.2%), which is well in agreement with the optima of50-60%for manure composting to maturity. The body weights of harvested maggots were averagely9-19.3mg per capita, decreasing with the inoculum level. Dried maggots contained54.62%proteins,1.23%methionine,4.16%lysine, and the trace contents of0.38,1.93,0.16,0.67and1.73mg/kg for the heavy metals of As, Pb, Hg, Cd and Cr, respectively. All these indices indicate that the maggot product meets commercial fishmeal requirements (GB13078-2001and GB/T19164-2003) in China. The maggot treated manure became granular in texture.
     In an enlarged two-stage composting experiment, the first7-day composting of1.8ton fresh pig manure in three large cement trays (7.3x2.3x0.2m) inoculated at the optimized level of0.5%maggot inoculum resulted in a harvest of193kg aging maggots. This maggot yield was equivalent to10.7%of the fresh manure weight and close to the percent yield of11.5%at the same inoculum level in the previous experiment. After maggot harvest on day7, all the manure was piled up into a peak-shaped compost (4.5m in length,2.2m in width, and0.8m in height), namely maggot-treated compost (MC), on the ground in a rainproof workshop and a natural compost (NC) was constructed as a control in the same way using1.8ton manure composted for7days in other three trays without maggot inoculum. Both MC and NC were covered with plastic film for24h to stifle possible residue maggots and then entered the second-stage composting to maturity for12weeks, during which both composts were turned upside down every3days. As a result, reaching the thermophilic phase and final maturity faster was characteristic of MC versus NC in the two-stage composting. Upon MC transit to the second stage, the composting temperature maintained around55℃for9days and the moisture decreased to-40%. Moreover, higher pH, faster detoxification and different activity patterns for some microbial enzymes were observed from the MC samples taken daily (first stage) or every3-6days (second stage). There was a strong material loss (35%water-soluble carbon and16%total nitrogen) caused by the maggot culture in the first stage.
     Moreover, a headspace solid-phase microextraction method (HS-SPME) was modified to assess the contents of low-molecular organic components in the samples from MC and NC by gas chromatography with mass spectrometric detection (GC/MS). Technical parameters were optimized as the extraction head of CAR/PDMS, the extraction temperature of60℃and the extraction time of30min. With the modified method,87low-molecule organic compounds were identified from the samples taken during the two-stage composting, including some substances that may resist plant diseases or promot plant growth. Based on the temperal changes of such substances, detected phytotoxicity and other physiochemical and biological parameters, the composting of fresh pig manure to maturity needed no more than25days (~22days) for MC but45days for NC.
     Overall, the results highlight that a higher economic value of pig manure can be achieved by rapid production of maggots as feed supplement and qualified organic fertilizer through the two-stage composting without bulking agents.
引文
白钢,张翼翔.2010.蝇蛆营养成分的测定与评价.包头医学院学报,26(1):10-13.
    鲍艳宇,周启星,颜丽.2008.畜禽粪便堆肥过程中各种氮化合物的动态变化及腐熟度评价指标.应用生态学报,19(2):374-380.
    曹小红,陈一,张燕,高嘉,陈锦英,王志锐.2003.家蝇蛹凝集素的纯化及其免疫调节和抑菌作用.中华微生物学和免疫学杂志,23(10):297-300.
    常志州,朱万宝,叶小梅,张建英.2000.禽畜粪便生物干燥技术研究.农业环境保护,19(4):213-215.
    陈乃松,魏涛涛,廖奕招.2007.蝇蛆粉和p葡聚糖对凡纳滨对虾生长和免疫的影响.水产学报,31(6):771-777.
    陈秋汝,黄根思,杜林,周玉,黄清亮,王钢.2010.蝇蛆粪对晚熟桠柑品质影响的研究.现代园艺,(2):5-6.
    陈世和.1993.中国大陆城市生活垃圾堆肥技术概况.环境科学,15(2):53-56.
    杜彦武,王秀蘅,吕炳南.2003.粪便脱水设备的技术经济分析.中国给水排水,19(10):64-65.
