用户名: 密码: 验证码:
金川二矿区深部矿体开采效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,金川镍矿的矿岩稳定性差,地应力高,是国内外地下矿山开采难度最大的典型矿山之一。目前,金川二矿区1#矿体已下降至850m中段进行采矿活动,开采深度近1000m,正式步入深井开采矿山行列。时至今日,人们对二矿区1#矿体是适合采用两步骤采矿模式还是连续采矿模式进行开采的基本问题,仍然争论不休。无疑,进入深部采矿环境,矿山开采将面临更为复杂的技术难题。在系统调研专业文献的基础上,作者结合金川二矿区工程实际,采用现场调查、室内模拟、数值模拟与理论分析相结合的方法,对金川二矿区深部矿体的开采效应显现,以及相应危害性开采效应的潜在抑制技术,进行了深入系统地研究。主要工作如下:
     第一,采用三维非线性有限差分数值模拟方法,研究开采过程中地表变形问题,率先发现了采空区上方地表下沉与上升变形空间分布的时空演变过程与发展趋势的规律,为地表移动变形预测提供了理论依据,还给出了地表变形重点监测的区域范围。
     在发现地表下沉与上升变形现象的基础上,首次将岩体蠕变理论应用于地表变形规律方面的研究,定性地解释了二矿区地表移动变形由一个下沉区域演变为两个变形区域,即一个下沉变形区域和一个上升变形区域的内在机理;提出了采空区底板矿体“岩柱”破坏模型;分析了构造应力型矿山地表移动角变缓和移动范围扩大的原因,解释了二矿区14行线回风井发生倾斜的原因。
     还揭示了1000m临时水平矿柱,以及深部剩余相关分段矿体回采,对地表变形空间分布规律产生的影响;不同开采模式回采深部矿体产生的地表变形效应规律基本相同,但变形量的大小存在差别。
     所有这些,为今后二矿区地表工程设施布置位置的确定,提供了理论指导。
     第二,通过多中段开采条件下,临时水平矿柱抑制采空区变形效应的研究,揭示了临时水平矿柱从其形成、逐分段回采变薄直至最终消失全过程,在控制围岩地压活动方面所起作用的机制,以及临时矿柱应力与变形分布的演变规律。
     结论表明:临时水平矿柱形成之初,在控制上下围岩收敛变形方面,起到明显的作用,但在矿柱与围岩结合部位引起应力集中现象明显;回采水平矿柱,对采空区下盘围岩变形产生相对较大影响,但不至引起灾害性地压活动的产生。
     通过对两步骤采矿模式、连续采矿模式下临时水平矿柱的应力、位移等参数的动态分布变化,进行比较分析,发现:与连续采矿模式相比,两步骤采矿下盘区矿柱的存在,对临时水平矿柱的完整性、结构变形的平顺性起到一定程度的破坏性影响,水平矿柱的回采将面临更严峻的技术挑战。
     进一步地,基于多中段同时开采下水平矿柱的受力特征,采用突变理论的分析方法,建立了水平矿柱的尖点突变模型,导出了水平矿柱失稳的充要力学条件判据,得出了水平矿柱失稳概率小的结论,并提出了水平矿柱回采的工程技术措施。
     第三,对不同采矿模式(注:两步骤采矿模式、连续采矿模式)开采深部矿体产生的开采效应进行了系统地对比研究,得出二矿区深部矿体更适合采用连续采矿模式进行回采的重要结论,为生产与技术决策提供了重要支撑。
     采用三维数值模拟与理论分析结合的方法,研究了不同采矿模式下深部矿体回采,对下部待采矿体中的应力、位移及破坏区分布等产生的影响,对采空区上下盘围岩应力和收敛位移动态变化规律产生的影响,以及对上部原有采空区及围岩的受力与变形状态产生的影响;针对两步骤采矿模式特有的盘区矿柱问题,研究了盘区矿柱的稳定性及其回收技术难度情况,还对盘区矿柱回采引起的开采效应演变趋势,进行了探索。
     第四,应用力学模型对下向进路充填体结构(注:人工假顶结构)危险截面和危险点的分布状态进行了分析计算,发现了原有无筋充填体结构存在强度不足问题的内在原因,指出了提高充填体结构强度和稳定性新的技术途径。
     在下向进路充填体结构危险截面和危险点的分布状态分析计算发现问题的基础上,首次采用室内模拟实验,研究了不同充填材料、充填体内部布筋与否等因素,对下向进路充填体结构抗折力学性能产生的影响。结果表明:高浓度砂浆材料制成的充填体抗折力学性能明显比分级尾砂膏体材料制成的充填体差,充填体内部布置钢筋可明显提高充填体的抗折强度等重要结论。这为提高充填体强度和稳定性提供了新的技术途径。
     第五,率先提出了一种集成两步骤采矿模式、连续采矿模式之技术优势的新采矿模式—中央盘区有序滞后下降的整体连续开采模式,数值模拟结果初步证明,应用提出的新模式开采深部矿体,在维护区域稳定性与控制灾害性地压活动等方面,显现出了良好的应用前景,为今后深部矿体开采的地压活动控制提供了一条全新的研究方向。
     中央盘区有序滞后下降的整体连续开采模式的核心技术为:深部矿体中部设置一个有序滞后回采盘区,在该盘区中配合采用割帮回采技术使其与两翼盘区在回采时空衔接方面有效过度,实现深部矿体整体连续开采的技术目标。数值模拟结果显示:与两步骤开采模式和连续开采模式相比,新采矿模式改善采空区围岩变形的平顺性指标、控制采空区围岩收敛变形指标大小等方面,显现出了良好的技术优势。
     论文研究所获得的上述主要成果,进一步丰富了复杂条件下深井采矿技术的内涵,为金川公司二矿区深部矿体开采科学决策,以避免灾害性事故发生提供了重要的技术参考;对国内外高应力环境条件下深井采矿体开采过程地压控制方面的研究,具有重要的理论意义和工程应用价值。
It is well-known that Jinchuan No.2 Mine is one of underground mines with the most difficult geological and mining conditions all over the world as its rockmass is extremely poor and it is subjected to complicated strata pressure. Nowadays, its mining operation has been descending to 850m level, the mining depth is about 1000 meters, and it might be regarded as a deep-level mine. As yet, it has been a controversial key topic whether continuous mining method or room and pillar mining method should be selected to extract NO.l orebody in the mine. Under the deep-level mining, the redistribution of ground pressure in surrounding rock and filling, induced by mining operation, inevitably became more complicated. Based on its mining engineering background and aiming at its concern about the main technical problems to be solved, the response of surrounding rock and filling to mining operation in deep level, and the relevant potential techniques for controlling dangerous response to mining, were studied systematically by means of field surveying, numerical modelling, model test, and theoretical analyse. The main research contents and conclusions in the dissertation are as follows:
     First of all, using three-dimensional finite difference code (FLAC3D), surface deformation, induced by underground mining operation in the mine, was simulated and studied. The space-time developing process and trend of distribution of subsidence and rise areas in the surface were found. The obtained conclusions were the basic of predicting the surface deformation from underground mining, and the main monitoring areas, reflecting the surface deformation, were circled.
     On the basis of finding the surface subsidence and rise phenomena, the surface deformation was further studied according to creep theory of rockmass with higher tectonic stress, the mechanism on the developing process of surface deformation, which experienced the evolution from one subsidence area at the beginning of mining to both of one subsidence area and a rise area as the mined-out range was expanded steadily, was pointed out qualitatively. The failure model of rock post in the mined-out range's substructure was put forward. According to the analysis of cause that higher tectonic strata pressure made surface movement's angle flat and made movement's range wide, the inclined failure cause of ventilation shaft, located in NO.14 prospecting section, was explained.
     The effect of the recovery of temporary horizontal pillar at 1000m level and other sublevel ore remains in deep level on the surface deformation was demonstrated. It was found that the distribution pattern of surface deformation from different mining methods (continuous mining and room-and-pillar mining) was similar; but the magnitude of deformation was different.
     All of these conclusions above-mentioned could be used as guidance for determining the location of surface facilities and buildings in the mine.
     Secondly, by means of investigating into the effect of temporary horizontal pillar support on the structure deformation of mined-out range, during its full period from the pillar's formation, thinning and disappearing finally as mining in sublevel downwards, the mechanism, on which temporary pillar support controlled redistribution of the ground pressure and convergence displacement in mined-out structure, was found, and the change in distribution of the pillar's stress and deformation was obtained as the horizontal pillar was thinned and disappeared due mining in sublevel downwards.
     The results showed that at the beginning of pillar formation, it played important role in controlling the convergence between the hanging wall and footwall surrounding rock of mined-out range, but obvious stress concentration occurred in the conjunction of the pillar and surrounding rock. After recovering the pillar, the convergence deformation of the footwall increased obviously in comparison with the hang wall's deformation, but it could not caused catastrophic ground pressure movement.
