用户名: 密码: 验证码:
贵州突出煤理化特性及其对甲烷吸附的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯灾害不仅是贵州也是全国煤矿面临的重大灾害之一,随着矿井开采深度的增加,瓦斯灾害越来越严重,严重地制约了煤炭工业的持续健康发展。瓦斯灾害是个复杂问题,煤与瓦斯突出机理至今还没有完全清楚。一般认为,煤的物理力学特性、煤层瓦斯和地应力是影响瓦斯灾害的三个重要方面,而每个方面又由许多因素综合作用。本文采用理论分析、物理实验和数值模拟相结合的方法对贵州突出煤的物理化学特性进行了研究,并提出了基于突出煤理化特性的瓦斯防治技术。
     通过对贵州突出煤的形成及分布规律分析,确定了合理的煤样选取点。研究认为受聚煤盆地、沉积环境、成煤条件、地质运动、控煤构造等因素影响,贵州主要富煤区为六盘水煤田、织纳煤田、黔北煤田、兴义煤田,其赋存煤层大多数为煤与瓦斯突出煤层。
     通过现场观测及实验室测试分析,从工业分析、元素分析、大分子结构分析及破坏类型、显微结构、孔隙结构、比表面积等几个方面,获得了贵州突出煤的物理化学特性。发现贵州突出煤多为破坏强烈的Ⅲ类煤,平行层理面存有晶体物质,层理面和节理面均有孔隙或裂隙,孔径基本上在0~10nm之间。孔径为3~5nm的微孔在煤样中最为丰富,为瓦斯主要吸附空间。
     系统地研究了煤对甲烷吸附的分子模拟理论,提出了煤对甲烷吸附的分子模拟算法。针对贵州突出煤对甲烷吸附的特点,提出采用狭缝孔物理模型和微孔填充吸附机理相结合的吸附模型,以及巨正则系统的Monte Carlo理论研究煤的甲烷分子模拟,并通过粒子的插入与删除实现煤对甲烷分子的吸附与解吸过程,获得了孔隙、温度、灰分、水分等对甲烷吸附的影响规律。
     开发了专门针对煤对瓦斯吸附的分子模拟软件,验证分析表明模拟得到的吸附等温线与实验基本吻合。利用开发的分子模拟软件,以现场与实验室测定的数据为基础,对不同条件下的瓦斯吸附情况进行模拟。模拟结果表明,煤的孔隙率、灰分、水分与温度等对煤的吸附特性均有影响,其中灰分影响最大。
     研究成果为从分子角度预测煤的吸附特性提供了一种新的途径,并提高了分子模拟技术研究煤吸附瓦斯特性的可靠性,可为预测煤层瓦斯压力、瓦斯含量等瓦斯参数提供理论基础。
Gas disaster is not only the major disaster in Guizhou province but also in thewhole country. Coal mining disasters become more and more serious as the miningdepth increases. The gas disasters severely impact the safety of coal mining industry.Gas disaster is a complicated problem and the coal and gas outburst mechanism is stillnot completely clear. But, it is generally believed that the physical properties of coal,the gas in coal seam and the ground stress are the three major factors that impact thegas disaster. However, every factor is synthetically influenced by the many combinedfactors. This paper investigates the physicochemical properties of the outburst coal inGuizhou province by the method of theoretical analysis, physical experiments andnumerical simulation. The gas prevention and control technology is proposed basedon the physicochemical properties of outburst coal.
     The locations of experiment samples were determined by analyzing theformation and distribution law of the outburst coal in Guizhou province. SinceGuizhou province is influenced by the coal accumulating basin, the sedimentaryenvironment, the coal forming conditions, the geological movements, the coalcontrolling structures and other factors. Its major coal rich zones are Liupanshui coalfield, Zhina coal field, Qinbei coal field, Xinyi coal field, whose coal seams aremostly the outburst coal seam.
     Through the aspects of industrial analysis, elemental analysis, macromolecularstructure analysis, destruction type, microstructure, pore structure, specific surfacearea, the physicochemical properties of the samples in Guizhou province wereattainted by the field test and laboratory test. The outburst coal of Guizhou province ismostly the strongly destructive type of class Ⅲ coal. There exists crystal substancesparallel to the stratification plane, and many pores or fractures exist in stratificationplanes and joint planes, whose apertures are generally between0~10nm. Amongthem, apertures between3~5nm are the most common, which are the most importantgas adsorption space.
