用户名: 密码: 验证码:
高性能激光加工控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光加工是利用高能量密度的激光束在物质表面产生光化学效应或使表层物质蒸发的先进加工技术,由于具有非接触、工件无变形、切缝质量好、加工速度快、容易与数控技术结合等诸多特点,已广泛地应用于汽车、航空、化工、轻工、电器与电子、石油和冶金等工业部门。
     高性能的运动控制是提高数控系统加工精度和加工效率的前提。对于激光加工数控系统来说,高精度、高灵敏度的激光功率控制以及激光功率与运动的精确同步控制对提高加工精度和加工效率也具有重要的作用。复杂轨迹的插补是高速高精运动控制的核心问题和热点问题,因而得到了大量的研究,但仍然存在速度波动较大、速度曲线不光滑,存在非常大的加加速度等不足,从而降低了系统的动态性能,难以实现高精度与高速度的统一。
     为了实现高性能的激光加工控制,研究并开发了连续小线段和NURBS(非均匀有理B样条)曲率适应前瞻插补算法,闭合NURBS轮廓的激光清扫算法,高精度的激光功率控制算法以及激光功率与运动的精确同步控制算法。并且在上述算法的基础上,实现了面向激光加工领域的高性能激光控制系统。主要研究内容和研究成果如下:
     1)针对由连续小线段描述的复杂轨迹,提出了一种曲率适应前瞻插补算法。研究了复杂连续小线段轨迹的曲率变化描述方法,并在此基础上优化了小线段衔接点速度,以使得速度跟随曲率变化。并且在能量最小原理约束下,研究了小线段轨迹三次样条插值处理,生成了多项式三次样条曲线。该样条曲线插补计算简单、速度曲线连续光滑、加加速度受限,既可保证加工精度又提高了加工效率。
     2)针对由NURBS描述的复杂轨迹,提出了一种曲率适应前瞻插补算法。研究了复杂曲线轨迹的曲率变化描述方法,并在此基础上进行了NURBS曲线的速度规划,以使得速度跟随曲率变化,而且速度曲线连续光滑,加加速度受限,从而既保证了加工精度又提高了加工效率。采用二阶泰勒展开建立参变量求解函数,不仅简单化了算法计算、截断误差小,而且使得加工速度曲线匹配规划的速度曲线。
     3)针对由NURBS描述的闭合轮廓,研究了高速、高精的激光清扫算法。建立了有理多项式形式的NURBS表达式,解决了迭代形式定义难以进行清扫计算的问题,从而实现了激光启闭控制点计算、激光启闭延时补偿、激光清扫路径生成、实时激光启闭控制等功能,实现了复杂NURBS闭合轮廓的高速、高精激光清扫加工。
     4)研究了高精度的激光功率控制算法以及激光功率与运动的精确同步控制算法。在分析材料激光加工特性和激光器功率控制特性的基础上,采用分段线性近似的方法建立了材料切割质量与激光能量密度以及激光器输出功率与控制信号间的定量描述。设计开发了激光功率闭环控制算法,保证了高精度的激光功率输出;研究了激光功率与运动的关系,在插补周期内同步更新激光功率与运动位置,实现了激光功率与运动的精确同步。
     5)在分析多种激光加工设备对控制系统需求的基础上,开发了面向激光加工领域的控制系统。控制系统的硬件具有可配置、可重构的特点,支持在不改变硬件电路的前提下对硬件功能,特别是控制接口进行重新定义。控制系统软件具有模块化、可配置的特点,各功能单元抽象为具有互操作性和可互换性的软件模块。由于该控制系统的软、硬件均具有较高的可配置性,所以能够针对不同的激光加工设备,实现快速的客户化定制。
     高性能激光加工控制若干关键技术的研究与突破,有利于提高激光加设备性能,提高加工质量和加工效率,提升行业竞争力,具有良好的经济效益和社会效益。
Laser processing is a kind of advanced processing technology which causes photochemicaleffect on the material surface or evaporates surface material with high-energy density laserbeam. The laser processing has been widely used in many industrial areas such as automotive,aerospace, chemical, light industry, electrical and electronics, oil and metallurgical industriesbecause of its many advantages such as no mechanical contact between work piece and tools,no deformation suffered by work piece, fine machining quality, high machining speed, easilyintegrated with numerical control technology.
