用户名: 密码: 验证码:
兽疫链球菌发酵生产透明质酸过程控制与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明质酸(HA)是由葡萄糖醛酸和乙酰氨基葡萄糖通过β-(1→3)和β-(1→4)糖苷键连接而成的粘多糖,具有高保湿性、粘弹性和生物相容性等许多优良性质,在生物医药、化妆品和保健食品等领域具有广泛应用。目前微生物发酵法已经取代动物组织提取法成为生产HA的主要方法,随着HA市场需求的不断扩大,有效提高发酵法生产HA的产率和生产强度至关重要。本论文依据HA发酵系统的混合与传质特性以及生产菌株兽疫链球菌Streptococcus zooepidemicus自身的生理代谢特性,提出了一系列发酵优化与控制策略,实现了微生物发酵法生产HA的高产量、高底物转化率与高生产强度的相对统一,其主要研究内容和结果如下:
     (1) HA发酵属于高粘度发酵,混合性能差和传质效率低是HA发酵的一个重要瓶颈,因此优化HA发酵体系的混合与传质特性至关重要。首先研究了HA发酵过程的混合与传质特性,然后运用径向基函数神经网络-具有量子行为的粒子群优化算法(RBF-QPSO)对影响混合与传质特性的三个主要因素(搅拌转速、通气速率与搅拌器个数)进行优化。得到的优化条件为:搅拌转速294 rpm,通气速率1.5 vvm,搅拌器个数3,在此条件下HA产量为5.58 g/L,比优化前提高了12%(以5.0 g/L为对照);
     (2)进一步研究发现在上述优化条件下HA发酵体系仍没有处于全混合状态,于是进一步研究了全混合状态对HA发酵的影响。结果表明在全混合状态下虽然混合与传质效率得到明显提高,但是HA产量反而下降,这可能是因为在全混合状态下高搅拌转速(高剪切力)对细胞的剪切作用较大,降低了细胞的生理代谢活性,表明低剪切、高传质效率和高溶氧水平是HA发酵的较理想方式;
     (3)基于上述研究结果,进一步研究了添加氧载体正十二烷对HA发酵过程的影响,结果表明,当添加的正十二烷浓度为5%(v/v)时,8-16 h期间的平均体积溶氧传递系数(KLa)为37 h~(-1),是添加前的3.7倍;HA产量达到6.3 g/L,提高了26%;
     (4)在上述研究基础上进一步探讨了在发酵过程中通过降解HA提高发酵体系混合与传质效率的可能性。考察了在发酵过程中添加透明质酸酶对HA发酵过程的影响,研究结果表明在发酵过程中添加透明质酸酶降解透明质酸能够显著改善发酵体系的混合与传质特性,当添加的透明质酸酶浓度为0.25 g/L时,HA分子量由1300 kDa降为21kDa,发酵体系处于完全混合状态,KLa为100 h-1,HA产量为6.0 g/L,提高了20%;
     (5)出于对生产成本的考虑,进一步考察了在发酵过程中同时添加过氧化氢和抗坏血酸对HA发酵过程的影响,在发酵8 h和12 h两次添加过氧化氢和抗坏血酸以氧化还原降解HA也能够显著改善发酵体系的混合与传质特性,当添加的过氧化氢浓度为1.0mmol/g HA、抗坏血酸浓度为0.5 mmol/g HA时,KLa从3.7 h~(-1)提高到49 h~(-1),HA产量为6.5 g/L,提高了26%;
     (6)基于HA在兽疫链球菌中的生理功能以及细胞在胁迫环境下的物质及能量代谢的应答机理,考察了流加H_2O_2进行氧化胁迫对HA发酵过程的影响,研究发现在分批培养过程中流加H_2O_2进行氧化胁迫能够转变细胞产能途径、提高细胞产能效率和提高HA合成速率,当H_2O_2流加速率为0.06 mmol L-1 h~(-1)时,HA的产量达到6.0 g/L,比对照提高了20%;
     (7)提出了一种间歇性pH胁迫策略:前0-6 h期间控制pH为7.0,在6-7 h期间控制pH为8.5,在7-8 h期间控制pH为7.0,在8-9 h期间再将pH调到8.5,如此循环下去,直至发酵结束。在此胁迫策略控制下,HA产量提高到6.5 g/L,提高了30%;
     (8)考察了HA发酵过程中常见氨基酸的代谢动力学,确定精氨酸、半胱氨酸和赖氨酸是影响细胞生长和HA合成的关键氨基酸;考察了添加核苷酸碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶、尿嘧啶)对HA发酵过程的影响,发现尿嘧啶对HA发酵具有重要影响。运用RBF-QPSO算法对关键营养因子的添加浓度进行了优化,最佳添加浓度为:精氨酸0.062 g/L,半胱氨酸0.036 g/L,赖氨酸0.043 g/L,尿嘧啶0.06 g/L时,在此条件下,HA产量提高到6.3 g/L,提高了26%;
     (9)研究了不同培养模式对HA发酵过程的影响,发现采用分批培养可获得较高的碳源对HA的转化率,而补料分批培养可获得较高的细胞比生长速率,于是提出了一种两阶段培养模式:在第一阶段内(0-8 h)进行指数流加培养,在8 h提高碳源浓度至25 g/L,进行第二阶段的分批培养。在此两阶段培养模式中,HA产量提高至5.98 g/L,比单一分批培养模式提高了20%。为进一步提高HA产量,在第二阶段培养期间应用间歇性pH胁迫策略转变细胞产能途径、提高细胞产能效率,HA产量进一步提高至6.6 g/L,提高了32%,碳源对HA的转化率(YHA)提高了19%,而生产强度提高了32%,实现了HA高产量、高底物转化率与高生产强度的相对统一。
Hyaluronic acid (HA) is a natural biopolymer composed of glucuronic acid and N-acetylglucosamine joined alternatively byβ-(1→3) andβ-(1→4) glycosidic bonds. With its unique physico-chemical and biological properties including high water-holding capacity, viscoelasticity, and biocompatibility, HA is widely applied in biomedical, cosmetic and healthcare fields. Currently the microbial fermentation is replacing the animal tissue extraction as the predominant technique to produce HA. With the increasing HA markrt demand, it is very crucial to improve HA productivity. In this thesis, based on the mixing performance and oxygen mass transfer characteristics of the culture system and the physiological and metabolic characteristics of Streptococcus zooepidemicus, a series of process control and optimization strategies were developed as listed in the following:
     (1) Microbial HA production was a kind of high viscosity fermentation, and the poor mixing performance and low mass transfer efficiency were the bottlenecks of HA production. The mixing performance and oxygen mass transfer characteristics were studied and the main factors influencing mixing performance and oxygen mass transfer (agitation speed, aeration rate and stirrer number) were optimized with the radial basis function neural network coupling quantum-behaved particle swarm optimization (RBF-QPSO) algorithm. Under the optimal conditions (agitation speed: 294 rpm, aeration rate: 1.5 vvm, stirrer number: 3), HA production reached 5.58 g/L, and increased by 12%;
     (2) The further study indicated that the culture system was not in a status of complete mixing even under the above optimized culture conditions, and then the effect of complete mixing on the microbial HA production was investigated. Though the mixing performance and oxygen mass transfer efficiency were improved significantly when the culture system was in a status of complete mixing, HA production decreased, possibly due to the harmful effect of strong shear stress on the cell growth and metabolism. It was indicated that low shear stress, high oxygen mass transfer efficiency and high dissolved oxygen level were the ideal culture conditions for microbial HA production.
