用户名: 密码: 验证码:
长江口环境变化及表层沉积物中总有机碳、总氮的时空分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据1998—2009年长江口及其邻近海域生态与环境调查资料,分析了十年来长江口环境变化特征,着重探讨了三峡工程蓄水前后长江口环境演变趋势,为进一步解析人类活动对长江口生态系统的影响提供科学依据。主要研究结果如下:
     长江口全区水域,春季,2004年以后水体盐度呈增加趋势,2009年有所回落;2004年水温最高,DO、pH值年度间显著波动;COD呈逐步下降趋势,2009年有所回升;2007年以后水体总氮含量显著增加,而总磷含量显著减少;2004年以后,水体悬浮体含量显著下降。
     秋季,盐度年度间呈起伏波动状态,平均水温在2009年出现历史最低值,DO、pH、总氮、总磷年度间变化显著,COD呈下降趋势,2004年以来,水体悬浮体含量明显减少。各环境要素在长江口不同水域(口门内、沿岸、近海)随时间显示不同的变化趋势。
     三峡工程蓄水前后,长江口环境发生显著变化,主要表现在总磷和悬浮体含量上。三峡工程蓄水后,长江口及其邻近海域总磷和悬浮体含量显著降低。三峡工程蓄水前后,长江口门内、沿岸、近海水域环境要素演变趋势不同。
     根据长江口及其邻近海域2007年2月、5月、8月、11月4个航次野外调查数据,系统地探讨了长江口表层沉积物总有机碳、总氮的时空分布特征,通过分析长江口物理、化学、沉积环境特征,分析了长江口表层沉积物总有机碳、总氮分布的主要影响因素。
     结果表明,长江口及其邻近海域表层沉积物类型以细砂和粉砂为主,细颗粒泥沙主要分布在调查水域南部,北部海域以砂组分为主,沉积物组成和分布具显著的季节变化特征;长江口及其邻近海域表层沉积物TOC含量介于0.012%-1.589%,平均为0.524%,不同季节其空间分布特征不同;最大浑浊带区域和东南外海区(122°30′E以西,31°31′N以北)表层沉积物TOC含量显著高于北部海域。沉积物粒度是影响长江口表层沉积物TOC的重要因素,水动力条件通过作用于沉积物组成变化影响TOC时空分布,TOC的高分布区位于长江冲淡水锋面与台湾暖流、黄海沿岸流混合处,分布范围随水动力条件季节变化而变化,其它因素在不同水域、不同季节对表层沉积物TOC影响程度不同。
     长江口及其邻近海域表层沉积物总氮(TN)含量含量介于0.017%~0.119%之间,平均为0.065%。不同区域来看,北部海域的TN含量低于东南外海和最大浑浊带区域。其中5月份TN含量最低,8月份最高;5月份的最大浑浊带值明显小于该月份东南外海。5月最大浑浊带TN含量低于其它季节。
     TN含量与细砂百分含量显著的负相关,与粉砂和粘土百分含量显著正相关。这主要是由于随粒度变细,总表面积随之增加,对元素的吸附作用增强,能吸附更多的营养物质。2月份,在长江冲淡水区域和外海区,TN含量与盐度变化一定程度的负相关,5月份TN含量与盐度正相关,8月份,外海区TN含量与盐度呈微弱的负相关,11月份,冲淡水区TN含量与盐度正相关,在外海区,TN含量与盐度显著的负相关。此外,8月份表层水体TN含量、表层水体叶绿素a含量也对表层沉积物中的TN含量有影响,这也反映了沉积物与水体之间的营养元素转移现象。
     长江口及其邻近海域各站位表层沉积物TOC含量与TN含量显著相关,这表明在海洋沉积物中氮与有机碳之间关系非常密切,但在8月份洪季,TN含量分布受其它因素影响更大,相关性较低。
     根据有机指数和有机氮两个指标对长江口及其邻近海域的表层沉积物的营养健康状况进行评价。结果显示,一年中,长江口海域在8月份和11月份的健康程度较差。
According to the ecological and environmental survey data in the Yangtse River estuary and its adjacent waters from 1998 to 2009. the environmental variation characteristics of the Yangtze River Estuary were analyzed during ten years, environment variations before and after the Three Gorges Reservoir impoundment were studied in the Yangtze River Estuary. The research results will provide scientific basis for further analysis of human activitiy influences on the Yangtze River Estuary ecosystem. The main results are as following:
     During spring, average salinity of the whole investigated waters tended to increase after 2004, but declined in 2009; the water temperature was highest in 2004, DO, pH values had significant annual fluctuation; COD showed a gradual downward trend, but rebounded in 2009; After 2007, total nitrogen content in water body significantly increased, while total phosphorus content significantly reduced; suspended particulate matter content in water body significantly decreased after 2004.