     High-performance motion control is the prerequisites to improve the accuracy andefficiency of CNC system. For laser processing CNC system, the high-precision andhigh-sensitivity laser power control and accurate synchronization control between laser powerand motion plays an important role in improving the accuracy and efficiency. Theinterpolation of complex trajectory interpolation is the core issues and hot issues of highspeed and high precision motion control, which received a great deal of research. However,there are still drawbacks such as the feedrate is fluctuant, the feedrate profile is not smoothand the jerk is terribly high, which reduces the system's dynamic performance and it isdifficult to achieve high precision as well as high-speed machining.
     To realize high-performance control of laser processing, curvature-adaptive look-aheadinterpolation schemes for CSLB (Continuous Small Line Blocks) and NURBS (Non-uniformRational B-Spline) are developed. In addition, three schemes are developed specially for thelaser processing applications, which are laser scan of closed NURBS contour, high precisionlaser power control scheme, as well as accurate synchronization control between laser powerand motion. Based on the above-mentioned schemes, a high-speed and high-precision flexiblemotion controller was developed for the field of laser processing. Main research contents andresearch results are as follows:
     1) Curvature-adaptive look-ahead interpolation scheme is developed for the complextrajectory expressed as CSLB. The curvature variation of complex CSLB trajectory isdescribed based on which feedrate of turning points is optimized. The turning feedratechanges following the curvature variation, that is, turning feedrate is high in low curvaturesections and low in high curvature sections. Under the constraint of Energy MinimizationPrinciple, the CSLB trajectory is cube fit into cube spline. The cube spline is continuous andsmooth, and it approaches to the original trajectory more closely than the CSLB trajectory.The cube spline is a third degree polynomial, so the interpolation calculation is easy to perform and the feedrate profile is smooth, the acceleration profile is continuous, which helpsto guarantee the accuracy meanwhile improve the efficiency.
     2) Curvature-adaptive look-ahead interpolation scheme is developed for the complextrajectory expressed as NURBS. The curvature variation of complex curve trajectory isdescribed based on which feedrate planning is performed. The feedrate changes following thecurvature variation, that is, turning feedrate is high in low curvature sections and low in highcurvature sections. The feedrate profile is smooth, the acceleration profile is continuous andthe jerk is limited, which helps to guarantee the accuracy meanwhile improve the efficiency.The function to calculate the parametric variable is formed with second-degree Taylorexpansion, which simplifies the interpolation calculation, minimizes the truncation error andthe generated feedrate profile matches the planned feedrate profile.
     3) High-speed and high-precision laser scan scheme is developed for the closed NURBScontour. An explicit rational polynomial NURBS expression is derived from the recurrencedefinition, based on which four essential modules involved are realized, namely calculatingintersection points of the scan line and the NURBS contour, compensating on-off delay,generating motion path, and real-time on-off control of laser. The laser scan of complexclosed NURBS contour fills the gaps at home and abroad.
     4) Laser power control scheme, as well as synchronization control between laser powerand motion scheme are developed. In laser processing, the constant laser energy density is animportant factor in guaranteeing the quality, which requires not only high-precision laserpower control, but also that laser power follows the processing speed by a constant rate ofchange in sync. With the analysis of material characteristic on laser processing and laserpower control features, the piecewise-linear approximation method is used to establish thequantitative between the material cutting quality and laser energy density as well as betweenlaser output power and control signals Then the closed-loop laser power control algorithm isdeveloped, ensuring high-precision laser power output. In addition, the relationship betweenlaser power and motion is studied and the laser power and motion position are renewedsynchronously in each interpolation cycle, which achieves the precise synchronization controlbetween the laser power and motion.
     5) The control requirements of a variety of laser processing equipment are analyzedbased on which the controller is developed for the field of laser processing. The hardware ofthe controller is configurable and reconfigurable. The hardware functions, in particular thecontrol interface can be redefined without changing the hardware circuitry. The software ofcontroller is modularized and configurable. All the functional units are abstracted into software modules with interoperability and interchangeability. Since the controller hardwareand software all have a high flexibility, rapid customization can be achieved for different laserprocessing equipment.
     Research and breakthrough of several key technologies of laser processing control helpsto improve performance of laser processing machine, to improve machining quality andmachining efficiency, to improve industrial competitiveness, which makes fine economic andsocial benefits.