     (3) Based on the above results, the influence of oxygen vector n-dodecane addition on microbial HA production was studied and the results showed that, with an n-dodecane concentration of 5% (v/v), the volumetric oxygen mass transfer coefficient KLa during 8-16 h reached 37 h~(-1), increased by 3.7 folds and HA production achieved 6.3 g/L, increased by 26%. Though HA production was improved significantly via the addition of oxygen vector n-dodecane, the purification process was more complicated and the industrial HA production was not applicable. Therefore, the possibility of increasing mixing performance and oxygen mass transfer efficiency via the HA degradation was further explored.
     (4) Effects of hyaluronidase addition on the microbial HA production were investigated and it was indicated that the hyaluronidase addition could improve the mixing performance and oxygen mass transfer significantly. When hyaluronidase concentration was 0.25 g/L, HA molecular weight decreased from 1300 kDa to 21 kDa, making the culture system in a status of complete mixing, and KLa reached 100 h~(-1). HA production reached 6.3 g/L, enhanced by 26%. The production cost was high and the industrial HA production was not feasible;
     (5) Effect of hydrogen peroxide and ascorbate addition on microbial HA production were studied and the results indicated that, the twice addition of hydrogen peroxide and ascorbate at 8 h and 12 h could significantly improve the mixing performance and oxygen mass transfer. When the hydrogen peroxide concentration was 1.0 mmol/g HA and ascorbate concentration was 0.5 mmol/ g HA, KLa reached 49 h~(-1) and HA production was 6.0 g/L, enhanced by 20%;
     (6) Based on the physiological function of HA capsule in Streptococcus zooepidemicus and the subatrate and energy response mechanism of the cells subject to stress environments, Impact of oxidative stress via feeding hydrogen peroxide on microbial HA production was studied, and it was found that the oxidative stress could transform the energy-yielding pathway and improve the energy-yielding efficiency, contributed to the enhancement of HA synthesis rate. At a hydrogen peroxide feeding rate of 0.06 mmol L-1 h~(-1), HA production reached 6.0 g/L and was enhanced by 20%;
     (7) An intermittent alkaline stress strategy was proposed: pH value was kept at 7.0 for the first 6 h, and then intermittently switched to 8.5 for 1 h and back to 7.0 for 1 h, the cycle was repeated until the end of the fermentation. HA production reached 6.5 g/L and was enhanced by 30% with the improved energy status by the intermittent alkaline stress strategy;
     (8) The metabolic kinetics of amino acids during the microbial HA production process was investigated, and the arginine, cysteine and lysine were found to be the key amino acids for cell growth and HA synthesis. The influence of nucleotides bases addition on the microbial HA production was also studied and the uracil had a positive effect on the microbial HA production. Under the optimal conditions (by adding arginine 0.062 g/L, cysteine 0.036 g/L, lysine 0.043 g/L and uracil 0.06 g/L) obtained by RBF-QPSO approach, HA production reached 6.3 g/L, enhanced by 26%;
     (9) Effect of different culture modes on the microbial HA production were studied and the results showed that batch culture had a higher HA synthesis rate while fed-batch culture had a higher specific cell growth rate. A two-step fed-batch and batch culture approach was proposed: the exponential feeding was carried out during 0-8 h and then the batch culture was started with an initial sucrose concentration of 25 g/L. HA production increased to 5.98 g/L, enhanced by 20 %. To further decrease the inhibition of lactic acid on the cell growth and HA synthesis, the intermittent alkaline stress strategy was applied in the second stage and HA production increased to 6.6 g/L, enhanced by 32%. The transformation yield of carbon source to HA and HA productivity were increased by 19% and 32%, respectively, achieving the unification of high HA production, high carbon transformation rate and high productivity.
