用户名: 密码: 验证码:
高损伤阈值介质膜层的制备及其研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强激光系统中的所有光学元件并不都具有相同的抗激光损伤阈值,某一种或两种元件通常就可能限制了激光系统的正常运行。实验表明,薄膜光学元件的损伤阈值是限制强激光系统功率密度提高的瓶颈之一。而影响薄膜激光损伤阈值的因素有:①基体材料、镀膜材料、膜层组合,②镀膜工艺、基片处理、膜层预处理效应,③所用的强激光参数。尽管这三类因素的相互作用关系是复杂的,但是阈值大小却是所有这些因素最直接的综合反映。
     本文从安装调试一台电子束蒸发镀膜新设备(上海曙光机械制造厂生产)开始,首次成功地制备了HfO_2+Al_2O_3混合膜层。同时,对镀膜材料选用、K9玻璃基片清洗工艺、薄膜制备、薄膜特性表征、激光损伤阈值等几方面又进行了研究。分析比较了激光辐照损伤的雪崩电离理论模型、多光子吸收电离理论模型、杂质缺陷吸收理论模型的特点,得到高损伤阈值的镀膜材料的选择原则,是选用具有带隙较大的介质材料。结合我们的实验,着重讨论了等离子体闪光、透射反射扫描和散射光的激光辐照损伤判别方法。获得如下主要结果:
     1.安装、调试了电子束蒸发镀膜新设备。
     2.为了提高薄膜元件的激光损伤阈值,选择混合膜料。讨论了HfO_2+Al_2O_3混合膜料选择的根据,所作分析结果未见报道。
     3.成功地制备了HfO_2+Al_2O_3、ZrO_2+Y_2O_3、HfO_2、Al_2O_3等膜层及混合膜。其中,在K9玻璃基片上制备HfO_2+Al_2O_3混合膜在国内是首次。并得到该薄膜的最佳工艺条件:HfO_2和Al_2O_3的质量比为90∶10,本底真空度2×10~(-3)Pa,工作真空度6×10~(-3)Pa,电子枪功率0.98~1.05kW,基片温度250℃。光电子能谱(XPS)检测结果表明,该膜层是均匀的。
    
    与现有的膜层损伤闭值相比较,我们所制备的HfOZ+A12O3(90:10)
    混合膜的闭值是高的。其研究内容和结果均未见报道。
     4.镀制了Z心2+YZO3薄膜
     不同膜厚的ZrOZ+YZO3(80:20wt%)膜层,其激光损伤闭值相同,
    与膜层厚度无关。在膜厚小于Zoonln时,膜层表面粗糙度随膜厚增加而
    迅速减小;膜厚大于200lun时,表面粗糙度随膜厚增加而逐步减小,并
    趋向于Kg玻璃衬底的粗糙度。
     5.X射线衍射( XRD)分析表明,所有薄膜均为无定形结构。用椭圆
    偏振法测定了薄膜折射率,结果表明膜层折射率稳定。光电子能谱(XPS)
    检测结果表明:薄膜表层存在有碳和水气;不存在金属杂质污染。
     6.采用相衬显微镜、雾气法、扫描电子显微镜(SEM)、原子力显微
    镜(AFM)等测试方法,观测了薄膜损伤形貌,分析了损伤特点,并把
    损伤形貌分为六类。其中,用电子显微镜观察损伤,国内未见报道。
     7.进行了激光损伤闭值的研究,其中部分内容未见报道。
     ①为了充分利用R一on一1测试法所获得的实验数据,采用平均值数据
    处理方法(不同于极小值数据处理方法),给出了表示样品损伤阂值分布
    的相关参数(标准偏差,平均相对偏差),得出了标准偏差和相对偏差随
    束斑增大而减小的趋势的结论。并解释了R一。n一1测试法得到的同一样品
    不同测试点之间的损伤闭值相差一倍以上的实验现象。其研究结果未见报
    道。②对1一on一1测试法的实验结果分别采用线性拟合与非线性拟合进行
    了比较研究,发现有的样品采用非直线拟合得出的零几率损伤闭值与实际
    情况更接近一些。其研究结果未见报道。
     8.给出了一个优化的Kg玻璃基片清洗新工艺,为大口径基片清洗提
    供了一个很有价值的参考工艺;该清洗工艺对其表面粗糙度和面形均没有
    产生负面影响:该清洗工艺能够有效地去除污物、对人体危害小、对环境
    污染小、能有效防止二次污染。整个工艺过程的重复性好。经新清洗工艺
    清洗后镀制的膜层的激光损伤闭值比一般清洗的损伤闭值高出一倍多。该
    新工艺是本文的创新工作之一。
    关键词:电子束蒸发,薄膜,数据处理,损伤闽值,基片清洗工艺。
Optical components of high power laser systems have no same laser-induced damage threshold (LIDT), and usually the function of the laser system is limited by some or other component. It is showed by the results of the experiments that a particularly weak point is the components with optical coatings, which have become a key problem hampering the further increase in the output of laser equipment. The important factors which have influence on the laser-induced damage threshold of thin films are (1) the substrate, the coating materials, and the coating design; (2) the deposition technology of the coatings, the substrate treatment before deposition, and laser pre-conditioning; (3) laser parameters. The magnitude of the damage threshold is the most direct and comprehensive reflection on these factors, though the three factors have a complex interaction among them,.In the paper , the mixed HfO2+Al2O3 coatings are, firstly, successfully manufactured after a new electron-beam evaporation installation is fixed and regulated, some research work, concerning the choice of coating materials, the cleaning technique of K9 glass