用户名: 密码: 验证码:
长江口潮滩磷化氢形成与释放的环境调控机理浅析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,磷化氢作为公认的磷的气相载体存在于自然界中,在陆源大气、土壤、盐沼湿地和湖泊等环境中均发现了该化合物的存在。磷化氢的发现,是对磷的生物地球化学循环过程的一种重要补充,为磷元素在水圈中传统的循环模式与机制提出了新的认识和思考,它在磷循环过程中的地位和作用及其产生机制成为现代研究的热点。磷化氢以游离气态和基质结合态两种形态存在于自然介质中。长江口潮滩沉积物作为磷化氢的蓄积库,在磷循环过程中常常作为磷源存在,因此开展基质结合态磷化氢生成、迁移、转化等机制的研究对弄清长江口潮滩磷的生物地球化学循环过程具有重大意义。
     本文以长江口滨岸潮滩为研究对象,选取浒浦(XP)、吴淞口(WSK)、白龙港(BLG)、浏河口(LHK)、芦潮港(LC)、大兴港(DXG)、寅阳(YY)7个典型采样断面,研究沉积物中磷化氢含量和释放通量的时空分布规律,并结合长江口沉积物理化性质特征,探究磷化氢含量和释放通量的主要控制因子。主要的研究结论如下:
     1.长江口滨岸潮滩表层沉积物中基质结合态磷化氢的含量存在明显的时空分布差异。基质结合态磷化氢含量范围在2.4-15.78 ng/kg之间。2009年9月(2009.09)、2010年1月(2010.01)、2010年5月(2010.05)、2010年8月(2010.08)表层沉积物中基质结合态磷化氢含量分别达4.08-12.06ng/kg、2.40-7.74 ng/kg、3.07-7.34ng/kg、4.60-15.78 ng/kg;总体季节性变化趋势为:夏季>春季>冬季。研究表明长江口潮滩滨岸带沉积物中基质结合态磷化氢含量明显低于其他水生环境基质结合态磷化氢含量水平。
     2.长江口潮滩表层沉积物中磷化氢释放通量存在明显的时空分布差异。磷化氢释放通量变化范围在0.21-36.52ng·m~(-2)·h~(-1)之间,以WSK(2009.09)最高,YY(2010.01)最低。2009.09、2010.01、2010.05、2010.08表层沉积物中磷化氢释放通量分别为4.20-36.52ng·m~(-2)·h~(-1)、0.21-0.90 ng·m~(-2)·h~(-1)、1.23-6.33 ng·m~(-2)·h~(-1)、3.85-32.40 ng·m~(-2)·h~(-1),有着明显的季节性变化趋势。
     3.长江口潮滩湿地表层沉积物中基质结合态磷化氢的含量与沉积物中磷化氢的释放通量密切相关。解磷细菌数量、碱性磷酸酶活性是基质结合态磷化氢含量及释放通量的主要环境控制因子。通过相关性分析发现,长江口潮滩湿地表层沉积物中OPB、IPB数量与TP、TP、OP浓度之间有着正相关关系。从而,磷组分亦是影响沉积物中基质结合态磷化氢含量的重要因素。
     4.沉积物中基质结合态磷化氢含量及释放通量与沉积物有机质(OC、ON)、盐度、温度呈现相关性,但沉积物粒径与基质结合态磷化氢含量的相关性并不明显。
Phosphine, a volatile constituent of the global biogeochemical phosphorus cycle, has been proved to be widespread in the environment. Now the study of phosphine is mainly focused on researches of phosphine in air, land, marsh and lake. Phosphine exists in two different forms:free gaseous phosphine and matrix-bound phosphine. The discovery of phosphine is an important complement to the biogeochemical cycle of phosphorus, however, its function and status in the biogeochemical recycle has not been identified so far. Therefore, it is of great significance to study the distribution, emission, transfer, transformation of phosphine in marine environment and its possible link to phosphorus cycle. The intertidal sediment of the Yangtze estuary is the source of the phosphate cycle and the accumulation of phosphine, so it is great significance for the research of phosphine in the phosphate biogeochemical cycle in the Yangtze estuary.