     In autumn, the salinity variations showed state annual fluctuation.The average temperature in 2009 was minimal. DO, pH, total nitrogen, total phosphorus had significant annual changes. COD was decreased from 1998 to 2009. From 2004, the suspended particulate matter content was significantly reduced. The environmental factors in different waters of the Yangtze River Estuary (mouth, offshore and shelf waters) had different variation trend.
     Before and after impoundement of Three Gorges Reservoir, the environment in Yangtzi River Estuary significantly changed, especially the content of total phosphorus and suspended particulate matter had significant variations. After the reservoir impoundement, the total phosphorus and suspended particulate matter had significantly decreased in the Yangtzi River Estuary and its adjacent waters. The environmental elements in estuary mouth, offshore waters and shelf waters had different variation trends before and after impoundement of the reservoir.
     In the present thesis, we analysed the data obtained from the surveys which was carried out in the Changjiang River Estuary and its adjacent sea areas in February, May, August, and November of 2007, and 40 stations were designed. This research systematically discussed the temporal and spatial distribution features of the total organic carbon (TOC) of the Yangtze Estuary surface sediments, and analyzed the main influence factors of the Yangtze Estuary surface sediments TOC by analyzing the Yangtze River's physics, chemistry and sedimentary features.
     The results showed that the surface sediment of the Yangtze River Estuary and its adjacent waters were mainly comprised of fine sand and silt, fine sediment was mainly distributed in the southern of the investigated waters, the advantaged component of the north sea sediment was sand. Besides, the sediment compositions and distributions had significant seasonal variations; The surface sediment TOC content of Yangtze River estuary and adjacent waters was between 0.012% and 1.589%, with an average of 0.524%, its spatial distribution characteristics showed season variances; the surface sediment TOC contents in maximum turbidity zone and southeast offshore area (122°30′E, west,31°31′N, north of) were significantly higher than in northern waters. Sediment grain size was an important factor that affects the surface sediment TOC, hydrodynamic conditions influenced spatial and temporal distribution of TOC by afecting on the sediment composition, the high distribution area of TOC was at Yangtze River diluted water front, the mixing area with the Taiwan Warm Current, the Yellow Sea coastal current. The distribution area changed with hydrodynamic conditions in different seasons. In different areas, surface sediment TOC had varied factors during different seasons
     The total nitrogen (TN) content of surface sediment in the Changjiang River Estuary and its adjacent was between 0.017%~0.119%, averaging 0.065%. In different regions, TN showed varied distribution characteritics:TN content of the northern waters was lower than the southeast areas of investigated waters and the maximum turbidity zone area. TN content was lowest in May, and highest in August; TN content in the maximum turbidity zone was significantly lower than in the southeast areas of investigated waters in May. TN content in the maximum turbidity zone during May was lower than durting February, August, and November.
     TN content was significantly negatively correlated with fine sand proportions and significantly positively correlated with silt and clay proportions. As fine grain size had an increasing surface area, and the elements adsorption increased, sediments could absorb more nutrients. In February, sediment TN negatively correlated with salinity in a certain degree in the Changjiang diluted water and the offshore area. In May, sediment TN positively correlated with salinity, and sediment TN in the off shore area had a weak negative correlation with salinity during August. In November, sediment TN in the Changjiang diluted water area positively correlated with salinity, and sediment TN in the off shore areas significantly negatively correlated with salinity. In addition, the surface water TN and chlorophyll content also affected sediment TN in August, which reflected the nutrient retention between water body and sediment.
     Surface sediment TOC significantly associated with TN in Changjiang River Estuary and its adjacent waters, which indicated a close relationship between nitrogen and organic carbon in marine sediments. But, sediment TN distribution had weak correlation with TOC during August, flood season, due to effects of other factors.
     Using the organic index and the organic nitrogen index, the nutrition health status of surface sediments were evaluated in the Changjiang River Estuary and its adjacent waters. The results showed that the health status was poor in August and November in this area during a year.
引文
1 Beardsley, R. C. et al.,Structure of the Changjiang River Plume in the East China Sea During June,1980, Proceedings of international Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea, China Ocean Press,1983,243-260.
    2 赵保仁,乐肯堂,朱兰布.长江口调查海区温盐度分布基本特征,海洋科学集刊,1982,33:15-26.
    3 赵保仁.长江冲淡水转向机制问题,海洋学报,1982,13(5):600-610.
    4 You Konyuan, et al. Modern Sedimentation Rate in the Vicinity of Changjiang Estuary and Adjacent Shelf, Proceedings of SSCS,1983,590-606.
