用户名: 密码: 验证码:
厦门筼筜湖环境污染特征调查和微生物修复的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快和工业化程度的提高,城市湖泊受到的污染越来越严重,水域呈富营养状态。水环境的恶化,严重制约城市的经济可持续发展,并影响到市民的生存质量。生物修复是近年来兴起的一项低投资、见效快、无二次污染的技术,目前已成功应用到废水处理、农业、畜牧业、水产养殖业和环境保护等领域。
     本文针对筼筜湖尽管经过十几年的综合整治,目前仍存在部分污染的状况,对其污染水平进行了比较全面的调查研究,并选用不同的复合微生物菌剂进行微生物修复试验研究,主要研究工作及结果如下:
     (1)利用等离子电感耦合质谱仪、气相色谱、元素分析仪等现代分析仪器对沉积物中的重金属、氮、硫、有机物等进行测试,采用聚合酶链反应—变性梯度凝胶电泳技术(PCR-DGGE)检测方法对沉积物样品的微生物多样性进行初步的分析。结果表明,筼筜湖沉积物中重金属的污染程度目前属于中度污染,沉积物中重金属元素的污染程度顺序是:As>Ni>Pb>Cu>Cr>Zn;筼筜湖表层沉积物中总氮、总碳、总有机碳和总硫含量最高,各站位分布规律如下:内湖>干渠>外湖>松柏,污染主要来源为陆源物质;筼筜湖各站位沉积物中16种多环芳烃的总含量顺序为:内湖>干渠>外湖>松柏,PAHs主要来自汽油、柴油及煤等燃料不完全燃烧的污染;正构烷烃主要分布于nC_(22)-nC_(30),来源主要以水生植物和陆源高等植物为主;四个站位中均含有如下饱和脂肪酸:C10:0、C12:0、C14:0、C15:0、C16:0和C18:0,指示了筼筜湖沉积物中微藻对沉积物的贡献;使用酚氯仿抽提沉积物中菌体总DNA,以341F和517R为引物,对16SrDNA基因片段进行PCR扩增,可得到长度为200 bp的DNA片段,通过DGGE进行生物多样性分析,基本把握筼筜湖各站位的微生物群落多样性。
     (2)选择合适的复合菌剂,在实验室进行生物修复筼筜湖污染水体的初步探索,以期有效的改变水质状况,为实现对筼筜湖的治理提供基础数据。试验结果表明,复合菌剂修复筼筜湖污染水体的试验中保持微量曝气,维持水体中的溶解氧在5~6 mg/L,有利于生物修复过程;在相同的试验条件下,对比投加CB菌剂和EM菌剂对筼筜湖污染水体的修复效果,发现EM菌剂有较大降解有机物的潜力,修复污染水体的综合效果较佳;采用特定的培养基复壮EM原液,得到富集光合菌、酵母菌、乳酸菌和放线菌四种有益微生物菌的最佳培养条件;对EM富集菌剂不同投加量的效果进行试验,结果发现,投加0.8 mL富集菌液(四种优势菌群按1:1:1:1的比例混合)的试验组修复污染水体具有显著效果,试验期间水体中化学需氧量、总氮和总磷分别降低了39.56%、66.98%和68.42%;水体的污染情况对生物修复的效果有影响:EM菌剂对高污染水体的化学需氧量降解效果优于低浓度污染水体,且对高污染水体化学需氧量的去除周期较短。
With the acceleration of urbanization and the improvement of industrialization process,the level of pollution in urban lakes is more and more serious and the waters are in eutrophic state.The eutrophication of water environment seriously restricts the city's economic sustainable development and has effect on the resident life quality. Bioremediation is a new technology which has many advantages such as low investment,high efficiency and no secondary pollution.Now the technology has been successfully applied to the fields of wastewater treatment,agriculture,animal husbandry,aquaculture and environmental protection.