引文
[1]张木,魏于全.医药生物技术研究与产业化进展[J].生物工程进展. 2002, 22 (1): 3-8.
    [2]彭俊文,蒋铭敏.生物技术药物的研究开发与产业化现状及前景[J].生物技术通讯. 2004, 15(2): 201-203.
    [3]袁勤生.生化药物的研究现状及发展思路[J].中国天然药物. 2006, 4(4): 246-249.
    [4]吴梧桐,王友同,吴文俊. 21世纪生物技术和生物制药[J ] .药物生物技术, 2001, 8 (2): 61-65.
    [5]文淑美.全球制药生物产业发展态势[J].生物工程进展. 2006, 26 (1): 92-96.
    [6]李建纲.我国生物医药产业发展中存在的问题及对策[J].医药世界. 2005, 1: 35-37.
    [7] Willemstein L, Van der Valk T, Meeus MTH. Dynamics in business models: An empirical analysis of medical biotechnology firms in the Netherlands [J]. Technovation, 2007, 27(4): 221-232.
    [8] Maryann F. Guidelines and policies for medical writers in the biotech industry: an update on the controversy [J]. Biotechnol Annual Review, 2004, 10: 259-264.
    [9]丁锡申.生物技术药物产业化发展的新趋势[J].中国生物工程杂志, 2004, 24 (11): 97- 99.
    [10]史典义,刘英.现代生物技术以及应用[J].生物学教学, 2008, 33(1): 4-6.
    [11] Meyer K, Palmer JW. The polysaccharide of the vitreous humor [J]. J Biol Chem, 1934, 107: 629-634.
    [12] Shu XZ, Liu YC, Palumbo F, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering [J]. Biomaterials, 2004, 25: 1339-1348.
    [13] Fong Chong B, Lars MB, Richard M, Nielsen LK. Microbial hyaluronic acid production [J]. Appl Microbiol Biotechnol, 2005, 66: 341-351.
    [14] Kogan G, ?oltés L, Stern R, Gemeiner R. Hyaluronic acid: a natual biopolymer with a broad range of biomedical and industrial applications [J]. Biotechnol Lett, 2007, 29: 17-25.
    [15] Ward PD, Thibeault SL, Gray SD. Hyaluronic acid: its role in voice [J]. J Voice, 2002, 16: 303-309.
    [16] Vasiliu S, Popa M, Rinaudo M. Polyelectrolyte capsules made of two biocompatible natural polymers [J]. Eur Polym J, 2005, 41: 923-932.
    [17] Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system [J]. Eur J Cell Biol, 2006, 85: 699-715.
    [18] Esposito E, Menegatti E, Cortesi R. Hyaluronan-based microspheres as tools for drug delivery: a comparative study [J]. Int J Pharm, 2005, 288: 35-49.
    [19] Barbucci R, Lamponi S, Borzacchiello A, et al. Hyaluronic acid hydrogel in the treatment of osteoarthritis [J]. Biomaterials, 2002, 23: 4503-4513.
    [20]凌沛学.透明质酸[M].北京:中国轻工业出版社, 2000, 26-32.
    [21] Shiedlin A, Bigelow R, Christopher W, et al. Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord [J]. Biomacromolecules, 2004, 5: 2122-2127.
    [22] Butler JE, Hammond TH, Gray SD. Gender-related differences of hyaluronic acid distribution in the human vocal fold [J]. Laryngoscope, 2001, 111: 907-911.
    [23] Kendall FE, Heidellberger M, Dawson MH. A serologically inactive polysaccharide elaborated by mucoid strains of group A hemolytic streptococcus [J]. J Biol Chem, 1937, 118: 61-69.
    [24] Markovitz A, Cifonelli J, Van de Rijn I, et al. The biosynthesis of hyaluronic acid by group A Streptococcus [J]. J Biol Chem, 1959, 234: 2343-2350.
    [25] O'regan M, Martini I, Crescenzi F, et al. Molecular mechanism and genetics of hyaluronan biosynthesis [J]. Int J Biol Macromol, 1994, 16: 283-286.
    [26] Perhm P. Synthesis of hyaluronate in differentiated teratocarcinona cells, characerization of the synthase [J]. Biochem J, 1983, 211: 181-190.
    [27] Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: an overview. [J]. Immunol Cell Biol, 1996, 74: 1-7.
    [28] Mendichi R, Soltes L. Hyaluronan molecular weight and polydispersity in some commercial intra-articular injectable preparations and in synovial fluid [J]. Inflamm Res, 2002, 51: 115-116.
    [29] Maltese A, Borzacchiello A, Mayol L, et al. Novel olysaccharidesbased viscoelastic formulations for ophthalmic surgery: rheological characterization [J]. Biomaterials, 2006, 27: 5134-5142.
    [30] Laurent TC. The chemistry, biology and medical applications of hyaluronan and its derivatives [M].London: Portland Press. 1998, 23-26.
    [31]郭学平.微生物发酵法生产透明质酸[J].精细与专业化学品, 2002, 3: 21-22.
    [32] Dorfman A. Metabolism of mucopolysaccharides of connective tissue [J]. Pharmacol Revs, 1955, 7: 1-13.
    [33] Morra M. Engineering of biomaterials surfaces by hyaluronan [J]. Biomacromolecules, 2005, 6: 1205-1223.
    [34] Lapcik L, De Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, structure, properties, and applications [J]. Chem Rev, 1998, 98: 2663-2684.