     The study area is situated on the Yangtze Estuary and adjacent coastal tidal flat areas. They are XP, LHK, WSK, BLG, LC, DXG and YY. Both field and laboratory experiments were carried out to study the distribution characteristics, emission flux, transformation mechanism of phosphine in marine sediments. The main results are as follows:
     1. The content of matrix-bound phosphine is obviously different in temporal change and spatial distribution in the intertidal sediment of the Yangtze estuary. The contents of matrix-bound phosphine are 2.4~15.78 ng/kg, and 4.08~12.06 ng/kg (2009.09)、2.40~7.74 ng/kg (2010.01)、3.07~7.34 ng/kg (2010.05)、4.60~15.78 ng/kg (2010.08), and it was lower than other matrix-bound phosphine contents of aquatic environment. The trend of temporal change is very obvious.
     2. The flux of phosphine is obviously different in temporal change and spatial distribution in the intertidal sediment of the Yangtze estuary. The flux of phosphine is 0.21-36.52ng m-2·h-1, the highest in WSK(2009.09), the lowest in YY(2010.01). The flux of phosphine in different seasons are 4.20-36.52 ng·m-2·h-1 (2009.09)、0.21-0.90 ng·m-2·h-1 (2010.01).1.23-6.33 ng·m-2·h-1 (2010.05)、3.85-32.40 ng·m-2·h-1 (2010.08), and it has a clear seasonal trend.
     3. The research proved that there are significant correlations of matrix-bound phosphine with the flux of phosphine in intertidal surface sediments of the Yangtze Estuary.. The major environmental control factors of matrix-bound phosphine are the phosphate-solubilizing bacteria and the alkaline phosphatase activity (APA). The phosphorus form also is one of the factors because the pronounced correlations of the phosphate-solubilizing bacteria with the phosphorus form.
     4. There is significantly correlation among the content and the flux of matrix-bound phosphine, the organic matter(OC,ON), salinity,temperature. But it is not obvious between the particle size and the matrix-bound phosphine content relevance.
引文
1. Aaronson S, Patni N J. The role of surface and extracellular phosphatases in the phosphrus requirement of Ochromonas[J]. Limnol Oceanogr,1976,21:838-845.
    2. Aguiar V.M.C., Braga E.S.,2007. Seasonal and tidal variability of phosphorus along a salinity gradient in the heavily polluted estuarine system of Santos/Sao Vicente-Sao Paulo, Brazil. Ma-rine Pollution Bulletin, doi:10.1016/j.marpolbul.2006.11.001.
    3. Archangel, skij A.D., Kopcenova E.V.,1930. Note on organic substances, phosphorus and vanadium deposits in the Black Sea. Isv. Akad. Nauk. SSSR,205-215.
    4. Aspila, K.I., Agemian, H., Chau, A.S.Y. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst,1976,101:187-193.
    5. Avil"|s A., Niell F.X.,2005. Pattern of phosphorus forms in a Mediterranean shallow estuary:Effects of flooding events. Estuarine, Coastal and Shelf Science,64,786-794.
    6. Barrenscheen H.K., Beckh-Widmanstetter H.A. Uber bakterielle reduktion organisch gebundener phosphoraure Biochemische Zeitschrift,1923,140:279-283.
    7. Berck B, Westlake W.E., Gunther F.A., Microdetermination of phosphine by gas-liquid chromatography with microcalometric, thermionic and flame photometric detection. Journal of Agricultural and Food Chemistry,1970,18(1):143-147.
    8. Berck, Ben. Sorption of phosphine by cereal products. J. Agr. Food Chem.1968,16(3):419-425.
    9. Boesch D.,2002. Challenges and opportunities for science in reducing nutrient over enrichment of coastal ecosystems. Estuaries,25,886-900.
    10. Brunner U., Chasteen T.G., Ferloni P., et. Al. Chromatographic determination of phosphine and hydrogen sulfide in the headspace of anaerobic bacterial enrichments using flame photometric detection. Chromatograpnia,1995,40(7/8):399-403.
    11. Burford, J.R., Bremner, J.M. Is phosphate reduced to phosphine in waterlogged soils? Soil Biol. Biochem.1972,4:489-495.
    12. Camaho-Ibar, V.F., Mcevoy, J. Total PCBs in Liverpool Bay sediments. Mar. Environ. Res.1996,40: 241-263.
    13. Cao, H.F., Liu, J.A., Zhuang, Y.H., Glindemann, D. Emission sources of atmospheric phosphine and simulation of phosphine formation. Sci. China(Ser.B) 2000,43:162-168.
    14. Chasteen T.G., Fall R., Birks J.W., et. al. Fluorine-induced chemiluminescence detection of phosphine, alkyl phosphines and monophosphinate esters. Chromatographia,1991,31(7/8):342-346.