     By means of comparison analysis of change in stress and displacement of the pillar, respectively induced from room-and-pillar mining and continuous mining, it was found that in comparison with those of continuous mining, the integrality and smooth deformation trend of the temporary horizontal pillar were adversely influenced by the existence of panel vertical pillars (ribs) due to room-and-pillar mining, and the recovery of horizontal pillar would be more difficult in the future.
     Further, based on the stress state of temporary horizontal pillar under simultaneously mining in more than one levels, the cusp catastrophic model for predicting failure of the horizontal pillar was set up, the failure criterion of the pillar was deduced, and the little probability of the pillar failure was concluded as well. The engineering measures to be taken, aiming at safe recovery of the pillar, were given.
     Thirdly, the comparison investigation on the response of surrounding rock and filling to continuous mining and room-and-pillar mining, respectively, was made. The important conclusion that continuous mining was more suitable to be used to extract the deep-level orebody in the mine was obtained, and it was very helpful for the mine to make productive and technical decisions.
     Using FLAC3D modelling and theoretical analysis, the effect of different mining methods (continuous mining and room-and-pillar mining) on the stress, displacement and plastic zone in the bottom ore to be mine, on the stress and convergence displacement of hang wall and footwall surrounding rock, and on the stress and deformation state in upper mined-out range's surrounding rock and filling, was systematically investigated.
     For the panel vertical pillars due to room-and-pillar mining, their stability were studied, and aiming at the second-step mining panel pillars their recovery techniques were discussed. Further, the effect of recovery of panel pillars on development of response of surrounding rock and filling was probed.
     Fourthly, the distribution of critical sections and points in underhand cut and cemented filling stoping structure (artificial roof) was calculated according to structural mechanics model, the intrinsic factors causing deficiency in bearing capacity of plain filling structure were found, and the technical measures against the deficiency in structure strength and stability were pointed out.
     The physical model experiments on the effect of the mortar types (high density tailings + cement, classified tailings + paste) and reinforcement or not on the flexural performance of filling structure were carried out. The results showed that the flexural performance of filling structure, made of classified tailings-and-paste mortar, was obviously better than that of high density tailings-and-cement mortar, and the flexural capacity of reinforced filling structure with low reinforcement ratio was enhanced obviously.
     Fifthly, a new integrated continuous mining model with central panel of sequentially delayed mining was put forward. The new continuous mining model absorbed the technical merits of both continuous mining and room-and-pillar mining in controlling response of surrounding rock and filling to mining operation. The preliminary results of numerical modelling showed that as the new continuous mining model was used to extracting deep-level ore in the mine, it had obviously technical advantages in controlling the adverse response of surrounding rock and filling to mining in deep level, and in preventing catastrophic ground pressure movement from happening. With the new continuous mining model, some new research interests in controlling ground pressure movement from deep-level mining were provided.
     The key of new continuous mining model mainly was that a central panel was firstly selected as sequentially delayed mining panel, the boundary cut-off mining and sequentially delayed mining were carried out in the central delayed panel as other panels of its two wings were continuously mined downwards, and thus the convergence deformation and stress state of surrounding rock and filling structure were smoothly improved. The results of numerical modelling showed that, in comparison with room-and-pillar mining and continuous mining, the new continuous mining model had comprehensive technical advantages in improvements in smooth trend of convergence deformation and redistribution of stress state of surrounding rock and filling, and in controlling the magnitude of convergence displacement. All of these improvements in the response of surrounding rock and filling to mining were good for the mine to prevent the catastrophic ground pressure movement in deep-level mining engineering.