    [35]杨素珍,陈贵锐.透明质酸的特性及其在食品中的应用[J].食品工业科技. 2008, 29(6): 317-320.
    [36]张延坤,金镜顺.一种功能性化妆品原料-透明质酸[J].日用化学工业. 2004, 34(2): 111-114.
    [37]刘玉兰,王娟,张吉平.皮肤保湿剂及其性能评价方法的研究[J].日用化学工业. 1999, 5: 52-54.
    [38]王彦厚,贾雷.透明质酸的制备与临床应用研究进展[J].实用药物与临床. 2007, 10(1): 48-50.
    [39]朱广华,方煜平.透明质酸制备方法及应用研究进展[J].中国医药工业杂志, 1996, 27 (8): 382-384.
    [40] Peyron JG, Balazs EA. Preliminary clinical assessment of Na-hyaluronate injection into human archritic joints [J]. Pathol Biol, 1985, 13: 701-725.
    [41]郭学平,王春喜.透明质酸及其发酵生产概述[J].中国生化药物杂志, 1998, 19 (2): 209-211.
    [42]郭学平,凌沛学,王春喜等.透明质酸的生产[J].药物生物技术, 2000, 7: 61-64.
    [43] Surendrakumar K, Martyn GP, Hodgers EC. Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs [J]. J Control Release, 2003, 91: 385-394.
    [44] Weisser J, Rahfoth B, Aigner T. Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose [J]. Osteoarthr Cartilage, 2001, 9: 548-554.
    [45] Tian WM, Zhang CL, Hou SP. Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro [J]. J Control Release, 2005, 102: 13-25.
    [46] Elisabetta E, Enea M, Rita C. Hyaluronan-based microspheres as tools for drug delivery: a comparative study [J]. Int J Pharm, 2005, 288: 35-49.
    [47] Tatiana S, Brian CA, Peter HC. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern [J]. Biomaterials, 2005, 26: 359-371.
    [48]于学丽,王传栋,李保路.透明质酸的改性及其应用[J].生物医学工程研究. 2005, 24(1): 61-65.
    [49]胡帼颖,顾汉卿,透明质酸交联、酯化衍生物的制备及医学应用进展[J].透析与人工器官, 2003, 14 (3): 30-46.
    [50]赵乐军,白硕佳,曹红英.透明质酸钠交联凝胶的制备[J].透析与人工器官, 2002, 13 (1): 44-46.
    [51] Yoo HS, Lee EA, Yoon JJ. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering [J]. Biomaterials, 2005, 26: 1925-1933.
    [52]鲁念慈,谭天伟.透明质酸的制备及其应用[J].功能高分子学报, 2001, 14(3): 370-376.
    [53]傅力,吴海文.透明质酸的功能性及生产技术研究进展[J].新疆农业科学, 2004, 41: 97-100.
    [54]王淼,王立媛.发酵液中透明质酸的分离纯化[J].无锡轻工业大学学报, 1999, 18(6): 106-109.
    [55]邓禹,堵国成,李秀芬等.基于发酵液特性的透明质酸提取预处理工艺[J].过程工程学报, 2007, 7(2): 380-384.
    [56]郭学平,王春喜,崔大鹏.发酵法制备透明质酸[J].日用化学工业, 1994, 2: 47-48.
    [57] Matsubara C, Kajiwara M, Akasaka H, et al. Carbon-13 nuclear magnetic resonance studies on the biosynthesis of hyaluronic acid [J]. Chem Pharm Bull, 1991, 39: 2446-2448.
    [60] Brede G, Fjaervik E, Valla S. Nucleotide sequence and expression analysis of the Acetobacter xylinum uridine diphosphoglucose pyrophosphorylose gene [J]. J Bacteriol, 1991, 173: 7042-7045.
    [61] Mengin-Lecreulx D, Van Heijenoort J. Identification of the glmU gene encoding N- acetylglucosamine-1-phsphate uridyltoansferase in Escherichia coli [J]. J Bacteriol, 1993, 175: 6150-6157.
    [62] Van de Rijn I. Streptococci hyaluronic acid: proposed mechanism of degradation and loss of synthesis during stationary phase [J]. J Bacteriol, 1983, 156: 1059-1065.
    [63] Van De Rijn I, Drake RR. Analysis of the Streptococcal hyaluronic acid synthase complex using the photoaffinity probe 5-azide-UDP-Glucuronic acid [J]. J Bio Chem, 1992, 267: 24302-24306.
    [64] Dougherty B A, Van de Rijn I. Molecular Characterize of hasA from an opern required for hyaluronic acid synthesis in Group A Streptococci [J]. J Biol Chem, 1994, 269: 169-175.
    [65] Crater DL, Van de Rijn I. Hyaluronic acid synthesis operon (has) expression in group A Streptococci [J]. J Biol Chem, 1995, 270: 118452-18458.
    [66] De Angelis PL, Papaconstantinou J, Weigel PH. Molecular cloning identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes [J]. J Biol Chem, 1993, 268: 19181-19184.
    [67] Perhm P. Synthesis of hyaluronate in differentiated teratocarcinona cells, characerization of the synthase [J]. Biochem J, 1983, 211: 181-190.
    [68] Perhm P, Mausolf A. Isolation of Stretococcal hyaluronate synthase [J]. Biochem J, 1986, 235: 887-889.
    [69] Ng KF, Schwartz NB. Solubilization and partial purification of hyaluronate synthtase from oligodendroglioma cells [J]. J Biol Chem, 1989, 264: 11776-11783.