引文
[1]王春生.透过数控机床展看激光切割机的快速发展世界制造技术及装备市场.2008,15(5):17-20.
    [2]陈苗海.中国激光加工产业现状和发展前景.激光与红外,2004,34(1):73-77.
    [3]邓树森.我国激光加工产业现状及市场展望.光机电信息,2007,(1):19-22.
    [4]卢飞星.激光加工在工业制造业中的市场分析.中国光学期刊网,2009,www.opticsjournal.net.
    [5]张师伟.激光数控加工系统的设计与优化.天津大学硕士学位论文,2007.
    [6]金冈优,付长德.最新的激光加工技术.电气制造.2007,(3):40-44.
    [7]邓家科.王中.朱付金.等.数控激光切割技术发展趋势与市场分析.中国光学期刊网,2009,www.opticsjournal.net.
    [8]陈根余,曹茂林,黄丰杰.三维激光切割的应用和研究.激光与光电子学进展,2007,44(3):38-42.
    [9]吴浩.激光振镜切割系统的研究与软件开发.华中科技大学硕士学位论文,2008.
    [10]李潇.大幅面激光振镜切割软件的研究与开发.华中科技大学硕士学位论文,2008.
    [11]石尚锋.高速激光切割机床数控系统研究.上海交通大学工学硕士学位论文,2008.
    [12]郭伟.基于ARM9的激光切割机控制技术研究.广东工业大学硕士学位论文,2008.
    [13]郭秋东.柔性精密激光切割机的关键技术研究.重庆大学硕士学位论文,2009.
    [14]汪绍荣,罗三强.基于FPGA的新型激光打标控制系统的设计.微计算机信息,2009,25(4-2):228-229.
    [15]田会峰.变色激光打标控制系统的设计与实现.自动化与仪表,2009(11):57-60.
    [16]张志强,王太勇.多轴模块化开放式激光切割机床数控系统软件开发.组合机床与自动化加工技术,2010(1):11-13.
    [17]张荣鑫.基于小波理论的船体NURBS曲线曲面光顺性研究.大连理工大学博士学位论文,2007.
    [18]田锡天.五次样条在数控加工中的全过程应用技术研究.西北工业大学博士学位论文,2003.
    [19]杨长祺.复杂曲面多轴加工的高精度、高效率数控编程系统研究.重庆大学博士学位论文,2004.
    [20]赵巍.数控系统的插补算法及加减速控制方法研究.天津大学博士学位论文,2004.
    [21]孟书云.高精度开放式数控系统曲线曲面插补关键技术.南京航空航天大学博士学位论文, 2006.
    [22]赵国勇.数控系统运动平滑处理、伺服控制及轮廓控制技术研究.大连理工大学博士学位论文, 2006.
    [23]张志强.数控系统参数曲线、曲面插补算法及加减速控制研究.天津大学博士学位论文, 2007.
    [24]任馄.高速数控加工的前瞻控制理论及关键技术研究.浙江大学博士学位论文,2008.
    [25]邵金均.实时前瞻的NURBS曲线插补.浙江工业大学硕士学位论文, 2009.
    [26]张莉彦.基于数据采样插补的加减速控制的研究.北京化工大学学报, 2002, 29(3):91-93.
    [27]许良元,桂贵生,彭丹丹.高速加工中加减速控制的研究.中国制造业信息化, 2005,32(2): 124-126.
    [28]刘楚辉,黄风立.高速高精加工中的加减速控制.煤矿机械, 2006, 27(4): 641-643.
    [29]许良元,江庆,刘微,等.激光雕刻机的加减速控制.机械工程师, 2007(6).
    [30]俞鸿斌,翁献进.基于高速加工的加减速控制方法研究及实现.组合机床与自动化加工技术, 2008(2): 50-54.
    [31]浦艳敏.关于数控系统加减速控制的研究.科学技术与工程2009, 9(22): 6782-6785.
    [32]侯艳艳,王洪君,王丽丽.三轴联动数控雕刻机加减速控制算法的研究.组合机床与自动化加工技术, 2006(7): 49-51.
    [33]陈书法,周建来,唐学飞.数控机床加减速控制算法及加工误差分析.机械制造,2003, 41(472): 16-17.