     Adsorption theory and molecular simulation models were adopted to investigatethe properties of methane adsorption on the coal. According to the methane adsorptioncharacteristics of the outburst coal in Guizhou province, the molecular adsorptionmodel was adopted based on the physical model of slit pore and the adsorptionmechanism of microporous filling. Using the Monte Carlo simulation method in grandcanonical system, the adsorption and desorption of coal methane molecules was realized through the insertion and deletion of particles, and so were the influence law
     of aperture, temperature, ash content, moisture and other factors on methaneabsorption.
     The software specifically for methane adsorption was developed. Comparing theresults of molecular simulation with physical test, the adsorption isotherms areconsistent. By using the molecular simulation software, the simulation of methaneadsorption was made under the conditions, in which the data were based on the fieldtest and laboratory test. Simulation results show that the porosity of the coal, thetemperature, the content of ash and water all have influence on the adsorptioncharacteristics of coal. Among them, the ash content is the most important one.
     From the aspect of molecular lever, the research results provided a new way tofrom the Angle of molecular predicting the adsorption characteristics of coal, andimproved the reliability of the molecular simulation technique, which could be used toprovide theoretical basis for forecasting gas pressure, gas content and other gasparameters.
引文
[1]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1998.
    [2]周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007.
    [3]卫修君,林柏泉.煤岩瓦斯动力灾害发生机理及综合治理技术[M].北京:科学出版社,2009.
    [4]李建铭.煤与瓦斯突出防治技术手册[M].徐州:中国矿业大学出版社,2006.
    [5]袁亮.松软低渗透煤层群瓦斯抽采理论与技术[M].煤炭工业出版社,2004.
    [6]李希建,徐明智.近年我国煤与瓦斯突出事故统计分析及其防治措施[J].矿山机械,2010,10:13-16.
    [7]胡殿民,林柏泉.煤层瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006.
    [8]张小东,张子戌.煤吸附瓦斯机理研究的新进展[J].中国矿业,2008,17(6):70-72.
    [9]赵玉岐,齐黎明.突出煤层透析解突技术研究[J].采矿与安全工程学报,2009,26(1):110-113.
    [10]王家臣,邵太升,赵洪宝.瓦斯对突出煤力学特性影响试验研究[J].采矿与安全工程学报,2011,28(3):391-394.
    [11]李祥春,聂百胜,何学秋.振动诱发煤与瓦斯突出的机理[J].北京科技大学学报,2011,33(2):149-152.
    [12]蒋静宇,程远平,王海锋,等.岩浆侵入对煤吸附瓦斯特性的影响分析[J].采矿与安全工程学报,2012,29(1):118-123.
    [13]涂敏,付宝杰.低渗透性煤层卸压瓦斯抽采机理研究[J].采矿与安全工程学报,2009,26(4):433-436.
    [14]何学秋,王恩元,林海燕,等.突出危险煤吸附瓦斯后变形规律的研究[J].中国矿业大学学报,1996,25(1):6-11.
    [15]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006.
    [16]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [17]赵阳升.多孔介质多场耦合作用及其工程响应[M].北京:科学出版社,2010.
    [18]王晓东.渗流力学基础[M].北京:石油工业出版社,2006.
    [19]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [20]孙培德.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报(自然科学版),2001,20(3)1:161-167.
    [21]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    [22]余楚新.煤层中瓦斯富集、运移的基础与应用研究[D].重庆大学,1993.
    [23]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.
    [24]徐彬彬,何明德.贵州煤田地质[M].徐州:中国矿业大学出版社,2003.
    [26]陈敏伯.计算化学-从理论化学到分子模拟[M].北京:科学出版社,2009.
    [27]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007.
    [28]弗兰克等(Frenkel&Smit).汪文川等译.分子模拟-从算法到应用[M].北京:化学工业出版社,2002.
    [29]弗兰科尔(Daan Frenkel).分子模拟入门(第2版)[M].北京:世界图书出版公司,2010.
    [30]陆小华.材料化学工程中的热力学与分子模拟研究[M].北京:科学出版社,2011.
    [31]近藤精一,石川达雄,安部郁夫著.李国希译.吸附科学(原著第二版)[M].北京:化学工业出版社,2005.
    [32] Collins R E. New theory for gas adsorption and transport in Coal[R]. Coalbed MethaneSymposium, Tuscallosa,1991:25-32.
    [33] Clarkson C R. Adsorption potential theories to coal methane adsorption isotherms at elevatedtemperature and pressure[J]. Carbon,1997,35:1689-1705.