    [70] Sugahara K, Schwartz NB, Dorfman A. Biosynthesis of Hyaluronic acid by Streptococcus [J]. J Biol Chem, 1979, 254: 6256-6261.
    [71] Quskova G, Spellerberg B, Prehm P. Hyaluronan release from Streptococcus pyogenes: export by an ABC transporter [J]. Glycobiology, 2004, 14: 931-938.
    [72] Markovitz A, Cifonelli J, Van de Rijn I, et al. The biosynthesis of hyaluronic acid by group A Streptococcus [J]. J Biol Chem, 1959, 234: 2343-2350.
    [73] Robbins PW, Bray D, Dankert M, et al. Direction of chain growth in polysaccharide synthesis [J]. Science, 1967, 158: 1536-1542.
    [74] Valarie L, Weigel PH. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis [J]. J Biol Chem, 1999, 274: 4246-4253.
    [75] Weigel PH, De Angelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases [J]. J Biol Chem, 2007, 282: 36777-36781.
    [76] Holmstron B, Ricica J. Production of hyaluronic acid by a Streptococcus strain in batch culture [J].Appl Microbiol, 1967, 15: 1409-1413
    [77] Johns MR, Goh LT, Oeggerli A. Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus [J]. Biotechnol Lett, 1994, 16: 507-512.
    [78] Kim JH, Deok-Kun SY. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid [J]. Enzyme Micro Tech, 1996, 19: 440-445.
    [79] Armstrong DC, Cooney MJ, Johns MR. Growth and amino acid requirements of hyaluronic acid producing Streptococcus zooepidemicus. Appl Microbiol Biotechnol, 1997, 47: 309-312.
    [80] Armstrong DC, Johns MR. Culture conditions affect the molecular weight properties of hyaluronic acid produced by streptococcus zoopidemicus [J]. Appl Environ Microbiol, 1997, 63: 2759-2764.
    [81] Stangohl S. Methods and means for the production of hyaluronic acid [P]. US Patent 6, 090, 596, 2000.
    [82] Stangohl S. Methods and means for the production of hyaluronic acid [P]. US Patent 6, 537, 795, 2003.
    [83] Hasegawa S, Nagatsuru M, Shibutani M, et al. Productivity of concentrated hyaluronic acid using maxblend fermentor[J]. J Biosci Bioeng, 1999, 88: 68-71.
    [84] Fong Chong B, Nielsen LK. Amplifying the cellular reduction potential of Streptococcus zooepidemicus [J]. J Biotechnol, 2003, 100: 33-41.
    [85] Fong Chong B, Nielsen LK. Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase [J]. Biochem Eng J, 2003, 16: 153-162.
    [86] Kim SJ, Park SY, Kim CW. A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus [J]. J Microbiol Biotechnol, 2006, 16: 1849-1855.
    [87] Huang WC, Chen SJ, Chen TL. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation [J]. Biochem Eng J, 2006, 32: 239-243.
    [88] Huang WC, Chen SJ, Chen TL. Production of hyaluronic acid by repeated batch fermentation [J]. Biochem Eng J, 40: 460-464.
    [89]汪嵘,张云开,韦航等.透明质酸微生物发酵法生产工艺条件的研究[J].广西农业科学, 2001, 4: 190-192.
    [90]凌敏,黄日波,黄鲲等.马链球菌透明质酸合成酶基因的分子克隆及表达[J].工业微生物, 2003, 33: 4-8.
    [91]田毅红,蔡海波,陆仕灿.高分子量透明质酸的发酵研究[J].中国医药工业杂志, 2004, 35: 269-271.
    [92]叶华,陈猛,钟林等.透明质酸发酵流加过程的研究[J].北京化工大学学报, 2006, 33 :20-26.
    [93]郝宁,张晋宇,陈国强.在兽疫链球菌中表达vgb基因和HA合成基因提高透明质酸产量[J].中国生物工程杂志, 2005, 25: 56-60.
    [94] Duan XJ, Yang L, Zhang X, Tan WS. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. J Microbiol Biotechnol, 2008, 18: 718-724.
    [95]高海军,陈坚,管轶众等.兽疫链球菌摇瓶发酵法生产透明质酸[J].无锡轻工大学学报, 1999, 18:17-22.
    [96]高海军,陈坚,堵国成.搅拌与混合对兽疫链球菌发酵生产透明质酸的影响[J].化工学报, 2003, 54: 140-146.
    [97] Gao HJ, Du GC, Chen J. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus [J]. World J Microbiol Biotechnol, 2006, 22: 399-408.
    [98]温琦,刘登如,陈坚等.添加表面活性剂促进兽疫链球菌高产透明质酸[J].化工进展, 2006, 25: 1089-1094.
    [99]成霞,刘登如,陈坚等.高产量、高分子量透明质酸条件优化[J].过程工程学报, 2006, 6: 809-813.
    [100] Dutta JR, Dutta PK, Banerjee R. Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models [J]. Process Biochem, 2004, 39: 2193-2198.
    [101] Sim JH, Kamaruddin AH. Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium- Clostridium aceticum using statistical approach [J]. Bioresour Technol, 2008, 99: 2724-2735.
    [102] Ceylan H, Kubilay S, Aktas N, et al. An approach for prediction of optimum reaction conditions for laccase-catalyzed bio-transformation of 1-naphthol by response surface methodology (RSM) [J]. Bioresour Technol, 2008, 99: 2025-2031.
    [103] Chang SW, Shaw JF, Yang KH, et al. Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly (gamma-glutamic acid) by RSM [J]. Bioresour Technol, 2008, 99: 2800-2805.