    15. Chaudhry M.O., A review of the mechanisms invovled in the action of phosphine as an insecticide and phosphine resistance in stored-product insect. Pesticide Science,1997,49:213-228.
    16. Chrost R J, Siuda W, Halemejko G Z. Lonterm studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle[J]. Arch Hydrobiol/Suppl,1984,70:1-32.
    17. Currie D.R., Small K.J., Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuarine, Coastal and Shelf Science,2005,63,315-331.
    18. De Bethune A.J., Swendeman Loud N.A., Table of electrode potentials and temperature coefficients. In:Hampel C.A(ED). Encyclopedia of Electrochemistry. New York:Van Nostrand Reinhold.1964, 414-424.
    19. Degobbis D, Homme Maslaowska E, et al.1986. The role of alkaline phosphatase in the sediments of Venice Lagoon on Nutrient regeneration[J]. Estuar Coast Shelf Science,22:425-437.
    20. Devai I., Delaune R.D., Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Organic Geochemistry,1995,23(3),277-279.
    21. Devai I., Feldlfi L., Wittner I., Pl"(R)sz S., Detection of phosphine:new aspects of phosphorus cycle in the hydrosphere. Nature,1988,333,343-345.
    22. Devai I., Delaune R.D., Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org. Geochem.1995,23:277-279.
    23. Devai I., Delaune R.D., Devai G., et al. Phosphine production potential of various wastewater and sewage sludge sources. Analytical Letters,1999,32(7):1447-1457
    24. Devai I., Delfoldy, L., Wittner, I., Plosz, S. Detection of phosphine:new aspects of the phosphorus cycle in the hydrosphere. Nature,1988,333:343-345.
    25. Ding, L.L., Wang, X.R., Zhu, Y.X., Edwards, M., Glindemann, D., Ren, H.Q. Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge. Chemosphere,2005,59:49-54.
    26. Dumas. T. Determination of phosphine in air by gas chromatography.Agriculture and Food Chemistry,1964,12(3):257-258.
    27. Dumas. T. Microdetermination of phosphine in air by gas chromatography. J. Agr. Food Chemistry, 1969,19(6):1164-1165.
    28. Eismann, F., Glindemann, D., Bergmann, A., Kuschk, P. Soils as source and sink of phosphine. Chemosphere,1997,35:523-533.
    29. Fluck E. The chemistry of phosphine. Topics in Current Chemistry,1973,35:1-64.
    30. Fikret K, Ali R. Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation [J]. Enzyme and Microbial Technology,1996,19(7):529-537.
    31. Frank, R., Rippen, G, Verhalten von Phosphine in der Atmosphaere. Lebensmitteltechnik,1987,17: 409-411.
    32. Gao X.L., Song J.M., Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Marine Pollution Bulletin,2005,50,327-335.
    33. Gassmann, G.,1994.Phosphine in the fluvial and marine hydrosphere. Mar. Chem.1994,45: 197-205.
    34. Gassmann G., Glindemann D. Phosphine(PH3)in the biosphere. Angew. Chem. Int. Ed. Engl.,1993, 32:761-763.
    35. Gassmann, G., Schorn, F. Phosphine from harbor surface sediments. Naturwissenschaften,1993,80: 78-80.
    36. Gassmann, G., Van, Beusekom, J.E., Glindemann, D. Offshore atmospheric phosphine. Naturwissenschaften,1996,83:129-131.
    37. Geng, J.J., Niu, X.J., Jin, X.C., Wang, X.R., Gu, X.H., Edwards, M., Glindemann. D. Simultaneous monitoring of phosphine and of phosphorus species in Taihu Lake sediments and phosphine emission from lake sediments. Biogeochemistry,2005,76:283-298.
    38. Glindemann D., Bergmann A. Spontaneous emission of phosphane from animal slurry treatment processing. Zentralblatt Fur Hygiene and Unweltmedizin,1995,198(1):49-56.
    39. Glindemann, D., Bergmann A., Stottmeister, U., Gassmann, G. Phosphine in the lower terrestrial troposphere. Naturwissenschaften,1996a,83:131-133.
    40. Glindemann, D., De Graff, R.M., Schwartz, A.W. Chemical reduction of phosphate on the primitive earth, Origins of Life and Evolution of the Biosphere,1999,29:555-561.
    41. Glindemann D., Edwards M., Kuschk P. Phosphine gas in the upper troposphere. Atmospheric Environment,2003,37:2429-2433.