    [34]许良元.数控加工中加减速控制曲线的研究.机械工程师, 2006(9): 65-67.
    [35]张碧陶,高伟强,沈列,等.数控连续区域短轨迹代码加减速处理算法研究.机电工程技术, 2009, 38(1): 64-66.
    [36]付科.速度控制的前加减速控制算法研究.航空计算技术, 2008, 38(5): 29-32.
    [37] Kaan Erkorkmaz, Yusuf Altintas. High speed CNC system design. Part I: jerk limitedtrajectory generation and quintic spline interpolation. International Journal of Machine Tools& Manufacture, 2001, 41(11): 1324-1345.
    [38] Cao Yunan, Chen Youdong,Wei Hongxing, et al. The algorithm of former s-shapeacceleration/deceleration in cnc system. 8th International Conference on Progress ofMachining Technology, ICPMT2006, Matsue, Japan, 2006. Kagamiyama: HiroshimaUniversity, 2006: 165-168.
    [39]吴小洪,林晓新,曹占伦,等.三极管粘片机S曲线加减速控制.半导体技术,2008, 33(3): 197-199.
    [40]陈绪兵,熊蔡华,熊有伦. S曲线加减速模式下的加工轨迹效率评价.华中科技大学学报(自然科学版). 2008, 36(2): 1-4.
    [41]张碧陶,高伟强,沈列,等. S曲线加减速控制新算法的研究.机床与液压, 2009,37(10): 27-29.
    [42]李建伟,林浒,孙玉娥.基于S曲线加减速的NURBS实时插补前瞻控制方法.组合机床与自动化加工技术, 2009(11): 41-45.
    [43]李因鹏,王孙安.指数加减速的改进算法.机床与液压, 2006(11): 39-40.
    [44]李加文,陈宗雨,李从心.基于函数逼近的三角函数加减速方法.机床与液压,2006(3): 66-67, 8.
    [45]李立斌,赵文龙,高健.四次位移曲线加减速方法在CNC加工中的优势分析.机械设计与研究, 2009, 25(3): 75-78.
    [46]徐川,王永章,刘源.多项式加减速控制方法研究.组合机床与自动化加工技术,2009(9): 42-48.
    [47]李智国,李萍萍,刘继展,等.不同加减速控制算法的能耗分析与比较.农业机械学报2009, 40(8): 193-197.
    [48] Chen Chinsheng, Lee Anchen. Design of acceleration/deceleration profiles in motioncontrol based on digital FIR filters. International Journal of Machine Tools and Manufacture,1998, 38(7): 799-825.
    [49]于金刚,林浒,张晓辉,等.一种新型的Jerk连续加减速控制方法研究.组合机床与自动化加工技术, 2008(8): 61-64.
    [50] Leng Hongbin,Wu Yijie, Pan Xiaohong. Research on cubic polynomial acceleration anddeceleration control model for high speed NC machining. Journal of Zhejiang University:Science A, 2008, 9(3), 358-365.
    [51] Song Fang, Hao Shuanghui, Hao Minghui, Yang Zhimin. Research on acceleration anddeceleration control algorithm of NC instruction interpretations with high-order smooth.Lecture Notes in Computer Science, 2008, 5315(2): 548-557.
    [52] Shi Xuguang, Xu Bugong, Xie Wei, et al. Design and implementation of S-shapeacceleration/deceleration algorithm based on rounding error compensation tactic. 7thWorldCongress on Intelligent Control and Automation,WCICA'08, Chongqing, China, 2008.Piscataway: IEEE, 2008: 7912-7916.
    [53]刘凯,赵东标.参数曲线插补自适应加减速控制方法研究.小型微型计算机系统,2008, 29(4): 769-772.
    [54]刘凯,陆永华,赵东标.参数曲线自适应加减速控制方法在弧齿锥齿轮数控加工中的应用.机械工程学报, 2008, 45(12): 198-204.
    [55]Wan Daping,Wang ShiLong, Zhu Caichao, Meng Fanming. Feedrate scheduling and jerkcontrol algorithm for high-speed CNC machining. International Journal of ManufacturingTechnology and Management, 2009, 17(3): 216-231.