    费辉盈,常志州,王世梅,黄红英,陈欣,朱红.2006.畜禽粪便水分特征研究.农业环境科学学报25(增刊):599-603.
    冯晓慧,蔡东联,曲丹,金迪,林宁,郑慧.2010.蝇蛆壳聚糖对实验性糖尿病大鼠脂代谢的影响.氨基酸和生物资源32(1):41-43.
    高建程,于金莲,石登荣,任丽萍.2008.不同预堆期对牛粪堆肥进程的影响研究.农业环境科学学报,27(3):1214-1218.
    顾卫兵,乔启成,杨春和,白晓龙.2008.有机固体废弃物堆肥腐熟度的简易评价方法.江苏农业科学,(6):258-294.
    韩如冰.2006.家蝇精细养殖技术.畜牧兽医科技信息,96.
    黄国锋,钟流举,张振钿,吴启堂.2003.有机固体废弃物堆肥的物质变化及腐熟度评价.应用生态学报,14(5):813-818.
    黄红英,朱万宝,常志州,马艳,叶小梅.2003.不同堆制方法对牛粪和鸡粪发酵脱水的影响.农村生态环境,19(1):53-55.
    姜宁,张爱忠,丁翠华,李玲玲,于国萍.2009a.蝇蛆肽对大鼠生长及营养物质代谢率的影响.家畜生态学报,30(3):34-37.
    姜宁,张爱忠,李玲玲,于国萍.2009b.蝇蛆肽对大鼠机体抗氧化和免疫指标的影响.动物营养学报,21(4):561-566.
    解开治,徐培智,张仁陟,唐栓虎,张发宝,陈建生,杨少海,黄旭.2007a.饲蝇养蛆产物对黄瓜炭疽病防治效果的应用研究.长江蔬菜,48-50.
    解开治,徐培智,张仁陟,张发宝,杨少海,陈建生,唐栓虎,黄旭.2007b.养蛆产物对苦瓜枯萎 病抑茵抗病的效果初探.农业环境科学学报,26(增刊):232-235.
    金家志,邵凤君,陆华.1997.肉鸡舍垫料堆肥化处理研究.农业环境保护,16(2):65-67.
    雷朝亮,钟昌珍,宗良炳,赖凡,牛长缨.1997.蝇蛆几丁糖的免疫调节作用研究.华中农业大学学报,16(3):259-262.
    雷朝亮,钟昌珍,宗良炳,牛长缨,姜勇,宋春满.1998.蝇蛆营养活性粉保健功能的评价.华中农业大学学报,17(2):138-142.
    雷大鹏,黄为一,王效华.2011.发酵基质含水率对牛粪好氧堆肥发酵产热的影响.生态与农村环境学报,27(5):54-57.
    李国明.1981.蝇蛆的培养方法.水产科学,[2]:75-76.
    李艳霞,王敏健,王菊思,陈同斌.2000.填充料和通气对污泥堆肥过程的影响.生态学报,20(6):1015-1020.
    李振高,骆永明,滕应.2008.土壤与环境微生物研究法.—北京:科学出版社,395-421.
    李自刚.2006.农业有机固体废弃物堆肥过程中微生物多样性与物质转化关系研究.[博士论文],江苏南京,南京农业大学,91-100.
    李自刚,黄为一.2006.微生物腐熟菌剂对牛粪堆肥产品中低分子量有机物的影响.植物营养与肥料学报,12(3):437-444.
    刘晖,贺莉芳,晏容.2008.不同饲养条件对家蝇幼虫生长发育的影响.医学动物防制,24(2):83-84.
    刘卫星,金顾刚,姜瑞波,洪坚平.2005.有机固体废弃物堆肥的腐熟度评价指标.土壤肥料,(3):3-7.
    刘效强,申红,冯大坤,王俊刚.2009.禽畜粪对家蝇生长发育的影响.中国媒介生物学及控制杂志,20(3):206-209.