    42. Glindemann, D., Edwards, M., Kuschk, P. Phosphine gas in the upper troposphere. Atmos. Environ.,2003,37:2429-2433.
    43. Glindemann, D., Edwards, M., Liu, J.A., Kuschk, P. Phosphine in soils, sludges, biogases and atmospheric implications-a review. Ecol. Eng.2005a,24:457-463.
    44. Glindemann, D., Edwards, M., Morgenstern, P. Phosphine from rocks:mechanically driven phosphate reduction? Environ. Sci. Technol.2005b,39:8295-8299.
    45. Glindemann D., Edwards M., Schrems O. Phosphine and methylphosphine production by simulated lightning-a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmospheric Environment,2004,38:6867-6874.
    46. Glindemann, D., Eismann, F., Bergmann, A., Kuschk, P., Stottmeister, U. Phosphine by bio-corrosion of phosphide-rich iron. Environ. Sci. Pollut. Res.1998,5:71-74.
    47. Glindemann, D., Stottmeister, U., Bergmann, A. Free phosphine from the anaerobic biosphere. Environ. Sci. Pollut. Res.,1996b,3:17-19.
    48. Hadas O, Pinkas R. Arylsulfatase and alkaline phosphatase(ALPase) activity in sediments of Lake Kinneret, Israel[J].Water,Air and Soil Pollution,1997,99(124):671-679.
    49. Han, S.H., Wang, Z.J., Zhuang, Y.H., Yu, Z.M., Glindemann, D. Phosphine invarious matrixes. J. Environ. Sci-China,2003,15:339-341.
    50. Han, S.H., Zhuang Y.H., Liu J.A., Glindemann D. Phosphorus cycling through phosphine in paddy fields. Sci. Total Environ.,2000,258:195-203.
    51. Hanrahan, G, Salmassi, T.M., Khachikian, C.S., Foster, K.L. Reduced inorganic phosphorus in the natural environment:significance, speciation and determination. Talanta,2005,66:435-444.
    52. Harrison, W.G. Nutrient recycling in production experiments, ICES Mar Sci Symp,1993,197: 149-158.
    53. Haslett S.K., Coastal systems. Routledge Press, London, UK.2000.
    54. Hu, J.F., Peng, P.A., Jia, G.D., Mai, B.X., Zhang, G. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, southern China. Mar. Chem.2006,98:274-285.
    55. Hudson, J.J., Taylor, W.D., Schindler, D.W. Phosphate concentrations in lakes. Nature,2000,406: 54-56.
    56. Iverson, W.P. Anaerobic corrosion:metals and microbes in two worlds. Journal of Industrial Microbiology and Biotechnology,1999,22:288-297.
    57. Iverson, W.P. Research on the mechanisms of anaerobic corrosion.International Biodeterioration&Biodegradation,2001,47:63-70.
    58. Jean, M. Formation and the reduction of phosphomolybdic acid and of arsenomolybdic. Anal. Chim. Acta,1956,14:172.
    59. Jenkins, R.O., Morris, T.A., Craig, P.J., Ritchie, A.W., Ostah, N. Phosphine generation by mixed-and monoseptic-cultures of anaerobic bacteria. Sci. Total Environ,2000,250:73-81.
    60. John, T.W., Christopher D.G., James, M.V., et al. Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia. Chemosphere,2002,49:1389-1398.
    61. Kerven, G.L., Menzies, N.W., Geyer, M.D. Soil carbon determination by high temperature combustion a comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value. Commun. Soil Sci.Plan.2000,31:1935-1939.
    62. Klimmer, O.R. Beitrag zur wirkung des phosphorwassertoffes(PH3), Arch. Toxicol.1969,24:164.
    63. Koester M, Dahlke S, Meyer-Reil L A. Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the southern Baltic Sea (Nordruegensche Bodden) [J]. Marine Ecology Progress Series,1997,152 (1-3):27-39.
    64. Latimer, W.M. The oxidation states of the elements and their potentials in aqueous solutions. New York:Prentice-hall,1953.
    65. Lavoisier A.L. Elements of Chemistry. In:Hutchins R.M(Ed),1952. Great books of the Western World,45, Chicago:Encyclopaedia Inc.1789.
    66. Lewis, J.W.M., Grant, M.C., Hamilton, S.K. Evidence that filterable phosphorus is a significant atmospheric link in the phosphorus cycle. Oikos,1985,45:428-432.
    67. Liebert F. Reduzieren mikroben phosphate? Zentralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten:Abt Ⅱ,1927,72:369-374.