substrates, the thin film deposition, the properties of thin films, and the LIDT, has been finished. The theories of the laser irradiation damage, concerning avalanche ionization, multi-photon absorption, and impurity-initiated laser-induced damage, are treated and compared among their characteristics, while the selective rule of the coating materials with the high damage threshold is obtained, i.e. the dielectric materials with the larger band-gap energy are selected. The primary criterions of the laser irradiation damage, concerning the transmission and reflection light method, the scattered light detection method, and plasma spark method, are studied in our experiments. The following new results are obtained.1. The new electron-beam evaporation installation is fixed and regulated.2. The mixed coating materials are selected to improve the damage threshold of the thin films, and the cause for the HfO2+Al2O3 coating materials is analyzed. The analytical result has not been reported.
    
    3. The HfO2+Al2O3, ZrO2+Y2O3, HfD2, and A12O3 coatings are successfully manufactured. The mixed HfO2+Al2O3 coatings are, for the first time, manufactured at home, and the optimized depositing technology refers to the following deposition condition, i.e. ratio of the HfO2 (90 wt% ) to the Al2O3 (10 wt%), original vacuum 2 X 10-3Pa, working vacuum 6 X 10"3Pa, electron-gun power 0.98-1.05kW, substrate temperature 250癈. The results of the X-ray Photoelectron Spectroscopy (XPS) illustrate that the ingredient of the mixed HfO2+Al2O3(90:10wt%) films is well-proportioned, and the thresholds of this films are higher in comparison with that of the thin films offered by other manufacturers using the e-beam deposition technique. The research contents and results have not been reported.4. The preparation of the ZrO2+Y2O3 filmsThe thresholds of ZrO2+Y2O3 (80:20wt%)films with the different thickness have no relation to the film thickness. The surface roughness decreases rapidly with the increase in the thickness in the range of 200nm, and then decreases gradually with the increase in the thickness beyond the range of 200nm, and finally is close to the surface roughness of K9 glass substrates.5. The results of the X-ray Diffraction (XRD) illustrate that the construction of the various films manufactured is at all amorphous. The results of the XPS illustrate that there is carbon and moisture on the surface of the films, but no metallic impurity contamination. The films have a steady refractive index obtained by the elliptical polarimetry.6. The laser damage morphology of thin films is observed and analyzed by means of the phase contrast microscope, the scanning electron microscope, the atomic force microscope, and the method of moisture, and divided into six sorts. The method of the damage observation with the scanning electron microscope has not been reported at home.7. The LIDTs of the films is studied, and t
引文
1 [日]中井贞雄 编著,熊缨 译,熊玉贤 校.激光工程[M].北京:科学出版社,2002年2月第一版.