    [104] Kunamneni A, Singh S. Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production [J]. Biochem Eng J, 2005, 27: 179–190.
    [105] Patnaik PR. Synthesizing cellular intelligence and artificial intelligence for bioprocesses [J]. Biotechnol Adv, 2006, 24: 129-133.
    [106] Wilson DH, Irwin GW, Lightbody G. RBF principal manifolds for process monitoring [J]. IEEE Trans Neural Netw, 1999, 10: 1424-1434.
    [107] Basri M, Rahman RN, Ebrahimpour A, et al. Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester [J]. BMC Biotechnol, 2007, 7: 53-60.
    [108] Guo WQ, Qiu QS, Tang H, et al. Performance of RBF neural networks for array processing in impulsive noise environment [J]. Digit Signal Process, 2008, 18: 168-178.
    [109] Aguirre LA, Alves GB, Correa MV. Steady-state performance constraints for dynamical models based on RBF networks [J]. Eng Appl Artif Intel, 2007, 20: 924-935.
    [110] Sanner RM, Slotine JJE. Gaussian networks for direct adaptive control [J]. IEEE Trans Neural Netw, 1992, 3: 837-863.
    [111]李鑫,陆海东.遗传算法及其应用[J].吉林化工学院学报, 2005, 22: 30-32.
    [112] Sun J, Feng B, Xu WB. Particle swarm optimization with particles having quantum behavior. Proceedings 2004 Congress on Evolutionary Computation, Piscataway, NJ, 2004, 325-331.
    [113] Sun J, Xu WB, Feng B. A Global search strategy of quantum-behaved particle swarm optimization.Proceedings of 2004 IEEE Conference on Cybernetics and Intelligent Systems. Singapore, 2004, 111-116.
    [114] Sun J, Xu WB, Feng B. Adaptive Parameter control for quantum-behaved particle swarm optimization on individual level. Proceedings of 2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, 2005, 3049-3054.
    [115] Sun J, Liu J, Xu WB. Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems [J]. Int J Comput Math, 2007, 84: 261-272.
    [1] Casas JA, Santos VE, García-Ochoa F. Xanthan gum production under several operational conditions: molecular structure and rheological properties [J]. Enzyme Microbiol Technol, 2000, 26: 282-291
    [2] Johns MR, Goh LT, Oeggerli A. Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus [J]. Biotechnol Lett, 1994, 16: 507-512
    [3] Kim JH, Deok-Kun SY. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid [J]. Enzyme Micro Tech, 1996, 19: 440-445
    [4] Hasegawa S, Nagatsuru M, Shibutani M,et al. Productivity of concentrated hyaluronic acid using maxblend fermentor [J]. J Biosci Bioeng, 1999, 88: 68-71
    [5] Duan XJ, Yang L, Zhang X, et al. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. J Microbiol Biotechnol, 2008, 18: 718-724
    [6] Chisti Y, Jauregui-Haza UJ. Oxygen transfer and mixing in mechanically agitated airlift bioreactors [J]. Biochem Eng J, 2002, 10: 143-153
    [7] Elibol M, Ozer D. Influence of oxygen transfer on lipase production by Rhizopusarrhizus [J]. Process Biochem, 2000, 36: 325-329
    [8] Solomon J, Elson T P, Nienow AW, Pace GW. Cavern size in agitated fluid with a yield sress [J]. Chem Eng Commun. 1981, 11: 143-164
    [9] Richard, A., Margaritis, A. Rheology, oxygen transfer, and molecular weight characteristics of poly (glutamic acid) fermentation by Bacillus subtilis [J]. Biotechnol Bioeng, 2003, 89: 299-305
    [10] Serrano-Carreón L, Corona RM, Sánchez A, et al. Prediction of xanthan fermentation development by a model linking kinetics, power drawn and mixing [J]. Process Biochem, 1998, 22: 133-146
    [11] Tescione LD, Ramakrishnan D, Curtis WR. The role of liquid mixing and gas-phase dispersion in a submerged, sparged root reactor [J]. Enzyme Microbiol Technol, 1997, 20: 207-213
    [12] Amanullah A, Serrano-Carreon L, Castro B, et al. The influence of impeller type in pilot scale xanthan fermentations [J]. Biotechnol Bioeng, 1998, 57: 95-108
    [13] Herbst H, Schumpe A, Deckwer WD. Xanthan production in stirred tank fermenters: oxygen transfer and scale up [J]. Chem Eng Technol, 1992, 15: 425-434
    [14] Tribe LA, Briens CL, Margaritis A. Determination of the volumetric mass transfer coefficient (KLa) using the dynamic "gas out-gas in" method: analysis of errors caused by dissolved oxygen probes [J]. Biotechnol Bioeng, 1995, 46: 388-392
    [15] Bitter T, Muir HM. A modified uronic acid carbazole reaction [J]. Anal Biochem, 1962, 4: 330-334
    [16] Rodríguez-Monroy M, Galindo E. Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in a stirred tank [J]. Enzyme Microbiol Technol, 1998, 24: 687-693
    [17] Cleary PP, Larkin A. Hyaluronic acid capsule: strategy for oxygen resistance in group A streptococci [J]. J bacteriol, 1979, 140: 1090-1097
    [18] Amaral PFF, Freire MG, Rocha-Le?o MHM, et al. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase [J]. Biotechnol Bioeng, 2008, 99: 588-598
    [19] Cascaval D, Galaction AI, Folescu E, et al. Comparative study on the effects of n-dodecane addition on oxygen transfer in stirred bioreactors for simulated, bacterial and yeasts broths [J]. Biochem Eng J, 2006, 31: 56-66