    [56]郝齐,关立文,王立平.重载混联机床智能加减速控制算法对驱动力的影响.清华大学学报(自然科学版), 2009, 49(11): 1770-1773.
    [57]叶佩青,赵慎良.微小直线段的连续插补控制算法研究.中国机械工程, 2004,15(15): 1354-1356.
    [58]钟庆,李季,黄树槐.快速成型中的微线段连续高速高精度插补.华中理工大学学报, 2000, 28 (3): 39-41.
    [59]徐志明,冯正进,汪永生,等.连续微小路径段的高速自适应前瞻插补算法.制造技术与机床, 2003 (12): 20-23.
    [60]王宇晗,肖凌剑,曾水生,等.小线段高速加工速度衔接数学模型.上海交通大学学报, 2004, 38(6): 901 - 904.
    [61]许海峰,王宇晗,李宇昊,等.小线段高速加工的速度模型研究和实现.机械工程师, 2005(4): 9-13.
    [62] Jun Hu, Lingjian Xiao, YuhanWang, et al. An optimal feedrate model and solutionalgorithm for a high-speed machine of short line blocks with look-ahead . Int J Adv ManufTechnol, 2006, 28 (9): 930–935.
    [63]梁文胜,王清阳,裴海龙.高速加工中小线段速度衔接控制新算法研究.机械设计与制造, 2009,(3): 62-64.
    [64]黄昕,李迪,李方,等.基于双向扫描算法的小线段速度规划.计算机集成制造系统, 2009, 15(11): 2188-2192.
    [65]彭芳瑜,李黎,陈徐兵,等.连续小直线段高速高精插补中的动力学约束条件.计算机辅助设计与图形学学报, 2006, 18(12): 1812-1816.
    [66]梁文胜,王清阳,装海龙.数控加工高柔性小线段链接算法的研究与实现.机床与液压, 2008, 36(12): 8-10.
    [67]叶伟,王小椿.一种小线段高速插补算法.南京理工大学学报(自然科学版), 2008,32(4): 443-448.
    [68] Luo Fuyuan, Zhou Yunfei, Yin Juan. A generalized acceleration and decelerationapproach for continuous small line blocks with look-ahead. Wuhan Ligong Daxue Xuebao,2006, 28(SUPPL. 1): 1052-1058.
    [69] Peiqing Ye, Chuan Shi, Kaiming Yang, Qiang Lv. Interpolation of continuous micro linesegment trajectories based on look-ahead algorithm in high-speed machining . Int J AdvManuf Technol, 2008, 37(9): 881–897.
    [70] Edi S, Ali I, Quan N. Advanced interpolation techniques for NC machines. Journal ofEngineering for Industry, 1993, 115(8): 329-336
    [71] Shpitalni M, Koren Y, Lo CC. Realtime curve interpolators. Computer Aided Design1994; 26(11):832–8.
    [72] YEH S S, HSU P L. The speed controlled interpolator for machining parametric curves.Computer Aided Design, 1999, 31(5): 34923571
    [73] Yeh SS, Hsu PL. Adaptive-feedrate interpolation for parametric curves with a confinedchord error. Computer Aided Design 2002, 34(3): 229–37.
    [74]Wang Tianmiao1, Cao Yunan, Chen Youdong. A new feedrate adaptation control NURBSinterpolation based on de Boor algorithm in CNC systems. 2008 American ControlConference ACC, SeattleWA United states, 2008. Piscataway United States: IEEE,2008:4075-4080.
    [75] Yong T, Narayanaswami R. A parametric interpolator with confined chord errors,acceleration and deceleration for NC machining. Computer Aided Design 2003; 35(13):1249–59.
    [76]孙玉娥,林浒,盖荣丽.基于速度平滑控制的高效非均匀有理B样条曲线插补算法.计算机集成制造系统, 2008, 14(11):2248-2252.
    [77] Liu Kai, Zhao Dong biao, Lu Yong hua. Nurbs curve interpolator with adaptiveacceleration-deceleration control. Transactions of Nanjing University of Aeronautics andAstronautics, 2008, 25(4):241-247.
    [78]李思益,罗为. NURBS曲线高速高精度插补及加减速控制方法研究.计算机集成制造系统, 2008, 14(6):1142-1147.