    2 王淦昌,袁之尚 惯性约束聚变[M].合肥:安徽教育出版社,1996.
    3 范滇元,张小民.激光聚变驱动器的发展与展望,1999/2000 中国科学技术前沿[M].(中国工程院版)高等教育出版社,2000年6月第一版,P.358~395.
    4 郑志坚.“激光聚变——实验物理、诊断技术”学术报告,2003年5月于四川大学.
    5 杨力 主编 先进光学制造技术[M].北京:科学出版社,2001年9月第一版.
    6 Hogan W J. Progress in the title Ⅰ design of the national ignition facility. UCRL-JC-123560, 1996.
    7 Paisner J A. The national ignition facility for the inertial confinement fusion. UCRL-JC-1ZS6S9, 1997.
    8 K. H. Guenther, T. W. Humpherys, J. Balmer, J. R. Bettis, et al. 1.06-μ m laser damage of thin film optical coatings: a round-robin experiment involving various pulse lengths and beam diameters[J]. APPLIED OPTICS, 1984, Vol. 23, No. 21, P. 3743~3752.
    9 Alexander J. Glass and Arthur H. Guenther. Laser Induced Damage of Optical Elements—a Status Report[J]. Appl. Opt. 1973, Vol.12, No.4, P.637~649.
    10 A. J. Glass and A. H. Guenther. Laser Induced Damage in Optical Materials: ninth ASTMS Symposium[J]. Appl. Opt. 1978, Vol.17, No.15, P.2386~2411.
    11 Alexander J. Glass and Arthur H. Guenther. Laser Induced Damage in Optical Materials: tenth ASTMS Symposium[J]. Appl. Opt. 1979,Vol.18, No. 13, P.2112~2129.
    12 Harold E. Bennett, Alexander J. Glass, et al. Laser Induced Damage in Optical Materials: eleventh ASTMS Symposium[J]. Appl.Opt. 1980, Vo1.19, No.14, P.2375~2397.
    13 Harold E. Bennett, Alexander J. Glass, et al. Laser Induced Damage in Optical Materials: twelfth ASTMS Symposium[J]. Appl.Opt., 1981, Vol.20, No.17, P.3003~3019.
    14 Harold E. Bennett, Arthur H. Guenther, et al. Laser Induced Damage in Optical Materials: thirteenth ASTMS Symposium[J]. Appl. Opt., 1983,Vol.22,No.22, P.3277~3296.
    15 T. W. Walker, A.H. Guenther, and P. Nielsen. Pulsed Laser-Induced Damage to Thin Film Optical Coatings—Part Ⅰ: Experimental[J]. IEEE Journal of Quantum Electron, 1981, Vol.QE-17, No.10, P.2041~2052.
    16 T. W. Walker, A.H. Guenther, and P. Nielsen. Pulsed Laser-Induced Damage to Thin Film Optical Coatings—Part Ⅱ: Theory[J]. IEEE Journal of Quantum Electron, 1981, Vol.QE-17, No.10, P.2053~2065.
    17 H. E. Bennett, L. L. Chase, A. J. Glass, A. H. Guenther, D. Milam, B. E. Newman,. M. J. Soileau. Laser-Induced Damage in Optical Materials (1969-1989), National bureau of Standards (National bureau of Standards and Technology after 1986), Special publication.
    18
    
    18 [美]W.克希耐尔 著,孙文 译.固体激光工程[M],北京:科学出版社,2002年5月第一版.
    19 K. Mann, H. Gerhardt, G. Pfeifer, R. Wolf. Proc. SPIE, 1991, Vo1.1624, P.436.
    20 Harold E. Bennett, Alexander J. Glass, Arther H. Guenther, and Brian Newnam. Laser induced damage in optical materials: eleventh ASTM symposium[J]. Appl. Opt. 1980, Vol.19, No.14, P.2375~2397.
    21 Alan F. Stewart and Arther H. Guenther. Laser damage test results on Balzers round-robin thin film samples[J]. Appi. Opt., 1984, Vol.23, P.3774~3778.