引文
[1]颜荣贵.地基开采沉陷及其地表建筑.北京:冶金工业出版社,1995
    [2]刘宝琛,廖国华.煤矿地表移动的基本规律.北京:中国工业出版社,1965
    [3]张玉卓.煤矿地表沉陷的预测与控布少一世纪之交的回顾与展望.煤炭学会第五届青年科技学术研讨会论文集,煤炭工业出版社,1998
    [4]阿维尔申著.煤矿地下开采的岩层移动.煤炭工业出版社,1959
    [5]赴波兰考察团.波兰采空区地面建筑.科学技术文献出版社,1979
    [6][波]M.鲍莱茨基,M.胡戴克著.于振海,刘天泉译.矿山岩体力学.煤炭工业出版社,1985
    [7]Berry D S And Sales T W.An Elastic Treatment of Ground Movement Due to Mining.J.Mech.Phys Solids 1961,9:52-62
    [8]Berry D S.Ground Movement Considered as An Elastic Phenomenon.Min.Engr.1963(123):28-41
    [9]Salamon.M.D.G.Elastic analysis of displacements and stresses induced by the mining of seam or roof deposis.J.S.Afr,Inst.M etal.1963,63
    [10]Salamon M.D.G.Rock Mechanics of Underground Excavations.Advances in Rock Mechanics,Proc.3rd congr,Int.Soc.Rock Mech.Denver,1974,951-1099
    [11]KratzschH.Mining Subsidence Engineering.Springerveflag.Berlin Heidelberg New York,1983
    [12]Brauner.Su bsidence due to underground mining.Bureau of Mines,USA,1973
    [13]张玉卓,姚建国,仲惟林.断层影响下地表移动规律的统计和数值模拟研究.煤炭学报,1989(1):23-31
    [14]何国清、马伟民、王金庄.威布尔型影响函数在地表移动的计算中的应用.中国矿业学院学报,1982.1
    [15]白矛、刘天泉.条带法开采中条带尺寸的研究.煤炭学报,1983(4)
    [16]张玉卓、仲惟林等.岩层移动的错位理论解与边界元法计算.煤炭学报,1987.2
    [17]李增琪.使用富氏积分变换计算丌挖引起的地表移动.煤炭学报,1983(2):18-25
    [18]李增琪.用富氏积分变换计算丌挖引起的地表移动之二-水平煤层空间问题.煤炭学报,1985(1):18-22
    [19]张玉卓、仲惟林等.断层影响下地表移动的统计和数值模拟研究.煤炭学报,1989(1):25-33
    [20]何万龙.山区地表移动规律及变形预计.山西矿业学院学报,1986:91-117
    [21]杨硕等.水平移动曲面的力学预测法.煤炭学报,1995(2):214-218
    [22]邓喀中.开采沉陷中的岩体结构效应研究:[博士学位论文].徐州:中国矿业大学, 1993
    [23]邓喀中,马伟民,何国清.开采沉陷中的层面效应研究.煤炭学报,1995,20(4):56-58
    [24]邹友峰,何满潮.条带开采地表沉陷预计的新理论.水文地质工程地质,1994(2):1-5
    [25]于广明,分形及损伤力学在开采沉陷中的应用研究.中国矿业大学北京研究生部博士学位论文,1997
    [26]谢和平,陈至达.非线性大变形有限元分析及在岩层移动中的应用.中国矿业大学学报,1988,2:94-105
    [27]崔希民,杨硕.开采沉陷的流变模型探讨.中国矿业,1996,5(2):52-55
    [28]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究.中国矿业大学北京研究生部博士学位论文,2000
    [29]郭增长,韩六合等.极不充分开采地表移动和变形特征.矿山测量,2002,2:55-57
    [30]苏仲杰等.地表下沉力学模型的建立及应用.力学与实践,2003(2):45-47
    [31]杨帆,麻风海.急倾斜煤层采动覆岩移动模式及机理研究.辽宁工程技术大学博士学位论文,2006
    [32]方建勤等.构造应力型开采地表沉陷规律及其工程处理方法.中南大学学报(自然科学版).2004.6
    [33]中南工业大学.有色狮子山矿金属矿岩移预计理论及监测系统研究.1995.6
    [34]尹德潜.损伤理论在金属矿岩移理论研究中的应用:[博士学位论文].长沙:中南工业大学,1993
    [35]曾卓乔.钨矿深部地压研究-摄影测量观测井巷及空区围岩变形,中南工业大学科研报告,1988.1
    [36]张锋.自然崩落法矿体崩落状态的监测,金属矿山,1997,9:9-13
    [37]曹阳等.崩落法开采急倾斜矿床地表变形预计新方法.矿冶.2002.12:5-8