    68. Liu J.A., Cao H.F., Zhuang Y.H., Kuschk P., Eismann F., Glindemann D. Phosphine in the urban air of Beijing and its possible sources. Water Air Soil Pollut.,1999,166:597-604.
    69. Lugg, G.A. Estimation of phosphine in Air, Department of Supply, Australian Defence Scientific Service, Defence Standards Laboratories, Maribyrnong, Victoria,1962:1-8.
    70. Marpmann G. Uber die swarze verfarbung des kases und uber kasevergiftungen. Zentralblatt fur Bakteriologie und Parasitenkunde, Abteilung Ⅰ,1897,22:21-26.
    71. Mellor, J.W. A comprehensive treatise on inorganic and theoretical chemistry, London:Longm-ans, Green&Co., Ltd.1940.
    72. Metcalf, W.W., Wolfe, R.S. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88, Journal of Bacteriology,1998,180(2):5547-5558.
    73. Morton, S.C., Glindemann, D., Edwards, M.A. Phosphates,phosphites, and phosphides in environmental samples. Environ. Sci. Technol.2003,37:1169-1174.
    74. Mu, Q.L., Song, X.X., Yu, Z.M. Matrix-bound phosphine distribution characteristics in the sediments of Jiaozhou Bay, China. Environ. Sci-China,2005,26:135-138.
    75. Murphy, J. and Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Analytical Chemical ACTA(Anal.Chem.Acta),1962,27:31-36.
    76. Muthu, M. "Phosphine" Symposium on gaseous disinfestation and disinfection, Academy of Pest Control Sciences, Mysore, India,1970.
    77. Muthu, M., Najumder, S.K., Parpia, H.A.B. Detector for phosphine at permissible level in air, J. Agr. Food Chem.,1973,21(2):184-186.
    78. Nedwell D.B., Raffaelli D.G.,1999. Advances in ecological research:estuaries. Academic Press, London, UK.
    79. Newman S, Mccormick P V, G Backus J. Phosphatase activity as an early warning indicator of wetland eutrophication:problems and prospects[J]. Journal of Applied Phycology,2003,15(1): 45-49.
    80. Niu, X.J., Geng, J.J., Wang, X.R., Wang, C.H., Gu, X.H., Edwards, M., Glindemann, D. Temporal and spatial distributions of phosphine in Taihu Lake, China. Sci. Total Environ.2004,323:169-178.
    81. Nowicki T. Gas-liquid chromatograph and flame photometric detection of phosphine in wheat. Journal of the Association of official Analytical Chemists,1978,61(4):829-836.
    82. Ogrinc N., Faganeli J., Phosphorus regeneration and burial in near-shore marine sediments. Estuarine, Coastal and Shelf Science,2006,67,579-588.
    83. Pai, S.C., Yang, C.C., Reliey, J.P. Formation kinetics of the pink azo dye in the determination of nitrite in the natural waters. Analytica Chimica Acta.,1990,232:345-349.
    84. Pierard, C., Budzinski, H., Garrigue, P. Grain-size distribution of polychlorobiphenyls in coastal sediments. Environ. Sci. Technol.,1996,30:2776-2783.
    85. Prinn, R.G The interactive atmosphere:global atmospheric-biospheric chemistry. Ambio,1994, 23:50-61.
    86. Prrin, R.G., Lewis, J.S. Phosphine on Jupiter and implications for the great redspot. Science, 1975,190:274-276
    87. Roels, J., Huyghe, G., Verstraete, W. Microbially mediated phosphine emission. Sci. Total Environ. 2005,338:253-265.
    88. Roels, J., Van, L.H., Verstraete, W. Determination of phosphine in biogas and sludge at ppt-levels with gas chromatography-thermionic specific detection. Journal of Chromatography A,2002,952: 229-237.
    89. Roels, J., Verstraete, W. Biological formation of volatile phosphorus compounds. Biores. Technol. 2001,79:243-250.
    90. Roels, J., Verstraete, W. Occurrence and origin of phosphine in landfill gas. Sci. Total Environ.2004, 327:185-196.
    91. Roels, J., Huyghe G., Verstraete W. Microbially mediatied phosphine emission. Science of the Total Environment,2005,338:253-265.
    92. Romani A M, Sahater S. Structure and activity of rock and sand biofilms in a Mediterranean Stream[J]. Ecology,2001,82(11):3232-3245.