     This study is focused on the pollutant level of sediments after 20 years continuous rehabilitation in Yundang Lagoon and bioremediation of the polluted water by direct adding different kind of mixed microorganisms.Main work and results are as follows:
     (1) Different techniques such as Inductively Coupled Plasma Mass Spectrometry, Gas Chromatography and elemental analysis were employed to characterize the heavy metals,nitrogen,sulfur and organic matter in the sediment of Yundang Lagoon. Polymerase Chain Reaction--Denaturing Gradient Gel Electrophoresis(PCR- DGGE) analysis of 16S rDNA genes was carried out in order to determine the microbial diversity of Yundang Lagoon.The results show that the pollution in Yundang Lagoon was moderate and the ranking of heavy metals followed the order:As>Ni>Pb>Cu>Cr>Zn.The contents of TN,TC,TOC and TS from surface sediments of Yundang Lagoon were the highest and the distribution of the stations were as follows:S2>S3>S1>S4.The total content of sixteen PAHs from four stations of Yundang Lagoon followed the order:S2>S3>SI>S4,and mainly came from incomplete combustion of fuels such as gasoline,diesel and coal.n-Alkanes were mainly distributed in the nC_(22)-nC_(30) and mainly from aquatic plants and land-based plants.Fatty acid from four stations contained the following:C10:0,C12:0,C14:0,C15:0,C16:0 and C18:0, indicating the contribution of microalgae to the sediments.Total DNA was extracted from sediments with the Phenol-Chloroform Extraction method,and the V3 variable region of 16S rDNA gene was PCR-amplified.DNA fragments of 200 bp were obtained as PCR products.DGGE analysis of 16S rDNA genes showed that the community diversity was abundant in different stations of Yundang Lagoon.
     (2) Bioremediation of real wastewater from Yundang Lagoon was carried out by direct adding different kind of effective microorganisms(EM) in order to change water quality effectively and provide the basic data for rehabilitation.The results show that maintaining dissolved oxgen at 5-6 mg/L by gentle aeration was effective to bioremediation process.EM were more capable of degrading organic matter than CB and had combined effect on bioremediation of polluted water.The enrichment of EM showed that four predominant microorganisms(photosynthetic bacteria,yeast, lactobacillus and actinomycete) could be cultivated by different methods.Change of the dosage of microorganisms in EM would influence the effect of bioremediation. The optimal adding dosage was 0.8 mL enriched bacteria(four predominant microorganisms in accordance with the proportion of 1:1:1:1).The removal rates of COD_(Mn),TN and TP were 39.56%,66.98%and 68.42%during the experiment, respectively.The concentration of pollutants in water also influenced the effect of bioremediation.COD degradation rate was increased and the removal time of COD was shorter during the treatment of higher polluted water bodies by EM.
引文
[l]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [2]D'Angelo E.M.,Reddy K.R.Diagenesis of organic matter in a wetland receiving hypereutrophic lake water:I.Distribution of dissolved nutrients in the soil and water column[J].J.Environ.Qual.,1994,23:928-936.
    [3]庄峙厦,洪华生,张路平,等.香港维多利亚港沉积物Cu、Pb、Cd地各地球化学相中的分布特征[J].厦门大学学报(自然科学版),1994,33(6):832-837.
    [4]Calmano W.,Hong J.,Foerstner U.Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential[J].Water Sci.Technol.,1993,28:223-235.
    [5]黄铭洪.环境污染与生态恢复[M].北京:科学出版社,2003.
    [6]Akcay H.,Oguz A.,Karapire C.Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments[J].Water Res.,2003,37:813-822.
    [7]刘红磊,李立青,尹澄清.人为活动对城市湖泊沉积物重金属污染的影响—以武汉墨水湖为例[J].生态毒理学报,2007,2(3):346-351.
    [8]李玉,俞志明,宋秀贤.运用主成分分忻(PCA)评价海洋沉积物中重金属污染米源[J].环境科学,2006,27(1):137-141.
    [9]朱伟,边博,阮爱尔.镇江城市道路沉积物中重金属污染的来源分析[J].环境科学,2007,28(7):1584-1589.
    [10]江锦花,江正玲,陈希方,等.椒江口海域重金属含量分布及在沉积物和生物体中的富集[J].海洋环境科学,2007,26(1):58-62,
    [11]王晓丽,孙耀,张少娜,等.牡蛎对重金属生物富集动力学特性研究[J].生态学报,2004,24(5):1086-1090.