    [38]贺跃光等.急倾斜矿体开采地表沉陷与概化地应力研究.中南大学学报(自然科学版).2001.4:122-126
    [39]李春雷.崩落法开采矿山地表沉陷机理及其预测预报研究.2007.1
    [40]谢和平.岩石混凝土损伤力学.徐州:中国矿业大学出版社,1990
    [41]蔡嗣经.矿山充填力学基础.北京:冶金工业出版社,1994
    [42]谢和平,刘夕才,王金安.关于21世纪岩石力学发展战略的思考.岩土工程学报,1996,18(4):98-102
    [43]Brown.E.T,Brady.B.H.G,冯树仁等译.地下采矿岩石力学.北京:煤炭工业出版社,1986
    [44]周先明.金川二矿区1~#矿体大面积充填体-岩体稳定性有限元分析.岩石力学与工程学报,1993,12(2):95-98
    [45]The Jinchuan Mine Project.Sino-Swedish technical cooperation for No.2 Mine Area rock mechanics report 86-3-final report.Dec,1986
    [46]H.A.D.Kirsten,T.R.Stacey.充填在低下沉量采场中的支护机理.国外金属矿山充填采矿技术的研究与应用.中国矿业协会采矿专业委员会等,1997
    [47]U.Yanaguchi,J.Yanatomi.A consideration on the effect of the ground stability.Proc.of the Internat.Symp.on Mining with Backfill.Lulea.7-9 June,1984
    [48]U.Yanaguchi,J.Yanatomi.An experiment study to investigate the effect of backfill for the ground stability.Innovation in mining backfill technology,Hassani et al,1989 Balkema,Rotterdam ISBN9061919851
    [49]刘同有等.充填采矿技术与应用.北京:冶金工业出版社,2001
    [50]于学馥.岩石记忆与开挖理论.北京:冶金工业出版社,1993
    [51]于学馥.信息时代岩石力学与采矿计算初步.北京:科学出版社,1991
    [52]郭金刚.综采放顶煤工作面高冒空巷充填技术.中国矿业大学学报,2002,31(6):625-111
    [53]柏建彪,侯朝炯,张长根等.高水材料充填空巷的工业性试验.煤炭科学技术,2000,10:30-31
    [54]Terzaghi,K and Peck.R.B,soil mechanics in engineering practice.John Wiley and Sons,Inc,1967
    [55]卢平.胶结充填矿柱强度的设计.江西有色金属,1990,(2):48-52
    [56]付宝杰,徐金海,陈荣华.沿空留巷中充填体的强度控制.黑龙江科技学院学报,2006,2(5):85-87
    [57]李一帆,张建明,邓飞等.深部采空区尾砂胶结充填体强度特性试验研究.岩土力学,2005,6(7):865-868
    [58]余斌,影响尾砂胶结充填强度的若干因素分析.河北冶金,2001,3:3-6
    [59]岩土工程流变力学,水利工程网,2004.4
    [60]黄玉诚,孙恒虎,刘文永.下向进路充填采矿力学模型的探讨.有色金属,1999,51(4):1-3
    [61]蔡美峰.金属矿山采矿设计优化与地压控制-理论与实践.北京:科学技术出版,2001
    [62]卢平.制约胶结充填采矿法发展的若干充填体力学问题.黄金,1994,15(7):18-21
    [63]孙恒虎,刘文永,黄玉诚等.高水固结充填采矿.北京:机械工业出版社,1998
    [64]华心祝,孙恒虎.下向进路高水固结尾砂充填主要参数的研究.中国矿业大学学报,2001,30(1):99-101
    [65]许新启.分段充填采矿法充填体稳定性分析及控制.有色金属,2000,52(4):18-22
    [66]郭金喜.下向进路胶结充填采矿法充填参数选择及工艺实施的新技术.新疆有色金 属,1998,4:12-14
    [67]张正民.下向进路全尾砂高水固化充填体假顶参数及强度的计算.有色金属,1992.6-9
    [68]H.W.GIen(ed),MINEFILL 93,Johannesburg,South Africa,1993
    [69]MartSm,Bloss(ed).Sixth international symposium on mining with backfill.Brisbane,Queensland,Austratia,1998
    [70]David Stone,P.E.(ed) Minefill 2001,Proceedings of the 7th international symposium on mining with backfill.Published by Society for Mining,Metallurgy and Exploration,Inc,2001.