    罗泉达,黄惠珠,郑长焰,等.2009.猪粪堆肥的腐熟度指标.福建农林大学学报,38(1):84-87.
    罗维,陈同斌.2004.湿度对堆肥理化性质的影响.生态学报,24(11):2656-2663.
    罗维,陈同斌,高定,郑玉琪,李艳霞,郑国砥.2004.城市污泥与猪粪混合堆肥过程中湿度空间变异.环境科学学报,24(1):126-133.
    倪娒娣,陈志银,程绍明.2005.不同填充料对猪粪好氧堆肥效果的影响.农业环境科学学报,24(增刊):204-208.
    倪治华,薛智勇.2005.猪粪堆制过程中主要酶活性变化.植物营养与肥料学报,11(3):406-411.
    庞金华.1999.高温堆肥的水气矛盾.农业环境保护,18(2):73-75.
    钱晓雍,沈根祥,黄丽华,奚刚,Giovanni Minuto.2009.畜禽粪便堆肥腐熟度评价指标体系研究.农业环境科学学报,28(3):549-554.
    曲颂华,陈绍伟.1998.城市垃圾与污水处理厂污泥的混合堆肥研究.环境保护,10:15-16.
    任国栋,石爱民.2002.家蝇工程及其开发前景.昆虫知识,39(2):103-106.
    上官松.2007.家蝇卵、幼虫和蛹的低温保存[硕士学位论文].广东广州,中山大学,30-39.
    邵淼,杨淑英,张增强,康军.2010.不同处理对高含水率奶牛粪便好氧堆肥的影响.农业环境科 学学报,29(5):982-989.
    孙先锋,邹奎,钟海风,谢式云.2004.不同工艺和调理剂对猪粪高温堆肥的影响.农业环境科学学报,23(4):787-790.
    孙刚,王振堂,宋榆钧.1999.家蝇幼虫集约化生产的初步研究.应用生态学报,10(2):221-224.
    帅怡,张立实.2006.毒理学领域的新兴亚学科-毒理基因组学.现代预防医学33(9):1562-1564.
    苏水莲,李娟,胡雅琼,谢学斌,廖华.2002.人工饲养家蝇蛆和蛹提取几丁质的研究.赣南医学院学报(3):227-229.
    覃容贵,吴建伟,国果,付萍.2010.蝇蛆壳聚糖对糖尿病小鼠降血糖作用.中国公共卫生,26(4):456-457.
    唐金陵,张文佳.2007.蝇蛆粪渣配制穴盘育苗基质试验研究.安徽农业科学,35(9)2663-2664,2666.
    田宁宁,柯建明,王凯军.2001.卧式旋转型污泥好氧堆肥装置的研制.中国给水排水,17(1):19-22.
    汪廷生.2009.家蝇种质资源评价及其抗菌物质的利用[博士学位论文].广东广州,中山大学,1-25.
    王雷,严善春.2004.蝇类的开发与利用.东北林业大学学报,32(6):97-98.
    王娓,周晓梅,于宁.2002.蝇蛆提高对虾抗杆状病毒感染能力的初步研究.东北师大学报自然科学版,34(1):54-57.
    王卫平,汪开英,薛智勇,朱凤香.2005.不同微生物菌剂处理对猪粪堆肥中氨挥发的影响.应用生态学报,16(4):693-697.
    王争艳.2008.家蝇与大头金蝇幼虫取食与成虫产卵行为研究[博士学位论文].浙江杭州,浙江大学,1-24.
    魏秋生.1999.家蝇的养殖技术.中国农村科技,(2):26-27.
    韦新葵,雷朝亮.2004a.蝇蛆几丁低聚糖抑菌作用的初步研究.中国农业科学37(4),552--557.
    韦新葵,雷朝亮.2004b.蝇蛆几丁低聚糖对花生白绢病菌菌丝形态及超微结构的影响.华中农业大学学报,23(2),214-217.
    魏源送,樊建波,王敏健,王菊思.2000.堆肥系统的通风设计.环境污染治理技术与设备,1(3):1-9.