    [12]李学鹏,励建荣,段青源,等.泥蚶对重金属铜、铅、镉的生物富集动力学[J].水产学报,2008,32(4):592-600.
    [13]Ure A.M.,Davidson C.M.Chemical speciation in the environment:Chemical speciation in soils and related materials by selective chemical extraction[M].Oxford:Blackwell Scientific Publications,2002.
    [14]Peltier E.,Dahl A.L.,Gaillard J.F.Metal speciation in anoxic sediments:when sulfides can be construed as oxides[J]. Environ. Sci. Technol., 2005, 39: 311-316.
    [15] Lamer B. L., Seen A. J., Palmer A. S., et al. A study of metal and metalloid contaminant availability in Antarctic marine sediments[J]. Chemosphere, 2007, 67:1967-1974.
    [16] Davidson C. M. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments[J]. Anal. Chim. Acta, 1994,291: 277-286.
    [17] Rapin F., Tessier A., Campbel P. G. C., et al. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure[J]. Environ. Sci. Technol., 1986, 20: 836-840.
    [18] Ure A. M, Quevauviller P. H., Muntau H., et al. Speciation of heavy metals in soils and sediments: An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities[J]. Int. J. Environ. An. Ch., 1993, 51: 135-151.
    [19] Quevauviller P., Rauret G., L(?)pez-S(?)nchez J. F., et al. Muntau, Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. Sci. Total Environ., 1997, 205: 223-234.
    [20] Filgueiras A. V., Lavilla I., Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study[J]. Sci. Total Environ., 2004, 330: 115-129.
    [21] Tokalioglu S., Kartal S., Elci L. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure[J]. Anal. Chim. Acta., 2002,413: 33-40.
    [22] Tessier A., Campbell P. G. C., Bisson M., et al. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal. Chem., 1979, 51(7): 884-851.
    [23] Rauret G., L(?)pez-S(?)nchez J. F., Sahuquillo A. Improvement of the BCR three step sequential extraction procedure prior to the certification of the new sediment and soil reference materials[J]. J. Environ. Monitor, 1999, 1: 57-61.
    [24] Sahuquillo A., Rigol A., Rauret G. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments[J]. TRAC-Tread Anal. Chem., 2003,22: 152-159.
    [25]P(?)rez M.,Usero J.,Gracia I.,et al.Trace metals in sediments from the Ria de Huelva[J].Toxicol.Environ.Chem.,1991,31:275-283.
    [26]Arain M.B.,Kazi T.G.,Jamali M.K.,et al.Time saving modified BCR sequential extraction procedure for the fraction of Cd,Cr,Cu,Ni,Pb and Zn in sediment samples of polluted lake[J].J.Hazard.Mater.,2008,160:235-239.
    [27]Mossop K.F.,Davidson C.M.Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper,iron,lead,manganese and zinc in soils and sediments[J].Anal.Chim.Acta.,2003,478:111-118.
    [28]Hakanson L.An ecological risk index for aquatic pollution control,a sedimentological approach[J].Water Res.,1980,14(8):975-1001.
    [29]马德毅,王菊英.中国主要河口积物污染及潜在生态风险评价[J].中国环境科学,2003,23(5):521-531.
    [30]范文宏,张博,张融.锦州湾沉积物中重金属特征及其潜在生态风险[J].海洋环境科学,2008,27(1):54-58.
    [31]Pertsemli E.,Voutsa D.Distribution of heavy metals in lakes Doirani and Kerkini,northern Greece[J].J.Hazard.Mater.,2007,148:529-537.
    [32]Olivares-Rieumont S.,Rosa D.D.L.,Lima L.,et al.Assessment of heavy metal levels in Almendares River sediments-Havana City,Cuba[J].Water Res.,2005,39(16):3945-3953.
    [33]刘恩峰,沈吉,朱育新.重金属元素BCR提取法及在太湖沉积物研究中的应用[J].环境科学研究,2005,18(2):57-60.
    [34]王海,王春霞,王子健,等.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435.
    [35]张朝生,王立军,章中.长江中下游河流沉积物和悬浮物中金属元素的形态特征[J].中国环境科学,1995,15(5):342-347.
    [36]陈静生,王飞越,宋吉杰,等.中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J].1996,15(1):10-16.