    [71]S.G.Panholm(ed).Proceedings of the international symposium on mining with backfill.LULEA University of Technology.LULEA.Sweden.7-9 June 1983
    [72]肖国清.灵山5号脉下向进路胶结充填采矿法研究.长沙矿山研究院季刊.1992(增):55-58
    [73]罗绍文,李庶林.混凝土假顶的破坏形式及布筋方法.矿业研究与开发.1996,16(2)20-21
    [74]周建华,李朝晖.薄板理论在采场假顶稳定性分析中的应用研究.江西有色金属.2001,15(1):1-4
    [75]刘强,许新启,桑守勤.下向胶结充填法充填程度与采场稳定性数值模拟.有色金属.2000,52(1):17-21
    [76]韩斌.金川二矿区充填体可靠度分析与1#矿体回采地压控制优化研究:[博士学位论文].长沙:中南大学,2004.7
    [77]中南矿冶学院.金川镍矿二矿区采矿法的岩石力学研究.1981
    [78]北京有色冶金设计研究总院.金川有色金属公司二矿区修改初步设计.1985,01
    [79]中瑞岩石力学研究技术鉴定会.中国-瑞典关于中国金川二矿区采矿技术合作岩石力学研究报告.1988,12
    [80]中瑞矿山初步设计组.中瑞科技合作金川公司二矿初步设计最终报告(第一、二册).1986,01
    [81]金川有色金属公司二矿区,长沙矿山研究院.金川二矿区1号矿体下向胶结充填大面积充填体作用机理试验研究.1990,08
    [82]北京科技大学,金川镍钻研究设计院,金川公司二矿区.金川二矿区二期工程无矿柱大面积连续开采的稳定性及其控制技术的研究.1997,04
    [83]北京科技大学,金川镍钻研究设计院,金川有色集团公司二矿区.金川二矿区采矿系统优化与决策研究.2001,12
    [84]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报.2005.8:2854-2857
    [85]MorrisonR.C.K.R eporton the rock burst si tuition in Ontario ines,Transactions,Canadian Institute of Mining and Metallurgy,45:225-272,1942
    [86]Sellers E J,Klerck P.Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels.Tunneling And Underground Space Technology,2000,15(4):463-469.
    [87]Kidybinski.Strata control in deep mines l M I.Rotterdam:A.A.Balkema,1990.Fairhurst C.Deformation,yield,rupture and stability of excavations at great depth[A].Rock at Great Depth.Maury gnd Fourmaintraux eds.Rotterdam:A.A.Balkema,1989,1 103-1 114.
    [88]Malan D F,Spottiswoode S M.Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operations.Rockburst and Seismicity inMines.Oibowi cz and Lasocki eds,Rotterdam:A.A.Balkema,1997,173-177
    [89]Jun Sun,Sijing Wang.Rock mechanics and rock engineering in china:developments and current state-of-the-art.International Journal of Rock Mechanics and Mining Science,2000,(37):447-465.
    [90]钱七虎.非线性岩石力学的新进展-深部岩体力学的若干问题.第八次全国岩石力学与工程学术大会论文集.中国岩石力学与工程学会主编,北京:科学出版,2004.10-17
    [91]钱七虎.深部地下工空间开发中的关键科学问题.第230次香山科学会议《深部地下空间开发中的基础研究关键技术问题》,2004
    [92]钱鸣高.20年来采场围岩控制理论和实践的回顾.中国矿业大学学报,2000,19(1):1-4.
    [93]谢和平.深部高应力下的资源开采-现状、基础科学问题与展望.科学前沿与未来(第六集).香山科学会议主编,北京:中国环境科学出版社,2002.179-191
    [94]何满潮.深部开采工程岩石力学的现状及其展望.第八次全国岩石力学与工程学术大会论文.中国岩石力学与工程学会主编,北京:科学出版社,2004.88-94.
    [95]Karman,T von.Festigkeitsversuche unter allseitigem Druck.Zeit d ver Deutscher Ing,1911,55:1749-1757
    [96]Paterson M S.Experimental deformation and faulting in Wombeyan marble.Bul1.Oeo1.Soc.Am.1958,69:465-467.
    [97]MogiK.Deformation and fracture of rocks under confining pressure:elasticity and plasticity of some rocks.Bul1.Earthquake Res.Inst.Tokyo Univ.1965,43:349-379.
    [98]Mogi K.Pressure dependence of rock strength and transition from brittle fracture to ductile flow.Bul1.Earthquake Res.Inst.Tokyo Univ.1966,44:215-232.
    [99]Paterson M S.Experimental Rock Deformation the Brittle Field.Berlin:Springer,1978.
    [100]Heard H C Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature.confimng pressure,and interstitial fluid pressure.Bull.Geot.Soc.Am1960,79:193-226.
    [101]Singh Jet al.Strength of rocks at depth.In:Maury&Fourmaintraux eds.Rock at great depth,1989.Rotterdam:A.A.Balkema.37-44.
    [102]Kwasniewski M A.Laws of brittle failure and of B-D transition in sand-stone.In:Maury and Fourmain-traux eds.Rock at Great Depth,Rotterdam:A A.Balkema,1989,45-58
    [103]Malan D F_Time-dependent behavior of deep level tabular excavations in hard rock Rock Mechanics and Rock Engineering.1999,32:123-155.
    [104]Malan D F.Simulation of the time-dependent behavior of excavations in hard rock[J].Rock Mechanics and Rock Enginering,2002,35(4):225-254.
    [105]Malan D F.Basson F R P.Ultra-Deep Mining:the increase potential for squeezing conditions.J.S Mr.Inst.MinMetall.1998,353-363.