    [79] Nien Hao-Wei, Yau Hong-Tzong, Su Hsin-Chuan, et al. On acceleration/decelerationhybrid interpolation for multi-blocks of NURBS curves. 2008 IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics AIM 2008, Xi'an China, 2008. PiscatawayUnited States: IEEE, 2008: 910-915.
    [80] Feng J C;Wang Y H; Chen M,et al. Real-time NURBS interpolator with an optimal feedfor high-speed machining. CHINA-JAPAN International Conference on Ultra-PrecisionMachining CJICUPM2008, Changsha China, 2008.
    [81] Nam S H, Yang MY. A study on a generalized parametric interpolator with real-timejerk-limited acceleration. Computer-Aided Design 2004; 36(1): 27–36.
    [82] Park J, Nam S, Yang M. Development of a real-time trajectory generator for NURBSinterpolation based on the two-stage interpolation method. International Journal of AdvancedManufacturing Technology 2005; 26(4): 359–65.
    [83] Hu H., Zhang X T. An adaptive real-time NURBS interpolator for CNC machine tools.2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM 2009,Singapore, 2009. Piscataway United States: IEEE, 2009: 1980-1985.Clausthal-ZellerfeldGermany: Trans Tech Publications, 2009: 461-465.
    [84] Chen Liangji. A computer numerical controlled system with NURBS interpolator. 2009WRIWorld Congress on Computer Science and Information Engineering CSIE 2009, LosAngeles CA United states, 2009. Piscataway United States: IEEE Computer Society, 2009:216-219.
    [85] Zhang QG, Greenway RB. Development and implementation of a NURBS curve motioninterpolator. Robotics and Computer Integrated Manufacturing 1998; 14(1): 27–36.
    [86]杜道山,燕存良,李从.一种实时前瞻的自适应NURBS插补算法,上海交通大学学报, 2006, 40(5):843-847.
    [87] Zhang Xiaohui, Yu Dong, Hu Yi, et al. Development of a NURBS curve interpolator withlook-ahead control and feedrate filtering for CNC system. 2009 4th IEEE Conference onIndustrial Electronics and Applications CIEA 2009, Xi'an China, 2009. Piscataway UnitedStates: IEEE Computer Society, 2009: 2755-2759.
    [88]李霞,梁宏斌,邱长华.基于STEP NC的NURBS曲面插补技术的研究.计算机集成制造系统, 2008, 14(6):1136-1141.
    [89]柳宁,王高.改进的预估校正NURBS实时插补算.华南理工大学学报(自然科学版)2010, 38(1):119-123.
    [90] Tikhon M, Ko TJ, Lee SH, et al. NURBS interpolator for constant material removal ratein open NC machine tools. International Journal of Machine Tools and Manufacture2004;44(2):237–45.
    [91]徐宏,胡自化,张平,等.基于冗余误差控制的非均匀有理B样条曲线插补算法研究.计算机集成制造系统, 2007, 13(5):961-966.
    [92] Liu X, Ahmad F, Yamazaki K, Mori M. Adaptive interpolation scheme for NURBScurves with the integration of machining dynamics. International Journal of Machine Toolsand Manufacture 2005, 45(4–5): 433–44.
    [93]刘宇,赵波,戴丽,等.基于传动系统动力学的NURBS曲线插补算法.机械工程学报, 2009, 45(12):187-191.
    [94] Zhou Kai,Wang Guanjun, Jin Houzhong, et al. NURBS interpolation based onexponential smoothing forecasting. International Journal of Advanced ManufacturingTechnology, 2008, 39(11-12): 1190-1196.
    [95] Yeh Syh Shiuh, Sun Jin Tsu. NURBS interpolation for motion systems with actuatorsaturation Computer-Aided Design and Applications, 2008, 5( 6):801-810.
    [96] LeiWT,Wang S B. Robust real-time NURBS path interpolators. International Journal ofMachine Tools and Manufacture, 2009, 49(7-8): 625-633.
    [97] Chou J J,Yang D C H.On the generation of coordinated motion of five-axis CNC/CMMmachines. Journal of Engineering for Industry, Transactions of the ASME 1992, 114(1):15–22.
    [98]姚哲,冯景春,王宇晗.面向五轴加工的双NURBS曲线插补算法.上海交通大学学报, 2008, 42(2):235-238.