    [37]彭近新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社,1988,78-84.[38]Smith S.V.,Serruya S.,Geifman Y.,et al.Internal sources and sinks of water:P,N,Ca,and Clin Lake Kinneret,Israel[J].Limnol.Oceanogr.,1989,34(7):1202-1213.
    [39]吴丰昌,万国江,黄荣贵.湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应Ⅰ.界面氮循环及其环境效应[J].矿物学报,1996,16(4):403-409.
    [40]万国江,白占国,王浩然,等.洱海近代沉积物中碳-氮-硫-磷的地球化学记录[J].地球化学,2000,29(2):189-197.
    [41]万国江.环境质量的地球化学原理[M].北京:中国环境科学出版社,1988,1-216.
    [42]翟滨.象山港表层沉积物中氮和磷的分布特征、影响因素及其污染评价[D].中国海洋大学硕士学位论文,2006.
    [43]段水旺,章申,陈喜保.长江下游氮、磷含量变化及其输送量的估计[J].环境科学,2000,21(1):53-56.
    [44]翁焕新,陈立红,楼竹山,等.沿海沉积营养物质对引发赤潮的潜在影响[J].浙江大学学报(理学版),2004,31(5):595-600.
    [45]贾国东,彭平安,傅家谟.珠江口近百年来富营养化加剧的沉积记录[J].第四纪研究,2002,22(2):158-165.
    [46]张秀梅,梁涛,耿元波.河口、海湾沉积磷在全球变化区域响应研究中的意义[J].地理科学进展,2001,20(2):161-168.
    [47]孙惠民.乌梁素海富营养化及其机制研究[D].内蒙古大学生命科学学院博士学位论文,2006.
    [48]Bianchan T.S.,EngelhauPt E.,Westman P,et al.Cyanobacterial blooms in the Baltie Sea:Natural or human-induce[J].Limnoi.Oceanogr.,2002,45:716-726.
    [49]陈水勇.水体富营养化的形成、危害和防治[J].环境科学与技术,1999,(2):11-15.
    [50]刘沛然,黄先玉,柯栋.赤潮成因及预报方法[J].海洋预报,1999,16(4):46-51.
    [51]洪华生,丁原红,洪丽玉,等.我国海岸带生态环境问题及其调控对策[J].环境污染治理技术与设备,2003,4(1):89-94.
    [52]钱凯先.国内外湖泊富营养化研究及对策[J].环境科学,1988,9(2):59-63.
    [53]Pauer J.J.,Anstead A.M.,Melendez W.,et al.The lake Michigan Eutrophication Model,LM3-Eutro:model development and calibration[J].Water Environ.Res.,2008,80(9):853-861.
    [54]Katsuki K.,Miyamoto Y.,Yamada K.,et al.Eutrophication-induced changes in lake Nakaumi,southwest Japan[J].J.Paleolimnol.,2008,40(4):1115-1125.
    [55]Murphy A.E.,Sageman B.B.,Hollander D.J.Eutrophication by decoupling of the marine biogeochemical cycles of C,N,and P:A mechanism for the Late Devonian mass extinction[J].J.Geol.,2000,28(5):427-430.
    [56]Wu J.L.,Huang C.M.,Zeng H.,et al.Sedimentary evidence for recent eutrophication in the northern basin of Lake Taihu,China:human impacts on a large shallow lake[J].J.Paleoliminol.,2007,38(1):13-23.
    [57]刘玉生.滇池富营养化及其综合治理技术研究[M].北京:海洋出版社,2004.
    [58]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [59]龚应安,胡秀琳.湖泊富营养化防治的研究现状与展望[J].北京水利,2005,6:4-5.
    [60]徐旌.“富营养化湖泊治理及湖泊管理昆明国际讨论会”综述[J].云南地理环境研究,2002,14(2):94-98.
    [61]刘建华,祁士华,张干,等.湖北梁子湖沉积物正构烷烃与多环芳烃对环境变迁的记录[J].地球化学,2004,33(5):501-506.
    [62]褚宏大.东海赤潮高发区沉积物中正构烷烃、脂肪酸的组成与分布[D].中国海洋大学硕士学位论文,2007.