    22 S. R. Foltry. NBS Spec. Pub., 1984, Vol.669, P.368.
    23 E. S. Bliss, D. Milarm, and R. A. Bradbury. Dielectric Mirror Damage by Laser Radiation over a Range of Pulse Durations and Beam Radii[J]. Appl. Opt., 1973, Vol.12, No.4, P.677~689.
    24 干福熹,邓佩珍 著.激光材料[M].上海:上海科学技术出版社,1996年12月第一版.
    25 夏晋军,李仲伢,程雷.532nm激光对光学薄膜的损伤[J].激光技术,1996,第20卷,第6期,R377~380.
    26 中华人民共和国国家标准 GB/T 6360—1995《激光功率能量测试仪器规范Specification for laser radiation power and energy measuring equipment》, 1996.
    27 中华人民共和国国家标准 GB/T 16601—1996《光学表面激光损伤 阈值测试方法 第1部分:1对1测试 Test methods for laser induced damage threshold of optical surfaces Part 1:1 on1》1996.
    28 A. H. Guenther and T. W. Humpherys. SPIE, 1983, Vol.401, P. 247.
    29 J. R. Betties, R. A. House and A. H. Guenther. NBS Spec. Pub., 1976, Vol.462, P. 338.
    30 A. Schmid, D. Smith, M. Guardalla and J. Abate. SPIE, 1984, Vol. 476, P.136.
    31 R. Wolf, G. Zscherpe, E. Weisch, V. Gopner and D. Schafer. Optica. Acta, 1986, Vol. 33, P. 919.
    32 M. Kuster and J. Eber. NBS Spec. Pub. 1979, Vo1.568, P. 269.
    33 J. H. Apfel. The preparation of optical coating for fusion laser[J]. Thin Solid Films, 1980, Vol.73, No.1, P. 167~168.
    34 T. Izawa, N. Yamamura, R. Uchimura, et al. Proc. SPIE, 1992, Vol. 1848, P. 322.
    35 R. Russel Austin, Raymond Michand, Arthur H. Guenther, and Joseph Putman. Effects of Structure, Composition, and Stress on the Laser Damage Threshold of Homogeneous and Inhomogeneous Single Films and Multilayers[J]. Appl. Opt., 1973, Vol.12, No.4, P. 665~676.
    36 A. Duparre, E. Welsch, H.G. Walther, N. Kaiser, et al. Structure-related bulk lossesin ZrO_2 optical thin films[J]. Thin Solid Films, 1990, Vo1.187, P. 275~288.
    
    37 K.Yoshida, T.Yabe, H. Yoshida and C.Yamanaka. Mechanism of damage formation in antireflection coatings[J]. J. Appl. Phys. 1986, Vol.60, No.4, P1545-1546.
    38 C.K.Carniglia. SPIE, 1986, Vol.652, P.202.
    39 L. Lévesque and B. E. Paton. Detection of defects in multiple-layer structures by using surface plasmon resonance[J]. APPLIED OPTICS, 1997, Vol.36, No. 28, P.7199-7203.
    40 E. Hacker, H. Lauth, J. Meyer, P. Weissbrodt, et al. Structural influence on the laser damage resistance of optical oxide coatings for use at 1064nm[J]. Thin Solid Films, 1990, Vol.192, P27-39.
    41 J.R. Paimer. SPIE, 1986, Vol.655., P.656.
    42 James R. Paimer. Continous wave laser damage on optical components[J]. Optical Engineering, 1983, Vol.22, No.4, P.435-446.
    43 M. R. Lange, J. K. Mclver and A. H. Guenther. Pulsed laser damdge in thin film coatings: fluorides and oxides[J]. Thin Solid Films, 1985, Vol.125, P.143.
    44 R. Chow, S. Faiabella, G. E. Loomis, F. Rainer, et al. Proc. SPIE, 1992, Vol.1848, P.349.
    45 W. T. Pawlewicz, R. Busch, D. D. H ays, P. M. Martin and N. Laegreid. NBS Spec, 1980, Vol.568, P.359.
    46 S. Schiller, G. Beister, W. Sieber, G.Schirmer and E. Hacker. Influence of deposition parameters on the optical and structural properties of TiO2 films produced by reactive D.C. plasmatron sputtering[J]. Thin Solid Films, 1981, Vol.83, P.239-245.