    吴建伟,陈美,彭文峰.2001.猪粪饲养家蝇幼虫的营养成分研究.贵阳医学院学报,26(5):377-379.
    吴建伟,彭文峰,陈美.2002.鲜蛆替代国产鱼粉对海兰棕壳蛋鸡产蛋性能的影响.贵阳医学院学报,27(3):189-191.
    吴军伟,常志州,周立祥,钱玉婷,徐霄.2009.XY型固液分离机的畜禽粪便脱水效果分析.江苏农业科学,(2):286-288.
    吴青华,田河,苏立申,高凤山.2006.家蝇幼虫及其产品开发利用研究进展.饲料工业,27 (16):63-64.
    徐大刚,吴健桦,杨鹤萍,薛纯良.2005.家蝇幼虫处理猪粪的效果研究.中国媒介生物学及控制杂志,16(1):9-11.
    薛智勇,王卫平,朱凤香,钱红,吴传珍.2005.复合菌剂和不同调理剂对猪粪发酵温度及腐熟度的影响.浙江农业学报,17(6):354-358.
    杨从发,王淑军,陈静.1999.利用酒糟开发蝇蛆蛋白的研究.酿酒,(总133):30-31.
    杨献军,陈建,许兵红.2004.家蝇室内连续饲养11代羽化率观察.医学动物防制,20(4):195-196.
    张军,雷梅,高定,郑国砥,陈同斌,岳波,刘斌,杜伟.2007.堆肥调理剂研究进展.生态环境,16(1):239-247.
    张廷军.2000.蝇蛆的经济价值及其在动物饲料上的应用.中国动物保健,(2):34-35.
    张延军.1999.家蝇幼虫的综合开发利用.资源开发与市场,15(1):40-41.
    张泽生,姚国雄.1997.家蝇幼虫作为人类潜在食物蛋白质资源的探索.食品工业科技,(6):67-69.
    张洪玉,张天时,孔杰,罗坤,常亚青.2009.蚯蚓与蝇蛆对中国对虾生长及抗白斑综合征病毒感染的研究.水产学报,33(3):503-510.
    赵俊兴,杜明策,魏永平(2000)食物含水量及饲养密度对家蝇生长发育的影响.山东农业大学学报(自然科学版),31(4):403-407.
    赵润朝(2011)浅析无菌蝇蛆在水产饵料中的应用.河北渔业,(9):54-56.
    赵伟,林勇,吴云良,庄从井.2011.利用鸡粪规模化生产蝇蛆的生态畜牧业研究.江苏农业科学,(1):233-235.
    郑小霞.2010.家蝇饲料配方改良及其抗菌物质的保鲜作用[硕士学位论文].广东广州,中山大学,1-18.
    朱开建,陈小麟,赵扬,吕良炬,陈美,方文珍,张财兴,吴建伟.2003.利用猪粪集约化生产蝇蛆的生态工程研究.厦门大学学报(自然科学版)42(2):
    Adani F, Genevini P, Crasperi F.1995. A new index of organic matter stability. Compost Science & Utilization 3:25-37.
    Ai H, Wang FR, Yang QS, Zhu F, Lei CL.2008. Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica. Carbohydrate Polymers 72:419-423.
    Akpodiete OJ, Ologhobo AD, Oluyemi JA.1997. Production and nutritive value of housefly maggot meal on three substrates of poultry faeces. Journal of Applied Animal Research 12:101-106.
    Alestrom P, Holter JL, Nourizadeh-Lillabadi R.2006. Zebrafish in functional genomics and aquatic biomedicine. Trends in Biotechnology 24:15-21.
    Alex Merrick B, Madenspacher JH.2005. Complementary gene and protein expression studies and integrative approaches in toxicogenomics. Toxicology and Applied Pharmacology 207:189-194.
    Amano K.1985. Breeding of the House-Fly, Musca-Domestica (Diptera, Muscidae), in Fresh Dung of Cattle Fed on Pasture Grass. Applied Entomology and Zoology 20:143-150.