    [20] Elibol M, Mavituna F. A remedy to oxygen limitation problem in antibiotic production: addition of perfluorocarbon [J]. Biochem Eng J, 1999, 3: 1-7
    [21] Galaction AI, Cascaval D, Oniscu C, et al. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen vector 1. Simulated fermentation broths [J]. Bioprocess Biosyst Eng, 2004, 26: 231-238
    [22] Galaction AI, Cascaval D, Turner M, et al. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen vector 2. Propionibacterium shermanii broths [J]. Bioprocess Biosyst Eng, 2005, 27: 263-271
    [23] Silva TLD, Mendes A, Mendes RL, et al. Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production [J]. J Ind Microbiol Biotechnol, 2006, 33: 408-416
    [24] Lai LST, Tsai TH, Wang TC. Application of oxygen vectors to Aspergillus terreus cultivation [J]. J Biosci Bioeng, 2002, 94: 453-459
    [25] Fong Chong B, Nielsen LK. Amplifying the cellular reduction potential of Streptococcus zooepidemicus [J]. J Biotechnol, 2003, 100: 33-41
    [26] Garcia OF, Gomez CE, Santos VE. Oxygen transfer and uptake rates during xanthan gum production [J]. Enzyme Microbiol Tech, 2000, 27: 680-690
    [27] Silva TLD, Mendes A, Mendes RL, et al. Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production [J]. J Ind Microbiol Biotechnol, 2006, 33: 408-416
    [28] Armstrong DC, Johns MR. Culture conditions affect the molecular weight properties of Hyaluronic acid produced by streptococcus zoopidemicus [J]. Appl Environ Microbiol, 1997, 63: 2759-2764
    [1] Miyazaki T, Yomota C, Okata C. Ultrasonic depolymerization of hyaluronic acid [J]. Polym Degrad Stabil, 2001, 74: 77-85
    [2] RehákováM, Bako? D, Soldán M, et al. Depolymerization reactions of hyaluronic acid in solution [J]. Int J Biol Macromol, 1994, 16: 121-124
    [3] Tokita Y, Okamoto A. Hydrolytic degradation of hyaluronic acid [J]. Polym Degrad Stabil, 1995, 48: 269-273
    [4] Tawada A, Masa T, Oonuki Y. Large-scale preparation, purification, and characterization of hyaluronan oligosaccharides from 4-mers to 52-mers [J]. Glycobiology, 2002, 7: 421-426
    [5] Tian WM, Zhang CL. Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro [J]. J Control Release, 2005, 102: 13-25
    [6] Fong Chong B, Blank LM, Mclaughlin R, et al. Microbial hyaluronic acid production [J]. ApplMicrobiol Biotechnol, 2005, 66: 341-351
    [7] Alkayali A. Preparation of low molecular weight hyaluronic acid as a food supplement [P]. US patent, 2006, 20060183709
    [8] Mahoney DJ, Aplin RT, Calabro A, et al. Novel methods for the preparation and characterization of Hyaluronic oligosaccharides of defined length [J]. Glycobiology, 2001, 11: 1025-1033
    [9] Miyazaki T, Yomota C, Okada S. Ultrasonic depolymerization of hyaluronic acid [J]. Polym Degrad Stabil, 2001, 74: 77-85
    [10] ?oltés L, ValachováK, StankovskáM, et al. Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate [J]. Carbohyd Res, 2007, 342: 1071-1077.
    [1] Fong Chong B, Lars MB, Richard M. Microbial hyaluronic acid production [J]. Appl Microbiol Biotechnol, 2005, 66: 341-351.
    [2] Markovitz A, Cifonelli J, Van de Rijn I. The biosynthesis of hyaluronic acid by group A Streptococcus [J]. J Biol Chem, 1959, 234: 2343-2350.
    [3] Kreiner M, Harvey L M, McNeil B. Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition [J]. Enzyme Microb Technol, 2002, 30: 346-353.
    [4] Demple B. Redox signalling and gene control in the Escherichia coli soxRS oxidative stress regulon-a review [J]. Gene, 1996, 179: 53-57.
    [5] Emri T, Pocsi I, Szentirmai A. Analysis of the oxidative stress response of Penicillium chrysogenum to menadione [J]. Free Radic Res, 1999, 30: 125-132.
    [6] Pinkus R, Weiner LM , Daniel V. Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione-S-transferase gene expression [J]. Biochemistry, 1995, 34: 81-88.
    [7] Maym J, Leaver CJ. Oxidative stimulation of glutathione synthesis in a rabid opsis thaliana suspension cultures [J].J Plant Physiol, 1993, 103: 621- 627.
    [8] Izawa S, Inoue Y, Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae [J]. FEBS Lett, 1995, 368: 73-76.
    [9] Canovas M, Bernal V, Sevilla A. Salt stress effects on the central and carnitine metabolisms of Escherichia coli [J]. Biotechnol Bioeng, 2007, 96: 722-737.
    [10] Adrio JL, Demain AL. Genetic improvement of processes yielding microbial products [J]. FEMS Microbiol Rev, 2006, 30: 187-214.
    [11] Fong Chong B, Nielsen LK. Amplifying the cellular reduction potential of Streptococcus zooepidemicus [J]. J Biotechnol, 2003, 100: 33-41.
    [12] Liu LM, Li Y, Du GC, Chen J. Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production [J]. Appl Microbiol Biotechnol, 2006, 72: 377-385.
    [13] Gao HJ, Du GC, Chen J. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus [J]. World J Microbiol Biotechnol, 2006, 22: 399-408.