    [63]Baird C.Environmental Chemistry[M].New York:W.H.Freeman and Company,1995,276-278.
    [64]Stegeman J.J.,Lech J.J.Cytochrome P-450 monooxygenase system in aquatic species:Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J].Environ.Health Persp.,1991,90:101-109.
    [65]Bastiaens L.,Springael D.,Wattiau P.,et al.Isolation of adherent plycaclic aromatic hydrocarbons(PAHs)-degrading bacteria using PAH-sorbing carriers[J].Appl.Envion.Microbiol.,2000,66(5):1834-1843.
    [66]罗世霞.红枫湖水体和沉积物中有机污染物--多环芳烃的污染现状及源解析研究[D].贵州师范大学硕士学位论文,2005.
    [67]Camacho-Ibar V.F.,Aveytua-Alcazar L.,Carriquiry J.D.Fatty acid reactivities in sediment cores from the northern Gulf of California[J].Org.Geochem.,2003,34(3):425-439.
    [68]Qu W.C.,Dickman M.,Wang S.M.,et al.Lake typology based on the use of lake sediment alkanes in the east and west basins of Taihu Lake,China[J].Hydrobiologia,1998,364:219-223.
    [69]吴莹,张经,于志刚.渤海柱状沉积物中烃类化合物的分布[J].北京大学学报(自然科 学版),2001,37(2):273-277.
    [70]杨敏,倪余文,苏凡,等.辽河沉积物中多环芳烃的污染水平与特征[J].环境化学,2007,26(3):217-220.
    [71]姚书春,沈吉.巢湖沉积物柱样中正构烷烃初探[J].湖泊科学,2003,15(3):200-204.
    [72]张枝焕,陶澍,吴水平,等.天津地区河流沉积物中中等分子量正构烷烃的分布特征[J].2007,25(4):632-639.
    [73]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999.
    [74]Alexander M.Biodegradation and bioremediation[M].California:Academic Press,1999.
    [75]徐桦.生物修复技术简介[J].环境保护,2000,12:17-17.
    [76]胡庆昊.有效微生物修复城市污染水体的试验研究[D].河海大学硕士学位论文,2003.
    [77]夏北成.环境污染物生物降解[M].北京:化学工业出版社,2003.
    [78]罗义,毛大庆.生物修复概述及国内外研究进展[J].2003,30(4):298-302.
    [79]Mohn w.w.,Radziminski C.Z.,Fortin M.C.On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles[J].Appi.Microbiol.Biotechnol.,2001,57(1-2):242-247.
    [80]顾宗镰.中国富营养化湖泊的生物修复[J].农村生态环境,2002,18(1):42-45.
    [81]卫明,冯坤范,赵政,等.应用微生物技术对城市黑臭河道实施生态修复的试验研究[J].上海水务,2006,22(1):19-21.
    [82]Melloni R.,Duarte K.M.R.,Carcoso E.J.B.N.Influence of compost and / or effective microorganisms on the growth of cucumber and on the incidence of fusarium wilt[J].Summa Phytopathol.,1995,21(1):21-24.
    [83]Khaliq A.,Abbasi M.K.,Hussain T.Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms(EM) on seed cotton yield in Pakistan[J].Bioresource Technol.,2006,97:967-972.
    [84]宋昆衡.EM生物技术处理污水[J].给水排水,1995,21(3):17-18.
    [85]杨艳红,王伯初,时兰春,等.复合微生物制剂的综合利用研究进展[J].重庆大学学报2003,26(6):81-85.
    [86]朱雪诞.用EM菌处理高浓度污废水的试验研究[D].河海大学硕士学位论文,2001.
    [87]Jin M.,Wang X.W.,Gong T.S.,et al.A novel membrane bioreactor enhanced by effective microorganisms for the treatment of domestic wastewater[J].Appl.Microbiol.Biot.,2005, 69(2):229-235.
    [88]李雪梅,杨中艺,简曙光,等.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报(自然科学版),2000,39(1):81-85.
    [89]熊小京,曹晓婷.EM菌在污水生物处理工艺中的应用[J].环境卫生工程,2007,15(3):11-14.
    [90]王永科,穆军,呼世斌.利用EM菌处理皂素生产废水的试验研究[J].西北农业学报,2006,15(3):220-222.