    Aparna C, Saritha P, Himabindu V, Anjaneyulu Y.2008. Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments. Waste Management 28:1773-1784.
    Avnimelech Y, Bruner M, Ezrony I, Sela R, Kochba M.1996. Stability indexes for municipal solid waste compost. Compost Science & Utilization 4:13-20.
    Azhar A, Verhe R, Mars P, Sandra P, Verstraete W.1989. Fixation of nitrate nitrogen during humification of j-naphthol in soil suspensions. Journal of Agricultural and Food Chemistry 37: 262-6.
    Bao YY, Guan LZ, Zhou QX, Wang H, Yan L.2010. Various sulphur fractions changes during different manure composting. Bioresource Technology 101:7841-7848.
    Barrena R, Vazquez F, Sanchez A.2008. Dehydrogenase activity as a method for monitoring the composting process. Bioresource Technology 99:905-908.
    Benito M, Masaguer A, Moliner A, Hontoria C, Almorox J.2009. Dynamics of pruning waste and spent horse litter co-composting as determined by chemical parameters. Bioresource Technology 100: 497-500.
    Bernal MP, Alburquerque JA, Moral R.2009. Composting of animal manures and chemical criteria for compost maturity assessment. Areview. Bioresource Technology 100:5444-5453.
    Bernal MP, Lopezreal JM, Scott KM.1993. Application of Natural Zeolites for the Reduction of Ammonia Emissions during the Composting of Organic Wastes in a Laboratory Composting Simulator. Bioresource Technology 43:35-39.
    Bernal MP, Paredes C, Sanchez-Monedero MA, Cegarra J.1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology 63:91-99.
    Blanco MJ, Almendros G. 1994. Maturity Assessment of Wheat-Straw Composts by Thermogravimetric Analysis. Journal of Agricultural and Food Chemistry 42:2454-2459.
    Bohacz J, Kornillowicz-Kowalska T.2009. Changes in enzymatic activity in composts containing chicken feathers. Bioresource Technology 100:3604-3612.
    Bremner JM, Mulvaney CS.1982. Nitrogen total. In:Page, AL, Miller, RH, Keeney, DR (Eds.), Methods of Soil Analysis, Part 2. American Society for Agronomy, Madison, pp.595-624.
    Butler TA, Sikora LJ, Steinhilber PM, Douglass LW.2001. Compost age and sample storage effects on maturity indicators of biosolids compost. Journal Environmental Quality 30:2141-2148.
    Cayuela ML, Mondini C, Sanchez-Monedero MA, Roig A.2008. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting. Bioresource Technology 99:4255-4262.
    Chikae M, Kerman K, Nagatani N, Takamura Y, Tamiya E.2007. An electrochemical on-field sensor system for the detection of compost maturity. Analytica Chimica Acta 581:364-369.
    Choi HL, Richard TL, Ahn HK.2001. Composting high moisture materials:biodrying poultry manure in a sequentially fed reactor. Compost Science & Utilization 9:303-311
    Cooperband LR, Stone AG, Fryda MR, Ravet JL.2003. Relating compost measures of stability and maturity to plant growth. Compost Science & Utilization 11:113-124.
    Das K, Keener HM.1997. Moisture effect on compaction and permeability in composts. Journal of Environmental Engineering-Asce (3):275-281.
    Deportes I, Benoitguyod JL, Zmirou D.1995. Hazard to man and the environment posed by the use of urban waste compost-a review. Science of the Total Environment 172:197-222.
    Epstein E, Wu, NT.1997. Composting of wastewater biosolids to reduce total petroleum hydrocarbons. In Situ and on-Site Bioremediation 2-4:71-71
    Fella K, Gluckmann M, Hellmann J, Karas M, Kramer PJ, Kroger M.2005. Use of two-dimensional gel electrophoresis in predictive toxicology:Identification of potential early protein biomarkers in chemically induced hepatocarcinogenesis. Proteomics 5:1914-927.