    [106]Malan D F,Spottiswoode S M.Time-dependent fracture zone behavior and seismicity surroundingdeep level stoping operations.In:Gibowicz and Lasocki eds.Rockburst and seismicity in mines,Rotterdam:Balkema,1997.173-177.
    [107]Muirwood A M.Tunnels for roads and motorways.Quart.J.Eng.Geol,1972,5:119-120.
    [108]BarlaG.Squeezing rocks in tunnels.ISRMNew J.1995,2:44-49.
    [109]Aydan O,Akagi T,Kavamoto T.The squeezing potential of rock around tunnels:theory and prediction with examples taken from Japan.Rock Mechanics and Rock Engineering,1996,29:125-143
    [110]魏佳,齐珺.不同应力差下非线性蠕变研究,实验力学,2005(3):427-432
    [111]刘高,聂德新,韩文峰.高应力软岩巷道围岩变形破坏研究.岩石力学与工程学报,2000,19(6):726-730
    [112]叶立贞.国内外岩体流变性及流变模型研究现状,山东矿业学院学报,1982(2):53-60
    [113]周瑞光.一项岩体地下硐室工程建设中的岩体力学模型研究.岩体工程地质力学问题(九).北京:科学出版社,1990
    [114]许宏发.软岩强度和弹模的时间效应研究.岩石力学与工程学报,1997,16(3):246-251
    [115]郭志.软岩流变过程与强度研究.工程地质学报,1996,4(1):75-79
    [116]金丰年,浦奎英.关于粘弹性模型的讨论.岩石力学与工程学报,1995,14(4):355-361
    [117]郑榕明,陆浩亮,孙均.软土工程中的非线性流变分析.岩土工程学报,1996,8(5):1-13
    [118]范庆忠,高延法.软岩蠕变特性及非线性模型研究.岩石力学与工程学报,2007,26(2):391-396
    [119]Bridgman P W.Volume changes in the plastic stages simple compression.J.Appl.Phys.1949,20:1241-1251
    [120]Mratsushima S.On the flow and fracture of igneous rocks and on the deformation and fracture of granite under high confining pressure.Bull.Disaster Prevention Res.Inst.Kyoto Univ.1960,36:20.
    [121]Kwasniewski M A.Laws of brittle failure and of B-D transition in sand-stone.In:Maury and Fourmaintraux eds.Rock at Great Depth,Rotterdam:A A.Balkema,1989,45-58.
    [122]AUBERTIN M,LIL,SIMON R.A multiaxialstres scriterion forshort-and long-term strength of isotropic rock media.International Joumal of Rock Mechanics and Mining Sciences,2000,37(8):1169-1193
    [123]周小平,钱七虎等.深部岩体强度准则.岩石力学与工程学报,2008,1:117-123
    [124]李世平,吴振业,贺永年等.岩石力学简明教程.北京:煤炭工业出版社,1996.
    [125]Singh J et al.Strength of rocks at depth.In:Maury&Fourmaintraux eds.Rock at great depth,1989.Rotterdam:A A Balkema.37-44.
    [126]Cleary M.Effects of depth on rock fracture.In:Maury and Fourmaintraux eds.Rock at Great Depth.Rotterdam:A.A.Balkema.1989.1153-1163.
    [127]Gibowicz S J,Kijko A.An introduction to mining seismology.San Diego:Academic Press,1994.399.
    [128]Marcak H.The structure of seismic events sequences obtained from Polish deep mines.In:Gibowicz and Lasocki eds.Rockburst and seismicity in mines,Rotterdam:Balkema.1997.107-109.
    [129]冯夏庭,王永嘉.深部开采诱发的岩爆及其防治策略的研究进展.中国矿业,1998,7(5):42-45.
    [130]徐林生,王兰生,李天斌.国内外岩爆研究现状综述.长江科学院院报,1999,16(4):24-27.
    [131]曹阳,颜荣贵,邓金灿,杨伟忠.大厂矿区灾难地压监控技术研究.矿冶工程,2002,22(2):40-44.
    [132]姜繁智,向晓东,朱东升.国内外岩爆预测的研究现状与发展趋势.工业安全与环保.2003,29(8):19-22.
    [133]徐则民,黄润秋,范柱国等.长大隧道岩爆灾害研究进展.自然灾害学报,2004,13(2):16-23.
    [134]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展.力学进展,2005,35(1):91-99.