    [91]吴荣芳,陈克局,解清杰,等.EM技术处理废水的研究进展[J].武汉科技学院学报,2006,19(7):38-40.
    [92]李捍东,王庆生,张国宁,等.优势复合菌群用于城市生活污水净化新技术的研究[J].环境科学研究,2000,13(5):14-16.
    [93]卢吕义.从筼筜港剑筼筜湖[M].厦门:厦门大学出版社,2003.
    [94]谢小青.厦门市筼筜湖综合治理工程介绍[J].厦门科技,2003,5:30-31.
    [95]陈斌.厦门筼筜湖搞活水体新途径[J].厦门科技,2003,6:32-36.
    [96]王艳艳.筼筜湖底泥疏挖及处置技术[J].厦门科技,2003,5:27-29.
    [97]阮金山.厦门筼筜湖水产生物体内重金属含量及评价[J].海洋通报,2006,84-89.
    [98]欧寿铭.厦门港和筼筜湖沉积物中多溴联苯醚类防火剂(PBDEs)的色谱-质谱联机同位素稀释法测定[J].福建分析测试,2006,1-3.
    [99]李秀珠.筼筜湖沉积物质量调查与评价[J].福建水产,2004,24-28.
    [100]欧寿铭,潘荔卿,郑金树.仿生人工贻贝在筼筜湖海水石油烃污染监测上的应用[J].台湾海峡,1999,273-277.
    [101]弥儿.筼筜湖太臭了[E].http://bbs.xmfish.com/viewthread.php?tid=2477314&highlight =%B90%B9Y%BA%FE.2009-3-22.
    [102]国家海洋局.海洋监测规范[M].,北京:海洋出版社,1991.
    [103]王爱军,陈坚,李东义,等.泉州湾海岸湿地沉积物C、N的空间变化[J].环境科学,2007,28(10):2361-2368.
    [104]谷体华.泉州湾表层海水及沉积物对多环芳烃潜在降解活性的研究[D].厦门大学硕士学位论文,2006.
    [105]杨春霖,欧阳通,张珞平,等.厦门西海域表层沉积物中重金属的赋存形态[J].厦门大学学报(自然科学版),2007,46(1):89-93.
    [106]GB 18668-2002,海洋沉积物质量[S].中国:中国国家标准化管理委员会,2002.
    [107]GB/T 18407.4-2001,农产品安全质量无公害水产品产地环境要求[S].中国:中国国家标准化管理委员会,2001.
    [108]Liu E.F.,Shen J.,Liu X.Q.Geochemical features of heavy metals in core sediment s of northwestern Taihu Lake,China[J].Chinese J.Geochem.,2005,24(1):73-81.
    [109]徐争启,倪师军,庹先国,等.火焰原子吸收光谱法分析沉积物中重金属元素的形态[J].分析试验室,2006,25(4):1-4.
    [110]Li X.D.,Shen Z.G,Wai O.W.,et al.Chemical forms of Pb,Zn and Cu in the sediment profiles of the Pearl River Estuary[J].Mar.Pollut.Bull.,2001,42(3):215-223.
    [111]徐争启,倪师军,庹先国,等.火焰原子吸收光谱法分析沉积物中重金属元素的形态[J].分析试验室,2006,25(4):1-4.
    [112]Ramos L.,Gonalez M.J.,Hernandez L.M.Sequential extraction of copper,lead,cadmium,and zinc in sediments from Ebro River(Spain):Relationship with levels detected in earth-worms[J].B.Environ.Contam.Tox.,1999,63:301-308.
    [113]范文宏,张博,张融.锦州湾沉积物中重金属形态特征及其潜在生态风险[J].海洋环境科学,2008,27(1):54-58.
    [114]F(O|¨)rstner U.,Wittmann G.T.W.Metal pollution in the aquatic environment[M].Berlin:Springer-Verlag,1983.
    [115]Chester R.Marine Geochemisty[M].London:Unwin Hymn,1990.
    [116]Seideman D.E.Metal pollution in sediment of Jamaica Bay,New York,USA—An urban estuary[J].Environ.Manage.,1991,15:73-81.