    93. Rudakov, K.I. Die reduction der mineralischen phosphate auf biologischem Wege. Zentralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten:AbtⅡ,1927,70:202-214.
    94. Rudakov, K.I. Die reduction der mineralischen phosphate auf biologischem Wege II. Zentralb-latt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten:Abt Ⅱ,1929,79:229-245.
    95. Rutishauser, B.V., Bachofen, R. Phosphine formation from sewage sludge cultures. Anaerobe,1999, 5(5):525-531.
    96. Sayler G S, Puziss M, Silver M. Alkaline phosphatase assay for freshwater sediments:application to perturbed sediment systems[J]. Applied and Environmental Microbiology,1986,38:922-927.
    97. Schink, B., Friedrech, M. Bacterial metabolism:phosphite oxidation by sulphate reduction, Nature, 2000,406:37.
    98. Schink, B., Thiemann, V., Laue, H., et al. Desulfotignum phosphitoxidans sp. Nov., a new marine sulfate reducer that oxidizes phosphite to phosphate.Archives of Microbiology,2002,177:381-391.
    99. Singh, P.; Ramasivan, T.; Krishmanurthy, K. Bull. Grain Technol,1967,5(1):5.
    100. Skinner, F.A. The anaerobic bacteria of soil. In:Gray T R G, Parkinson D(Ed). The Ecology of Soil Bacteria. England:Liverpool University Press.1968,573-592.
    101. Strickland, J.D.H. and Austuin, K.H..J. Du Conseil.Intrn. Pour Ⅰ Explor. de la Mer,1959,24:540.
    102.Thauer R.K., Jungermann K., Decker K. Energy-conservation in chenotrophic bacteria. Bacteriological Reviews,1977,41 (1):100-180.
    103.Truhaut, R. The problem of permissible limits for toxic substances in industry. Agreements and divergences in international standards. Intern. Congr. Occupational Health,14th, Madrid 1963, (2): 146-154.
    104. Tsubota, G. Phosphate reduction in the paddy field. Soil Plant Food 1959,5:10-15.
    105. Van D.Z.C., Roevros N., Chou L.,2007. Phosphorus speciation, transformation and retention in the Scheldt estuary(Belgium/The Netherlands)from the freshwater tidal limits to the North Sea. Marine Chemistry, doi:10.1016/j. Marchem.2007.01.003.
    106. Vinsjansen A., Thrane K.E. Gas-chromatography detection of phosphine in ambient air. Analyst, 1978,103:1195-1197.
    107. Volkland H.P., Harms H., Muller B., et.al. Bacterial phosphating of mild(unalloyed)steel. Applied and Environmental Microbiology,2000,66(10):4389-4395.
    108. Wang, B.D., Wang, X.L., Zhan, R. Nutrient conditions in the Yellow Sea and the East China Sea. Estuar. Coast. Shelf. S.2003,58:127-136.
    109. Word Health Organization. Phosphine and selected metal phosphides. In:Environmental Health Criteria, Genf.1988,73:1-99.
    110. Yu, Z.M., Song, X.X. Matrix-bound phosphine:a new form of phosphorus found in sediment of Jiaozhou Bay. Chin. Sci. Bull.2003,48:131-135.
    111. Zhang, G., Li, J., Cheng, H.R., Li,X.D., Xu,W.H., Jones, K.C.Distribution of organochlorine pesticides in the northern South China Sea:implications for land outflow and air-sea exchange. Environ. Sci. Technol.2007,41:3884-3890.
    112. Zhu, R.B., Glindemann, D., Kong, D.M., Sun,L.G, Geng, J.J., Wang, X.R. Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmos. Environ.2007a,41: 1567-1573.
    113. Zhu, R.B., Kong, D.M., Sun, L.G., Geng, J.J., Wang, X.R. The first determination of atmospheric phosphine in Antarctica. Chin. Sci. Bull.2007b,52:131-135.
    114. Zhu, R.B., Kong, D.M., Sun, L.G., Geng, J.J., Wang, X.R., Glindemann, D. Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol.2006a,40:7656-7661.
    115. Zhu, R.B., Sun, L.G., Kong, D.M., Geng, J.J., Wang, N., Wang, Q., Wang X.R. Matrix-bound phosphine in Antarctic biosphere. Chemosphere,2006b,64:1429-1435.