    Fernandes L, Zhan W, Patni NK, Jui PY.1994. Temperature distribution and variation in passively aerated static compost piles. Bioresource Technology 48:257-263.
    Fu P, Wu JW, Guo G.2009. Purification and Molecular Identification of an Antifungal Peptide from the Hemolymph of Musca domestica (housefly). Cellular & Molecular Immunology 6:245-251.
    Garcia C, Hernandez T, Costa F, Pascual JA.1992. Phytotoxicity due to the agricultural use of urban wastes-germination experiments. Journal of the Science of Food and Agriculture 59:313-319.
    Genevini P, Adani F,'Villa C.1997. Rice hull degradation by co-composting with dairy cattle slurry. Soil Science and Plant Nutrition 43:135-147.
    Godden B, Penninckx MJ, Castille C.1986. On the use of biological and chemical indexes for determining agricultural compost maturity-extension to the field scale. Agricultural Wastes 15: 169-178.
    Golubeva EG.1986. Outlook for use of Musca-Domestica L to destroy organic-matter in biotechnological systems. Soviet Journal of Ecology 17:225-228.
    Gomez-Brandon M, Lazcano C, Dominguez J.2008. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 70:436-444.
    Goyal S, Dhull SK, Kapoor KK.2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology 96:1584-591.
    Groenhof A.1998. Composting-renaissance of an age-old technology. Biologist 45:164-167.
    Hachicha R, Hassen A, Jedidi N, Kallali H.1992. Optimal conditions for msw composting. Biocycle 33:76-77.
    Hamoda MF, Abu Qdais HA, Newham J.1998. Evaluation of municipal solid waste composting kinetics. Resources Conservation and Recycling 23:209-223.
    Hankin L, Poincelot RP, Anagnostakis SL.1976. Microorganisms from composting leaves:ability to produce extracellular degradative enzymes. Microbial Ecology 2:296-308.
    Harada Y, Inoko A, Tadaki M, Izawa T.1981. Maturing process of city refuse compost during piling. Soil Science and Plant Nutrition 27:357-364.
    Haug RT.1993. The Practical handbook of compost engineering. New York:Lewis Publisher.
    Hayakawa K.2009. Decomposition and treatment of environmental pollutants. Yakugaku Zasshi 129: 35-43.
    Hong JH, Matsuda J, Ikeuchi Y.1983. High rapid composting of dairy-cattle manure with crop and forest residues. Transactions of the Asae 26:533.
    Hou LX, Shi YH, Zhai P, Le GW.2007. Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). Journal of Ethnopharmacology 111: 227-231.
    Hue NV, Liu J.1995. Predicting compost stability. Compost Science & Utilization 3:8-15.
    Iguchi T, Watanabe H, Katsu Y.2006. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environmental Health Perspectives, suppl 1 (114): 101-105.
    Inbar Y, Chen Y, Hadar Y.1989. Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Science Society of America journal 53:1695-1701.
    Iniguez-covarrubias G, Franco-Gomez MD, Andrade-Maldonado GD.1994. Biodegradation of swine waste by Housefly Larvae and evaluation of their protein-quality in rats. Journal of Applied Animal Research 6:65-74.
    Jeris JS, Regan RW.1973. Controlling environmental parameters for optimal composting E:moisture, free air space and recycle. Compost Science 1:14.
    Jimenez El, Garcia VP.1991. Composting of domestic refuse and sewage-sludge.1. Evolution of temperature, Ph, C/N ratio and cation-exchange capacity. Resources Conservation and Recycling 6:45-60.
    Jimenez EI, Garcia VP.1989. Evaluation of city refuse compost maturity-a review. Biological Wastes 27:115-142.
    Jing YJ, Hao YJ, Qu H, Shan Y, Li DS, Du RQ.2007. Studies on the antibacterial activities and mechanisms of chitosan obtained from cuticles of housefly larvae. Acta Biologica Hungarica 58: 75-86.