    5 Su Xianze et al. The Recent Sedimentation Rate and Process in the Changjiang Estuary and its Adjacent Continental Shelf Area, Proceedings of SSCS,1983 606-616.
    6 张娇,张龙军.有机物在河口区迁移转化机理研究.中国海洋大学学报,2008,38(3):489-494.
    7 张龙军,张向上,王晓亮,等.黄河口有机碳的时空输运特征及其影响因素分析.水科学进展,2007,18(5):674-682.
    8 高全洲,陶贞.河流有机碳的输出通量及性质研究进展.应用生态学报,2003,14(6):1000-1002.
    9 蓝先洪.我国河口地球化学研究。海洋地质动态,1995(8):1-4.
    10王保栋.河口和沿岸海域的富营养化评价模型.海洋科学进展,2005,23(1):82-86.
    11叶属峰,刘星,丁德文.长江河口海域生态系统健康评价指针体系及其初步评价.海洋学报,2007,29(4):128-136.
    12王丽萍,周晓蔚,郑丙辉,等.长江口及毗邻海域沉积物生态环境质量评价.生态学报,2008,28(5):2191-2198.
    13魏秀国.河流有机质生物地球化学研究进展.生态环境,2007,16(2):1063-1067.
    14刘昌岭,张经.河口生物地球化学研究.海洋地质动态,1998,4:4-7.
    15牛红义,吴群河,陈新庚.珠江广州河段沉积物中营养物质的分布特征及粒度效应.水土保持通报,2007,27(5):18-21.
    16沈小东,马嵩,杨强,等.富春江(富阳段)表层沉积物中生源物质的分布特征.科技通报,2008,24(4):570-576.
    17朱光伟,陈玉旭.沉积物中有机质的环境行为研究进展.湖泊科学,2001,13(3):272-279.
    18蓝先洪.中国主要河口沉积有机地球化学研究.海洋地质动态,2003,19(9):1-4.
    19杨荣敏,王传海,沈悦.底泥营养盐的释磷对富营养化湖泊的影响.污染防治技术,2007,20(1):49-52.
    20魏秀国.河流有机质生物地球化学研究进展.生态环境,2007,16(2):1063-1067.
    21高全洲,陶贞.河流有机碳的输出通量及性质研究进展.应用生态学报,2003,14(6):1000-1002.
    22蔡艳雅,韩舞鹰.珠江口有机碳的研究.海洋环境科学,1990,9(2):8-13.
    23蔡德龄.亚马孙河及其河口区中颗粒有机碳的来源和运移.海洋学报,1989,11(4):458-469.
    24杨钙仁,张文菊,童成立.温度对湿地沉积物有机碳矿化的影响.2005,25(2):243-248.
    25童成立,张文菊,王洪庆,等.三江平原湿地沉积物有机碳与水分的关系.环境科学,2005,26(6):38-42.
    26张龙军,张向上,王晓亮,等.黄河口有机碳的时空输运特征及其影响因素分析.水科学进展,2007,18(5):674-682.
    27张龙军,宫萍.河口有机碳研究综述.中国海洋大学学报,2005,35(5):737-744.
    28李宁,李学刚,宋金明.海洋碳循环研究的关键生物地球化学过程.海洋环境科学,2005,24(2):75-80.
    29高建华,汪亚平,潘少明,等.长江口外海域沉积物中有机物的来源及分布.地理学报,2007,62(9):981-991.
    30俞捷,刘敏,许世远,等.长江口潮滩有机质稳定碳同位素时空分布与来源分析.地理研究,2008,27(4):847-854.
    31李宏亮,陈建芳,金海燕,等.楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义.海洋学报,2008,30(1):165-171.
    32朱纯,潘建明,卢冰,等.长江口及邻近海域现代沉积物中正构烷烃分子组合.海洋学报,2005,27(4):59-67.
    33吴怡,邓天龙,廖梦霞,等.天然水体沉积物中有机氮的研究进展.广州微量元素科学,2006,13(11):7-13.
    34李文霞,冯海艳,杨忠芳,等.水体富营养化与水体沉积物释放营养盐.地质通报,2006,25(5):602-608.
    35付金沐,刘敏,侯立军,等.排污活动对长江口滨岸潮滩营养元素N累积运移的影响及作用机制.地理科学,2007,27(5):695-700.
    36杨丽原,王晓军,刘恩峰.南四湖表层沉积物营养元素分布特征.海洋湖沼通报,2007,2:40-44.
    37诸大宇,郑丙辉,雷坤,等.基于营养盐分布特征的长江口附近海域分区研究.环境科学学报.2008.28(6):1233-1240.