    116.曹阳,宋翼,孙冠英,等。磷化氢毒理学研究综述,郑州工程学院学报,2002,23(2):84-89。
    117.陈春刚,曹阳,柏志美。磷化氢杀虫机理研究综述。粮食储藏,2004,32(3):12-17。
    118.陈晖。长江口潮滩沉积物基质结合态磷化氢的分布特征初探。2010。
    119.方涛,李道季,孔定江,等。夏秋季长江口及毗邻海域N、P营养盐分布及其潮汐变化。海洋环境科学,2008,27(05):437-442。
    120.冯志华。海洋沉积物中磷化氢的分布、释放与转化研究。2008。
    121.付金沐, 刘敏, 侯立军等。长江口滨岸排污活动对潮滩营养盐环境地球化学过程的影响[J]。环境科学,2007,28(02):315-321。
    122.耿金菊。湖泊沉积物中磷化氢的释放过程及其产生机制研究,博士学位论文,南京:南京大学,2005,80-82。
    123.耿金菊,王强,金相灿,王晓蓉,2006。太湖部分区域沉积物中磷化氢和微生物的分布。环境科学,27(1):105-109。
    124.耿金菊,王强,牛晓君,王晓蓉,2005。环境因子对湖泊沉积物中吸附态磷化氢生成和释放的 影响。环境科学学报,25(5),681-685。
    125.郭夏丽。磷酸盐生物还原研究进展与应用前景,江苏环境科技,2006,19(5):53-55。
    126.侯立军。长江口滨岸潮滩营养盐环境地球化学过程及生态效应,2004。
    127.韩圣慧。土壤中磷向大气、水体迁移途径的研究,博士学位论文,北京:中国科学院生态环境研究中心,2000,65-69。
    128.金相灿。中国湖泊富营养化控制技术。中国湖泊富营养化及其防治国际学术研讨会专家论文集,大理,2000:215-223。
    129.李凤业,高抒,贾建军。黄、渤海泥质沉积区现代沉积速率,海洋与湖沼,2002,33(4):364-369。
    130.李凤业,宋金明,李学刚,汪亚平,齐君。胶州湾现代沉积速率和沉积通量研究,海洋地质与第四纪地质,2003,23(4):29-33。
    131.李高华,潘亚勤,马建琪。气象色谱-火焰光度检测器测定磷化氢残留初探。植物检疫,1992,6(1):28-30。
    132.罗庆云,曹阳,付丽敏。磷化氢快速检测试纸的研究。郑州粮食学院学报,1995,16(3):30-34。
    133.李善为,从胶州湾沉积物特征看胶州湾的形成演变,海洋学报,1983,5:328-339。
    134.李英,吕颂辉,徐宁,谢隆初。东海原甲藻对不同磷源的利用特征,生态科学,2005,24(4):314-317。
    135.刘存歧,陆健健, 李贺鹏。长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性[J]。生态学报,2007,09:3663-3669。
    136.刘志培,贾省芬,王宝军,刘双江。环境中磷化氢的含量差异及其影响因素,环境科学学报,2004,24(5):852-857。
    137.刘志培,王宝军,贾省芬,刘双江。样品磷化氢含量与某些微生物群落及酶活的关系,微生物学报,2006,46(4):608-612。
    138.路娜, 周小平, 胡维平, 等。太湖水体中碱性磷酸酶的空间分布及生态意义[J]。环境科学,2009,30(10):2898-2904。
    139.吕晓霞, 翟世奎, 牛丽风。 2005。 长江口柱状沉积物中有机质C/N比的研究[J]。 环境化学,24(3):255-259。
    140.母清林,宋秀贤,俞志明。磷化氢在胶州湾沉积物中的分布特征,环境科学,2005,26(4):135-138。
    141.牛晓君,耿金菊,马宏瑞,等。富营养浅水湖泊中新发现的磷化氢,中国环境科学,2004a,24(1):85-88。
    142.牛晓君,耿金菊,王晓蓉,等。太湖水域磷化氢的时空变化特征,环境科学学报,2004b,24(2):255-259。
    143.牛晓君,林志芬,王晓蓉,等。湖泊沉积物中磷化氢的释放动力学初探,环境化学,2007,26 (2):221-223。
    144.牛晓君,王彩虹,耿金菊,等。气相色谱—氮磷检测器分析痕量磷化氢,分析测试学报,2004c,23(3):70-72。
    145.牛晓君,王晓蓉,徐文海,等。富营养化水体中磷化氢的测定,分析化学,2003a,31(3):378。
    146.牛晓君,张景飞,史小丽,王晓蓉,高光,季江,Dietmar Glindemann。磷化氢及其氧化产物动态释放对铜绿微囊藻(Microcystis aeruginosa)生长的影响,湖泊科学,2003b,15(3):263-268。