    Ke GR, Lai CM, Liu YY, Yang SS.2010. Inoculation of food waste with the thermo-tolerant lipolytic actinomycete Thermoactinomyces vulgaris A31 and maturity evaluation of the compost. Bioresource Technology 101:7424-7431.
    Keller P.1961. Methods to evaluate maturity of compost. Compost Science & Utilization 2:20-26.
    Ko HJ, Kim KY, Kim HT, Kim CN, Umeda M.2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management 28:813-820.
    Komilis DP, Tziouvaras IS.2009. A statistical analysis to assess the maturity and stability of six composts. Waste Management 29:1504-1513.
    Kostov O, Petkova G, Vancleemput O.1994. Microbial indicators for sawdust and bark compost stability and humification processes. Bioresource Technology 50:193-200.
    Larrain P, Salas C.2008. House fly (Musca domestica L.) (Diptera:Muscidae) development in different types of manure. Chilean Journal of Agricultural Research 68:192-197.
    Ma Y, Zhang JY, Wong MH.2003. Microbial activity during composting of anthracene-contaminated soil. Chemosphere 52:1505-1513.
    Mathur SP, Dinel H, Owen G, Schnitzer M, Dugan J.1993. Determination of compost biomaturity.2. Optical-density of water extracts of composts as a reflection of their maturity. Biological Agriculture & Horticulture 10:87-108.
    Miller BF, Teotia JS, Thatcher TO.1974. Digestion of poultry manure by Musca domestica. British poultry science,15:231-1.
    Miller FC.1992. Composting as a process based on the control of ecologically selective factors. In: Metting, FB, Jr. (Ed.), Soil Microbial Ecology, Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York, pp.515-544.
    Miller FC.1989. Matric water potential as an ecological determinant in compost, a substrate dense system. Microbial Ecology 18:59-71.
    Miyatake F, Iwabuchi K.2006. Effect of compost temperature on oxygen uptake rate, specific growth rate and enzymatic activity of microorganisms in dairy cattle manure. Bioresource Technology 97: 961-965.
    Morel JL, Colin F, Germon JC, Godin P, Juste C.1985. Methods for the evauation of the maturity of municipal refuse compost. In:Gasser JKed. Composting of Agricultural and Other Wastes.London & NeYork:Elsevier Applied Science Publishers,56-72.
    Ni ZH, Xue ZY.2005. Changes of main enzymes activities of pig manure during composting. Plant Nutrition and Fertilizer Science 11:406-411.
    Ogel ZB, Yuzugullu Y, Mete S, Bakir U, Kaptan Y, Sutay D, Demir AS.2006. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum. Applied Microbiology and Biotechnology 71: 853-862.
    Pickens LG, Lorenzen KJ.1983. A new larval diet for Musca-Domestica (Diptera, Muscidae). Journal of Medical Entomology 20:572-573.
    Piotrowska-Cyplik A, Olejnik A, Cyplik P, Dach J, Czarnecki Z.2009. The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresource Technology 100:5037-5044.
    Raut MP, William SPMP, Bhattacharyya JK, Chakrabarti T, Devotta S.2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-A compost maturity analysis perspective. Bioresource Technology 99:6512-6519.
    Richard TL, Hamelers HVM, Veeken A, Silva T.2002. Moisture relationships in composting processes. Compost Science & Utilization 10:286-302.
    Roy S, Tal G, Yoram A.1998. Determining optimal maturity of compost used for land application. Compost Science &Utilization, Winter:83-88.
    Rynk R.2000. Monitoring moisture in composting systems. Biocycle 41:53-57.
    Said-Pullicino D, Erriquens FG, Gigliotti G.2007 Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology 98:1822-1831.
    Shao ZH, He PJ, Zhang DQ, Shao LM.2009. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste. Journal of Hazardous Materials 164: 1191-1197.
    Sharma VK, Canditelli M, Fortuna F, Cornacchia G.1997. Processing of urban and agro-industrial residues by aerobic composting:Review. Energy Conversion and Management 38:453-478.