    [135]陶波,伍法权,郭改梅等.西原模型对岩石流变特性的适应性及其参数确定,岩石力学与工程学报,2005.9:3165-3171
    [136]朱建明,徐秉业,朱峰,任天贵.FLAC有限差分程序及其在矿山工程中的应用.中 国矿业.2000,9(4):78-82
    [137]FLAC3D User's Manual.Itasca Consulting Group.Inc.1997
    [138]谢和平,周宏伟,王金安.FLAC在煤矿开采沉陷预测中的应用及对比分析.岩石力学与工程学报.1999,18:397-401
    [139]王金安,谢和平,王广南.建筑物下厚煤层特殊开采的三维数值分析.岩石力学与工程学报.1999,18(1):12-16
    [140]黄润秋,徐强.显式拉格朗日差分分析在岩石边坡工程中的应用.岩石力学与工程学报.1995,14(4):346-354
    [141]Jun Sun,Sijing Wang.Rock mechanics and rock engineering in China developments and current state-of-the-art.International Journal of Rock Mechanics and Mining Sciences.37(2000) 447-465
    [142]D.F.Scott T.J.Williams,M.J.Friedel,D.K.Demon.Relative stress conditions in an underground pillar,Homestake Mine,Lead,SD.International Journal of Rock Mechanics and Mining Sciences.3(1997):278
    [143]F.M.BOLER,S.Billington,R.K.Zipf.Seismological and energy balance constraints on the mechanism of a atastrophic bump in the book cliffs coal mining district,Utah,U.S.A·International Journal of Rock Mechanics and Mining Sciences.1997,34(1):27-43
    [144]C.D.Martina P.K.Kaiserb,R.Christianssonc.Stress instability and design of underground excavations.International Journal of Rock Mechanics&Mining Sciences.40(2003):1027-1047
    [145]Y.H.Hatzora,M.Talesnickb,M.Tsesarskya.Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin,Israel.International Journal of Rock Mechanics&Mining Sciences.39(2002) 867-886
    [146]A.Serranoa,C.Olalla.Ultimate bearing capacity at the tip of a pile in rock -part 1:theory.International Journal of Rock Mechanics&Mining Sciences.39(2002) 833-846
    [147]A.Serranoa,C.Olalla.Ultimate bearing capacity at the tip of a pile in rock-part 2:application.International Journal of Rock Mechanics&Mining Sciences.39(2002):847-866
    [148]骆玉崎.金川二矿区围岩与充填体稳定性分析.
    [149]廖椿庭等.金川矿区原岩应力测量及构造应力场的研究.1981,07
    [150]中科院地质与地球物理研究所、金川二矿、金川公司龙首矿等.金川矿区地表控制网GPS检核与修正研究.2002
    [151]何满潮,谢和平等,深部开采岩体力学及工程灾害控制研究.煤炭支护.2007.3:1-13
    [152]高直,邹龙.金川二矿区地表沉降裂缝成因及其变化规律分析与探讨.金川科 技.2005.1:14-17
    [153]姚裕春.高水平应力软岩巷道围岩变形机理及支护对策,西安科技学院硕士学位论文,2002
    [154]刘高.高地应力区结构性流变围岩稳定性研究,成都理工大学博士学位论文,2001.9
    [155]陶波,伍法权,郭改梅等.西原模型对岩石流变特性的适应性及其参数确定,岩石力学与工程学报,2005.9:3165-3171
    [156]江文武,徐国元,马长年.快速拉格朗日法在锚杆拉拔数值模拟试验方面的应用,中国铁道科学,2008,6:50-54
    [157]北京科技大学,金川镍钴研究设计院,金川公司二矿区.金川二矿区深部矿岩力学特性测试研究报告.1997.4
    [158]倪彬.提高金川二矿区胶结充填体稳定性的试验研究:[硕士学位论文].长沙:中南大学,2004.7
    [159]寇新建,何瑶民.摄影测量与金属矿地表移动监测,矿冶工程,1995,15(3)
    [160]孙广忠.岩体结构力学.北京:科学出版社,1988
    [161]尹德潜,曾卓乔,寇新建.金属矿山岩移预计的损伤力学模型,中国有色金属学报,1991,1:12-17
    [162]中南大学,金川集团镍钴研究院,金川集团二矿区.金川二矿区矿房、矿柱两步骤回采与大面积连续回采工艺的对比研究.2007,10
    [163]金川镍钴研究设计院.金川公司矿山二期稳定性监测分析及控制方法研究.1993,10
    [164]中国地质科学院地质力学研究所,国家地震局地质大队.金川矿区原岩应力测量和构造应力场的研究

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700