    147.欧冬妮, 刘敏, 许世远, 等。长江口滨岸潮滩沉积物中磷的存在形态和分布特征[J]。 海洋通报,2001,20(05):10-17。
    148.欧冬妮。长江口潮滩“干湿交替”模式下磷的迁移过程与机制,2004。
    149.钱君龙,张连荣,乐美麟。过硫酸盐消化法测定土壤全氮全磷,土壤,1990,22(5):258-262。
    150.全为民,沈新强,韩金娣,陈亚瞿。长江口及邻近水域富营养化现状及变化趋势的评价与分析,海洋环境科学,2005,24(3):13-16。
    151.沈志良。渤海湾及其东部水域化学要素的分布。海洋科学集刊,1999,41:51-59。
    152.沈志良,刘群,张淑美,等。长江和长江口高含量无机氮的主要控制因素,海洋与湖沼,2001,32(5):465-473。
    153.石晓勇,王修林,韩秀荣,等。长江口邻近海域营养盐分布特征及其控制过程的初步研究,应用生态学报,2003,14(7):1086-1092。
    154.宋立荣。蓝藻水华的发生和危害机理研究。许厚泽,赵其国主编。长江流域洪涝灾害与科学对策,北京:科学出版社,1999:313-317。
    155.宋娴丽等。赤潮异弯藻对牙鲆早期发育的影响,海洋水产研究,2005,26(4):26-27。
    156.宋炜,蒋丽娟,袁丽娜,等。太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系[J]。环境科学,2007,28(10):2355-2360。
    157.王保栋,战闰,藏家业。长江口及其邻近海域营养盐的分布特征和输送途径[J]。海洋学报,2002, (01):53-58。
    158.王敢峰,高岩,姜晓雯,等。火焰光度气相色谱法测定空气中磷化氢的规范化研究。卫生研究,1994,23(2):65-67。
    159.王晓蓉,郭红岩。太湖富营养化控制对策探讨,中国湖泊富营养化及其防治国际学术研讨会专家论文集,大理,2000:229-235。
    160.王晓蓉,丁丽丽,牛晓君,等。磷化氢在湖泊磷生物地球化学循环中的作用,环境化学,2003,22(5):485-489。
    161.王跃思,郑循华,王明星,等。静态箱法气相色谱自动检测农田N2O排放,分析测试技术与 仪器,1997,3(1):10-14。
    162.吴重华,王晓蓉,孙吴。几种物质磷形态的生物有效性模拟研究,环境科学,1998:58-62。
    163.闫慧敏。长江口潮滩湿地生物硅分布与富集机制,2008。
    164.叶思源。胶州湾水生系统痕量金属生物地球化学循环及其生态效应,中国矿业大学博士论文,2005。
    165.叶仙森,项有堂, 张勇。长江口海域营养盐的分布特征及其成因[J]。海洋通报,2000,19(01):89-92。
    166.尹大强,吴重华,王晓蓉,严山。太湖湖水及沉积物磷释放对藻类生长潜力研究,南京大学学报,1996,32(2):253-260。
    167.余德辉。中国湖泊富营养化防治状况及存在的问题,中国湖泊富营养化及其防治国际学术研讨会专家论文集,大理,2000:207-214。
    168.俞志明,宋秀贤。一种海洋环境中易被忽略的磷化合物—磷化氢,海洋与湖沼,2002,33(5):562-568。
    169.张清春,于仁诚,周名江,王云峰,李钧,颜天。不同类型含磷营养物质对微小亚历山大藻(Alexandrium minutum)生长和毒素产生的影响,海洋与湖沼,2005,36(5):465-473。
    170.张士萍,张文俭,李艳丽,等。崇明东滩湿地土壤生物活性差异性及环境效应分析[J]。农业环境科学学报,2009,28(1):112-118
    171.周凤文。溶解乙炔中有害气体-硫化氢、磷化氢含量分析。西北轻工业学院学报,1996,14(3):75-79。
    172.周名江,朱明远。“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展,地球科学进展,2006,21(7):673-679。
    173.周名江,朱明远,张经。中国赤潮的发生趋势和研究进展,生命科学,2001,13(2):54-59。
    174.朱仁斌,孔德明,孙立广,耿金菊,王晓蓉,2006,南极大气中磷化氢的首次监测,科学通报,51(18),2212-2215。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700