    [14] Nielsen J. The role of metabolic engineering in the production of secondary metabolites [J]. Curr Opin Microbiol, 1998, 1: 331-336.
    [15] Chang Y, Suthers PF, Maranas CD. Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments [J]. Biotechnol Bioeng, 2008, 100: 1039-1049.
    [16] Groot MJL, Prathumpai W, Visser J, Ruijter GJ. Metabolic control analysis of Aspergillus niger L-Arabinose catabolism [J]. Biotechnol Prog, 2005, 21: 1610-1615.
    [17] Andersen HW, Pedersen MB, Hammer K, et al. Lactate dehydrogenase has no control on lactate production but has a negative strong control on formate production in Lactococcus lactis [J]. Eur J Biochem, 2001, 268: 6379-6389.
    [18] Jensen PR, Michelsen O, Westerhoff HV. Control analysis of the dependence of Escherichia coli physiology on the H.-ATPase [J]. Proc Natl Acad Sci, 1993, 90: 8068–8072.
    [19] Ramli US, Salas JJ, Quant PA, et al. Metabolic control analysis reveals an important role fordiacylglycerol acyltransferase in olive but not in oil palm lipid accumulation [J]. FEBS J, 2005, 272: 5764-5770.
    [20] Wang YH, Li Y, Li YH, et al. Investigations into the analysis and modeling of the cytochrome P450 cycle [J]. J Phys Chem, 2006, 110: 10139-10143.
    [21] Hu DW, Yuan JM. Time-dependent sensitivity analysis of biological networks: coupled MAPK and PI3K signal transduction pathways [J]. J Phys Chem, 2006, 110: 5361-5370.
    [22] Wang LQ, Hatzimanikatis V. Metabolic engineering under uncertainty: framework development [J]. Metab Eng, 2006, 8: 133-141.
    [23] Klapa MI, Aon JC, Stephanopoulos G. Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry [J]. Eur J Biochem, 2003, 270: 3525-3542.
    [24] Hatzimanikatis V, Bailey JE. Effects of spatiotemporal variations on metabolic control: Approximate analysis using (log) linear kinetic models [J]. Biotechnol Bioeng, 1997, 54: 91-104.
    [25] Fell DA, Sauro HM. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients [J]. Eur J Biochem, 1985, 148: 555-561.
    [26] Fu RY, Chen J, Li Y. Heterologous leaky production of transglutaminase in Lactococcus lactis significantly enhances the growth performance of the host [J]. Appl Environ Microbiol, 2005, 12: 8911-8919.
    [27] Zhu Y, Yang ST. Adaptation of clostridium tyrobutyricum for enhanced tolerance of butyric acid in a fibrous-bed bioreactor [J]. Biotechnol Prog, 2003, 19: 365-372.
    [28] Duan XJ, Yang L, Zhang X, Tan WS. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. J Microbiol Biotechnol, 2008, 18: 718-724.
    [1] Fong Chong B, Lars MB, Richard M. Microbial hyaluronic acid production [J]. Appl Microbiol Biotechnol, 2005, 66: 341-351.
    [2] Armstrong DC, Cooney MJ, Johns MR. Growth and amino acid requirements of hyaluronic acid producing Streptococcus zooepidemicus. Appl Microbiol Biotechnol, 1997, 47: 309-312.
    [3] Terleckyi B, Shockman GD. Amino acid requirements of Streptococcus mutants and other oral streptococci. Infect Immun, 1975, 11: 656-664.
    [4] Milligan TW, Doran TI, Straus DC. Growth and amino acid requirements of various strains of group B Streptococci. J Clin Microbiol, 1978, 7: 28-33.
    [5] Christensen JE, Dudley EG, Pederson JA. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76: 217-246.
    [6] Kim JH, Deok-Kun SY. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid [J]. Enzyme Micro Tech, 1996, 19: 440-445.
    [1] Bizukojc M, Ledakowicz S. Biosynthesis of lovastatin and (+)-geodin by Aspergillus terreus in batch and fed-batch culture in the stirred tank bioreactor [J]. Biochem Eng J, 2008, 42: 198-207.
    [2] Pazarlioglu NK, Kukus M, Ozmen F. Stimulation of cinnabarinic acid production in batch cultures of Pycnoporus cinnabarinus [J]. J Biotechnol, 2008, 136: 452-456.
    [3] Kim JH, Kim CJ, Kim SW. The production of beta-carotene by recombinant Escherichia coli engineered with whole mevalonate pathway in batch and fed-batch cultures [J]. J Biotechnol, 2008, 136: 487-488.
    [4] Huang WC, Chen SJ, Chen TL. Production of hyaluronic acid by repeated batch fermentation [J]. Biochem Eng J, 40: 460-464.
    [5]陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社, 2001, 5-6.
    [6]伦世仪.生化工程[M].北京:中国轻工业出版社, 1993, 101-103.
    [7]戚以政,汪叔雄.生化反应动力学与反应器[M].北京:化学工业出版社, 1999, 242-245.
    [8] Jungo C, Urfer J, Zocchi A, Urs IM. Optimisation of culture conditions with respect to biotin requirement for the production of recombinant avider in Pichia pastoris [J]. J Biotechnol, 2007, 127: 703-715.
    [9] Ferenci T. Bacterial physiology, regulation and mutational adaptation in a chemostat environment [J]. Adv Microb Phys, 2007, 53: 169-229.
    [10]张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社, 2000, 234-236.
    [11] Ding SF, Tan TW. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 2006, 41: 1451-1454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700