    47 M.R. Kozlowski, R. Chow. Proc. SPIE, 1993, Vol.2114, P.640.
    48 S. S.C.Babu. IEEE J. Quant. Electr. Lett., 1979, Vol.QE-17, No.7, P.533.
    49 N. Kaiser, H. Uhiig, U. Schallenberg, B.Anton, et al. Proc. SPIE, 1993, Vol.2114, P.325.
    50 A. Bodemann, M. Reichiing, N. Kaiser, E. Welsch. Proc. SPIE, 1993, Vol.2114, P.405.
    51 F. L. Williams, G. A. Petersen, R.A.Schmell, C. K. Carniglia. Proc. SPIE, 1991, Vol.1624, P.256.
    52 N.Bloembergen. Role of Cracks, Pores, and Absorbing Inclusions on Laser Induced Damage Threshold at Surface of Transparent Dielectrics[J]. Appl. Opt., 1973, Vol.12, No.4, P.661-664.
    53 T. A. Wiggins and R. S. Reid. Observation and morphology of small-scale laser induced damage[J]. Appl. Opt., 1982, Vol.21, No.9, P.1675-1680.
    54 F. E. hovis, B. A. Shepherd, C. T. Radcliffe, A. L. Bailey, et al. Proc. SPIE, 1993, Vol.2114, P. 145.
    55 D. Miiam, W. H. Lowdermilk, F. Rainer, J. E. Swain,et al. Influence of deposition parameters on laser-damage threshold of silica-tantala AR coatings[J]. Appl. Opt., 1982, Vol. 21, No. 20, P. 3689~3694.
    56
    
    56 T. J. Magee, C. S. Leung, F. D. Orazio, J. D. Boyer, et al. Proc. SPIE, Vo1.1438, P. 230.
    57 I. A. Bubnov, O. M. Efimov, N. N. Nikonorov, V. S. Popikov, et al. Proc. SPIE, 1993, Vol.2114, P. 178.
    58 P. Weissbrodt, L. Raupach, E. Hacker. Proc. SPIE, 1994, Vol.2209, P.672.
    59 Zheng-Xiu Fan, Qiqng Zhao, Hong Qiu, and Rui-Ying Fan. Laser-induced damage in optical coatings and laser condition technology[J]. SPIE, 1998, Vol.3244: 469~474.
    60 T. Tuttle Hart, T. L. Lichtenstein, C. K. Carniglia and F. Rainer. NBS Spec. Pub1. 1981, Vol.638, P.344.
    61 Z. Izawa, N. Yamamura, R. Uchimura, S. Kimura, T. Yakuoh. Proc. SPIE, 1993, Vol.2114, P. 297.
    62 N. V. Morozov, S. I. Sagitov, V. S. Barabanov. Proc. SPIE, 1994, Vol.2425, P.124.
    63 N. Kaiser, B. Anton, J. Jnchen, K. Mann, et al. Proc. SPIE, 1994, Vol.2428, P.400.
    64 M. R. Kozlowski, M. Staggs, F. Reimer, J.H. Stathis. Proc. SPIE, 1990, Vo1.1441, P.269.
    65 M. E.Frink, J. W. Arenberg, P. W. Mordaunt, S. C. Seitel, et al. Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass[J]. Appl. Phys.Lett., 1987, Vol.51, No.6, P. 415~417.
    66 M. Rahe, D.Ristau, H. Schmidt. Proc. SPIE, 1992, Vo1.1548, P.335.
    67 John A. Kardach, Alan F. Stewart and Arthur H. Guenther. Noneffect of electronegative gases on pulsed laser-induced optical surface damage thresholds[J]. Appl. Opt. 1984, Vol.23, P.3817~3819.
    68 S. Guch, F. E. Hovis. SPIE, 1993, Vol.2114, P. 505.
    69 胡建平,马孜,李伟,付雄鹰,李瑞洁.氧化物薄膜抗1064nm脉冲激光损伤的特性研究[J],光学学报,2000,V0l.20,No.2,P.262-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700