    [99] LiWei, Liu Yadong, Yamazaki Kazuo,et al. The design of a NURBS pre-interpolator forfive-axis machining. International Journal of Advanced Manufacturing Technology, 2008,36(9-10):927-935.
    [100]陈良骥,冯宪章.五轴NURBS插补中的速度前瞻控制方法.计算机集成制造系统, 2009, 15(12):2399-2404.
    [101]王文平,吴向东.激光打标中的图像处理技术.机电工程技术, 2004, 33 (08):30-31.
    [102]杨奎,王锡洁,孙丽媛,等.激光雕刻系统中矢量图形输出的研究.仪表技术,2008 (11): 59-60, 63.
    [103]秦应雄,唐霞辉,钟如涛,等.激光标刻的复杂区域填充算法.华中科技大学学报(自然科学版), 2006, 34(08): 59-61.
    [104]王成,曾晓雁.激光三维雕刻中扫描算法的研究.工程图学学报, 2007 (04): 45-49.
    [105]付星斗,王平江,唐小琦,等.基于焦点能量均衡的激光内雕刻路径优化.中国机械工程, 2008, 19(5): 598-602.
    [106] CHEN Ming-fei, CHEN Yu-pin, HSIAOWen-tse, et al. A scribing laser marking systemusing DSP controller . Optics and Lasers in Engineering, 2008, 46(5): 410-418.
    [107] CHEN Ming-fei, CHEN Yu-pin, HSIAOWen-tse, et al. Correction of field distortion oflaser marking systems using surface compensation function . Optics and Lasers inEngineering, 2009, 47(1): 84-89.
    [108]彭登峰.高功率CO2激光器功率实时检测与控制.武汉:华中科技大学物理电子学,2006.
    [109]黄涛,陈培锋,邓国华,等.激光切割数控系统激光功率控制研究.组合机床与自动化加工技术, 2004, 46(6): 20-23.
    [110] Doval Gandoy J, Pasandin R, Marcos J. High voltage power supply for rotary die lasercutting system. Cairns Australia: IEEE, 2002: 1177-1180.
    [111] Kramer Reinhard, Schwede Harald, Brandl Volker. Laser power measurement inindustrial environment. Jacksonville FL United States: Laser Institute of America,2003:51-58.
    [112] Kadlec Jaroslav, Vrba Radimír. Control system for precise power laser measurement.Sainte-Luce Martinique France: IEEE Computer Society, 2007:21-23.
    [113]徐路宁,张永康.激光切割工艺参数数据库的研究.电加工与模具, 2005, (2): 42-45.
    [114]彭行金,邓琦林,余民芳.激光切割工艺参数优化数据库系统.电加工与模具, 2007,(2): 38-40.
    [115] Toddy Schuett. A Closer look at look-ahead speed and accuracy benefits. CreativeTechnology Corporation, www.mmsonline.com/articles/ 39603html, 1996.
    [116] Piegl L, Tiller W, The NURBS Books, second ed., Berlin, Springer, 1997.
    [117] McNeel Company, What is NURBS? http://www.rhino3d.com/nurbs.htm, 2010.
    [118] Autodesk Company, Autodesk Maya,http://usa.autodesk.com/adsk/servlet/pc/index?id=13577897&siteID=123112, 2010.
    [119] Fan Sheng-jin, A new extracting formula and a new distinguishing means on the onevariable cubic equation, Nature Science Journal of Hainan Teachers College, 2(1989) 91-98.
    [120]董锋,陆雅娟.激光切割工艺及设备.CAD/CAM与制造业信息化, 2003, 10(4): 85-86.
    [121]胡兴军,刘向阳.激光切割的基本原理及新进展.苏南科技开发, 2004, 2(11): 42-43.
    [122]李钰,马继山.钣金件快速精确加工中的激光切割工艺分析.火箭推进, 2008, 34(4):43-47.
    [123]黄丰杰.车身覆盖件的三维激光切割工艺研究.长沙:湖南大学机械与汽车工程学院机械制造及其自动化, 2008.
    [124]谢小柱,胡伟.激光切割模切板的参数研究.机械工程师, 2008, 50(6): 25-26.
    [125]邓前松,唐霞辉,秦应雄,等.中厚钢板小圆孔的高功率CO2激光切割工艺研究.激光技术, 2008, 32(5): 554-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700