    38欧冬妮,刘敏,侯立军,等.河口潮滩沉积物磷的季节性累积和生物有效性.海洋科学,2007,31(2):21-26.
    39宋祖光,高效江,张弛.杭州湾潮滩表层沉积物中磷的分布、赋存形态及生态意义.生态学杂志,2007,26(6):853-858.
    40彭晓彤,周怀阳.海岸带营养盐生物地球化学研究评述.海洋通报,2002,21(3):69-77.
    41沈小东,马嵩,杨强,等.富春江(富阳段)表层沉积物中生源物质的分布特征.科技通报,2008,24(4):570-576.
    42刘娟,孙茜,莫春波,等.大辽河口及邻近海域的污染现状和特征.水产科学,2008,27(6):286-289.
    43雷坤,郑丙辉,孟伟,等.大辽河口N、P营养盐的分布特征及其影响因素.海洋环境科学,2007,26(1):19-27.
    44王芳,康建成,周尚哲,等.春秋季长江口及其邻近海域营养盐污染研究. 生态环境,2006,15(2):276-283.
    45吕莹,陈繁荣,杨永强,等.春季珠江口内营养盐剖面分布和沉积物—水接口交换通量的研究.地球与环境,2006,34(4):1-6.
    46 Cauwet G.Carbon inputs and Biogeochemical process at the haloline in a stratified estuary:Krka River, Yugoslavea. Marine Chemistry,1991,32:269~283.
    47 Miguel A C, Maria J T, David WP, Sources and distribution of organic matter in a river dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science,2003,57:1023~1048.
    48 Miller, A.E.J.,1999. Seasonal Investigations of Dissolved Organic Carbon Dynamics in the Tamar Estuary, U.K. Estuarine. Coastal and Shelf Science,49: 891~908.
    49 Moran M A, Sheldon W M, Sheldon J E. Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States. Estuaries, 1999,22(1):55~64.
    50 Ronald B, Opsahl S. Molecular indicators of the sources and transformations of dissolved organic matter in Mississippi river plume. Organic Geochemistry.2001,32: 597~611.
    51 Ittekkot V, Arain R. Nature of particulate organic matter in the river Indus, Pakista. Geochim Cosmochim Acta,1986,50:1643~1653.
    52 Zhang J, Zhang Z F, Liu S M, et al. Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration. Global Biogeochemical Cycles,1999,13(4):1099~1105.
    54 Honda MC, Imai K, Nojiri Y,et al. The biological pump in the northwestern North Pacific based on fluxes and major components ofparticulate matter obtained by sediment trap experiments (1997~2000). Deepsea Res Ⅱ Top Study Oceanogr 2002,4:5595~5625.
    55 Gerringa L Results of aerobic degradation of o rganic matter with respect to Cu. Cd, Pb, Ni, Zn, Fe and Mn in marine sediment slurries. Marine Chemistry,1990,29: 355~374
    56 Hung J J, Lin P L, Liu K K. Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research,2000,20:545~569.
    57 Robert R L, John W D, Brain D M, et al. The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system[J]. Estuarine, Coastal and Shelf Science 2007,74:145-154.
    58沈焕庭,朱建荣,吴华林,等.长江河口陆海相互作用接口[M].北京:海洋出版社,2008.17.
    59 Rice D L, Tenore K R. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuary Coastal an d Shelf Science,1981,13:681-690.
    60 Wu Y, Zhang J, Liu S M, et al. Sources and distribution of car-bon within the Yangtze River system[J]. Estuarine Coastal and Shelf Science,2007,71:13-25.
    61 Wu Y, Dittmar T, Ludwichowski K U et al. Tracing suspended organic nitrogen from the Yangtze River catchments into the East China Sea[J]. Marine Chemistry, 2007,107:367-377.
    62周淑青,沈志良,李峥,等.长江口最大浑浊带及邻近水域营养盐的分布特征.海洋科学,2007,31(6):34-42.
    63周俊丽,刘征涛,孟伟,等.长江口营养盐浓度变化及分布特征.环境科学研究,2006,19(6):139-144.
    64吕晓霞,翟世奎,于增慧,等.长江口内外表层沉积物中营养元素分布特征研究.海洋通报,2005,24(2):40-45.
    65沈焕庭,茅清远.长江盐水入侵.海洋出版社,2001,1~229.
    66刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼,2002,33(5),332~340.
    67沈焕庭,潘定安.长江河口最大浑浊带.北京:海洋出版社,2001,194
    68朱爱美,叶思源,卢文喜.胶州湾海水~沉积物界面氮、磷、铁的地球化学特征.海洋地质与第四纪地质,2006,26(6):55~64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700