    [34]陈昌国,鲜晓红,张代钧.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J],重庆大学学报(自然科学版),1998,21(2):75-79.
    [35]张红日,王传云.突出煤的微观特征[J].煤田地质与勘探,2000,28(4):31-33.
    [36]张占存.煤的吸附特征及煤中孔隙的分布规律[J].煤矿安全,2006,37(9):1-3.
    [37]陈萍,唐修义.地温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [38]傅雪海,秦勇,薛秀谦,等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001,30(3):225-228.
    [39]傅雪海,秦勇,张万红.基于煤层气流动的煤孔隙分形分类及自然分类研究[J].科学通报,2005:50(1):51-53.
    [40]王文峰,徐磊,傅雪海.应用分形理论研究煤孔隙结构[J].中国煤田地质,2002,14(2):26-27.
    [41]江丙友,林柏泉,吴海进,等.煤岩超微孔隙结构特征及其分形规律研究[J].湖南科技大学学报,2010,25(3):15-18.
    [42]琚宜文,姜波,侯泉林,等.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报,2005,79(2):269-285.
    [43]张松航,汤达祯,唐书恒,等.鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素[J].地质学报,2008,82(10):1341-1349.
    [44]梁红侠,陈萍,童柳华,等.淮南煤田深部煤的孔隙特征及其意义[J].中国煤田地质,2010,22(6):5-8.
    [45]薛光武,刘鸿福,要惠芳,等.韩城地区构造煤类型与孔隙特征[J].煤炭学报,2011,36(11):1845-1851.
    [46]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
    [47] C. Sitprasert, Z. H. Zhu, F. Y. Wang, V. Rudolph. A multi-scale approach to the physicaladsorption in slit pores[J]. Chemical Engineering Science,2011(66):5447-5458.
    [48]孙庆雷,李文,陈皓侃,李保庆.煤显微组分分子结构模型的量子化学研究[J].燃料化学学报,2004,32(3):282-286.
    [49]桑树勋,朱炎铭,张时音等.煤吸附气体的固气作用机理—煤孔隙结构与固气作用[J].天然气工业,2005:25(1):1-13.
    [50]苏现波,陈润,林晓英,等.吸附势理论在煤层气吸附/解吸中的应用[J].地质学报,2008,82(10):1383-1389.
    [51] Sean P. Rigby, Peter I. Chigada, Emily L. Perkins, et al. Fundamental studies of gas sorptionwithin mesopores situated amidst an inter-connected, irregular network [J]. Adsorption,2008(14):289-307.
    [52] Soule A D, Smith C A, Yang Xiaoning, et al. Adsorption modeling with the ESD equation ofstate[J]. Langmuir,2001,17:2950-2957.
    [53]唐书恒,韩德馨.煤对多元气体吸附与解吸[J].煤炭科学技术,2002,30(1):58-60.
    [54]赵志根,唐修义.对煤吸附甲烷langmuir方程的讨论[J].焦作工学院学报,2002,21(1):1-4.
    [55] Yu H, Fan W, Sun M, Ye J. Study on adsorption isotherm of CH4/CO2binary mixtures on coalunder high pressure[J]. Coal Convers,2005,28(1):43-46.
    [56]张力,何学秋,聂百胜.煤吸附瓦斯过程的研究[J].矿业安全与环保,2000,27(6):1-4.
    [57]钟玲文,张慧,员争荣,等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-29.
    [58]于洪观,范维唐,孙茂远,等.煤中甲烷等温吸附模型的研究[J].煤炭学报,2004,29(4):463-467.
    [59]丁安徐,龚月,叶建国.贵州织金地区龙潭组煤层等温吸附特征研究及其应用[J].油气藏评价与开发,2011,1(3):76-80.
    [60]徐龙君,刘成伦.突出区煤分形结构与性质[M].重庆:重庆大学出版社,2004.
    [61] Busch A, Gensterblum Y, Bernhard M. et al. Methane and carbon dioxide adsorption-diffusion experiments on coal: up scaling and modeling[J]. Coal Geol.,2004,60:151-168.
    [62]陈昌国,鲜晓红.温度对煤和炭吸附甲烷的影响[J].煤炭转化,1995,18(3):88-92.
    [63] Giovanni Orazio D,Thomas Hocher,et al. Measuring and describing adsorption undersupercritical conditions[J]. Fundamentals of Adsorption,2008,25(7):672-679.
    [64]降文萍,崔永君,钟玲文,等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学,2007,18(4):576-579.