    Shiralipour A, McConnell DB, Smith WH.1997. Phytotoxic effects of a short-chain fatty acid on seed germination and root length of Cucumis sativus cv.'poinset'. Compost Science & Utilization 5: 47-52.
    Snell JR.1957. Some engineering aspects of high-rate composting. Journal of the Sanitary Engineering 1:83.
    Som MP, Lemee L, Ambles A.2009. Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresource Technology 100:4404-4416.
    Tang JC, Kanamori T, Inoue Y, Yasuta T, Yoshida S, Katayama A.2004. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Process Biochemistry 39:1999-2006.
    Tiquia SM.2000. Evaluating phytotoxicity of pig manure from the pig-on-litter system. Proceedings of the International Composting Symposium (Ics'99) 1 and 2:625-647.
    Tiquia SM, Tam NFY.2000. Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technology 72:1-7.
    Tiquia SM, Tam NFY.1998. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology 65:43-49.
    Tiquia SM, Tam NFY, Hodgkiss IJ.1998. Changes in chemical properties during composting of spent pig litter at different moisture contents. Agriculture Ecosystems & Environment 67:79-89.
    Tiquia SM, Tam NFY, Hodgkiss IJ.1997. Effects of bacterial inoculum and moisture adjustment on composting of pig manure. Environmental Pollution 96:161-171.
    Tiquia SM, Tam NFY, Hodgkiss IJ.1996a. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental Pollution 93:249-256.
    Tiquia SM, Tam NFY, Hodgkiss IJ.1996b. Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents. Bioresource Technology 55:201-206.
    Vargas-Garcia MC, Suarez-Estrella F, Lopez MJ, Moreno J.2010. Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Management 30: 771-778.
    Verhaegen K, Van-Cleemput O, Verstraete W.1988. Nitrification and mediated nitrosation of organics and effects on soil microbial biomass. Biological Wastes 26:235-245.
    Volchatova IV, Belovezhets LA, Medvedeva SA.2002. Microbiological and biochemical investigation of succession in lignin-containing compost piles. Microbiology 71:467-470.
    Vuorinen AH, Saharinen MH.1997. Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture Ecosystems & Environment 66:19-29.
    Wang P, Changa CM, Watson ME, Dick WA, Chen Y, Hoitink HAJ.2004. Maturity indices for composted dairy and pig manures. Soil Biology & Biochemistry 36:767-776.
    Wichuk KM, McCartney D.2010. Compost stability and maturity evaluation-a literature review. Canadian Journal of Civil Engineering 37:1505-1523.
    Wong JWC, Fang M.2000. Effects of lime addition on sewage sludge composting process. Water Research 34:3691-3698.
    Yamada Y, Kawase Y.2006. Aerobic composting of waste activated sludge:kinetic analysis for microbiological reaction and oxygen consumption. Waste Management 26:49-61.
    Yu H, Zeng GM, Huang HL, Xi XM, Wang RY, Huang DL, Huang GH, Li JB.2007. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18:793-802.
    Zameer F, Meghashri S, Gopal S, Rao BR.2010. Chemical and microbial dynamics during composting of herbal pharmaceutical industrial waste. E-Journal of Chemistry 7:143-148.
    Zhou LK, Zhang ZM, Chen EF.1981. Enzymatic activities in black soils. Acta Pedologic Simica 18: 158-166.
    Zmora-Nahum S, Markovitch O, Tarchitzky J, Chen YN.2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology & Biochemistry 37:2109-2116.
    Zucconi F, Monaco A, Debertoldi M.1981. Biological evaluation of compost maturity. Biocycle 22: 27-29.
    Zucconi F, Monaco A, Forte M, Bertoldi M.1985. Phytotoxins during the stabilization of organic matter. In:Gasser, J.K.R. (Ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science, London, New York, pp.73-88.
    Zuhlke U, Weinbauer G.2003. The common marmoset (Callithrix jacchus) as a model in Ttoxicology. Toxicologic Pathology, Suppl(31):123-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700