    [117]Gavriil A.M.,Angelidis M.O.Metal and organic carbon distribution in water column of a shallow enclosed Bay at the Aegean Sea Archipelago:Kalloni Bay,isled of Lesvos,Greece[J].Estuar.Coast.Shelf S.,2005,64:200-210.
    [118]Meyers E A.,Ishiwatari R.Lacustrine organic geochemistry:an overview of indicators of organic matter sources and diagenesisin lake sediments[J].Org.Geochem.,1993,20:867-900.
    [119]Meyer P.A.Organic geochemical proxies of paleoceanographic,paleolimnologic,and paleoclimatic processes[J].Org.Geochem.,1997,27:213-250.
    [120]袁旭音,刘红樱,王爱华,等.江苏沿海港口沉积物的营养元素及成因分析[J].资源调 查与环境,2004,25(3):197-202.
    [121]付金沐,刘敏,侯立军,等.长江口滨岸排污活动对潮滩营养盐环境地球化学过程的影响[J].环境科学,2007,28(2):315-321.
    [122]Sicre M.A.,Marty J.C.,Saliot A.Alphatic and aromatic hydrocarbons in the different sized aerosols over the Mediterranean Sea:occurrence and origin[J].Atmos.Environ.,1987,181:265-278.
    [123]Budzinski H.,Jones I.,Bellocq J.Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary[J].Mar.Chem.,1997,58:85-97.
    [124]Soclo H.H.,Garrigues E H.,Ewald M.Origin of polycyclic aromatic hydrocarbons(PAHs)in coastal marine sediments:case studies in Cotonou(Benin) and Aquitaine(France) areas[J].Mar.Pollut.Bull.,2000,40:387-396.
    [125]Gschwend P.M.,Hites R.A.Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States[J].Geochim.Cosmochim.Ac.,1981,45:2359-2367.
    [126]Yang S.Y.N.,Connell D.W.,Hawker D.W.Polycyclic aromatic hydrocarbons in air,soil and vegetation in the vicinity of an urban roadway[J].Sci.Total Environ.,1991,102:229-240.
    [127]Ficken K.J.,Li B.,Swain D.L.,et al.An n-alkane proxy for the sedimentary inputs of submerged/floating fresh water aquatic macrophytes[J].Org.Geochem.,2000,31:745-749.
    [128]Mead R.,Xu Y.,Chong J.,et al.Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J].Org.Geochem.,2005,36:363-370.
    [129]Cranwell P.A.,Eglinton G.,Robinson N.Lipids of aquatic organisms as potential contributors to lacustrine sediment--Ⅱ[J].Org.Geochem.,1987,11:513-527.
    [130]Eglinton G.,Hamilton R.J.Leaf epicuticular waxes[J].Set.,1967,156:1322-1335.
    [131]Steinhauer M.S.,Boehm P.D.The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediments,river sediments,and coastal peat of Alaskan Beaufort Sea:mplications for detecting anthropogenic hydrocarbon inputs[J].Mar.Environ.Res.,1992,33:223-253.
    [132]Readman J.W.,Fillmann G.,Tolosa I.,et al.Petroleum and PAH contamination of the Black Sea[J].Mar.Pollut.Bull.,2002,44:48-62.
    [133]Francisco J.G.V.,Oliva E,Tomasz B.,et al.Biomarker patterns in a time- resolved holocene/terminal Pleistocene sedimentary sequence from the Guadiana river area(SW Portugal/Spain border)[J].Org.Geochem.,2003,34:1601-1613.
    [134]Cranwell E A.The stereoehemistry of 2-and 3-hydroxy fatty acids in a recent lacustrine sediment[J].Geochim.Cosmochim.Ac.,1981,45:547-552.
    [135]Volkman J.K.,Jerey S.W.,Rogers G.I.Fatty acid and lipid composition of 10 species of microalgae used in mariculture[J].J.Exp.Mar.Biol.Ecol.,1989,128:219-240.
    [136]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学技术出版社,2002.
    [137]朱亮,金贤.复合菌群选择培养试验研究[J].河海大学学报(自然科学版),2004,32(6):632-635.
    [138]邵青.EM对生活污水中常见污染物的去除效果[J].中国给水排水,2001,17(3):74-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700