    [65] J. Denis N. Pone, Phillip M. Halleck, Jonathan P. Mathews. Methane and carbon dioxidesorption and transport rates in coal at in-situ conditions[J]. Energy Procedia1,2009:3121-3128.
    [66]刘常洪,杨思敬.关于煤甲烷吸附体系吸附规律的实验研究[J].煤矿安全,1993(6):1-5.
    [67]隆清明,赵旭生,等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报,2008,33(9):1030-1034.
    [68] LONG Qing-ming, WEN Guang-cai, ZOU Yin-hui, et al. Experimental study on gaspermeability by adsorption under3D-stress[J]. Journal of Coal Science&Engineering,2009,15(2):148-151.
    [69] Llorens Joan,Pera-Titus Marc. Influence of surface heterogeneity on hydrogen adsorption onactivated carbons[J]. Colloids and surfaces A:Physicochem. Eng. Aspects,2009,350:63-72.
    [70]马东民,张遂安,蔺亚兵.煤的等温吸附-解吸实验及其精确拟合[J].煤炭学报,2011,36(3):477-480.
    [71]苏现波,刘保民.煤层气的赋存状态及其影响因素[J].焦作工学院学报,199918(3):157-160.
    [72]杨新乐,张永利,等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814.
    [73]姚有利,秦跃平,等.煤中瓦斯解吸渗透理论及实验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(5):701-703.
    [74]张遂安,叶建,唐书恒.煤对甲烷气体吸附—解吸机理的可逆性实验研究[J].天然气工业.2005,21(1):44-46.
    [75]张占存.水份对煤的瓦斯吸附特性影响的实验研究[D].煤科总院抚顺分院,2004.
    [76]张占存,马丕梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报,2008,33(2):144-147.
    [77]唐巨鹏,潘一山,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [78]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):26-32.
    [79]赵阳升,等.孔隙瓦斯作用下煤体有效应力规律的实验研究[J].岩土工程学报,1995,27(1):13-18.
    [80]张双全,吴国光.煤化学[M].徐州:中国矿业大学出版社,2004.
    [81]沈惠川,李书民.经典力学[M].北京:中国科学技术大学出版社,2006.
    [82]张启仁.统计力学[M].北京:科学出版社,2004.
    [83]朱志昂,阮文娟.近代物理化学(上册)[M].北京:科学出版社,2008.
    [84]朱志昂,阮文娟.近代物理化学(下册)[M].北京:科学出版社,2008.
    [85]徐钟济.蒙特卡洛方法[M].上海:上海科学出版社,1985.
    [86] Landau D P, Binder K A. A Guide to Monte Carlo Simulations in Statistical Physics[M].Cambridge, England: Cambridge Univ Press,2000.
    [87]王宝山,侯华.分子模拟实验[M].北京:高等教育出版社,2010.
    [88]陈俊杰,任建莉,钟英杰,等.分子模拟在气固吸附机理研究中的应用进展[J].轻工机械.2010,28(6):5-9.
    [89]陈佳明,裴丽霞,周静茹.气固吸附模型的研究进展[J].化工进展.2011,30(10):2113-2119.
    [90]李春艳,刘华,刘波涛.分子模拟的方法及其应用[J].当代化工,2011,40(5):494-497.
    [91]李言浩,马沛生,王延儒.由气体粘度提供Lennard-Jones(12-6)势能参数[J].化学工程2003,31(1):53-56.
    [92]曹达鹏,汪文川.巨正则系综MonteCarlo模拟方法确定活性炭的微孔尺寸.高等学校化学学报,2002,23(5),910-914.
    [93]曹达鹏,高广图,汪文川.巨正则系统Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储[J].化工学报,2000,51(1):23-29.
    [94]何柯荣.微孔炭材料吸附过程的MonteCarlo模拟[D].暨南大学硕士论文,2007.
    [95]何科荣,李县法,李华.活性炭孔吸附过程的巨正则系综Monte Carlo模拟[J].新疆大学学报,2007,24(2):184-190.
    [96] Dapeng Cao, Wenchuan Wang, Zhigang Shen, Jianfeng Chen. Determination of Pore sizedistribution and adsorption of methane and CC14on activated carbon by molecular simulation[J].Carbon,2002,40,2359-2365.
    [97] Xiaohong Shao, Wenchuan Wang, Xuejun Zhang. Experimental measurements and computersimulation of methane adsorption on activated carbon fibers[J]. Carbon,2007(45):188-195.
    [98]孙迎新.微孔-介孔材料中气体吸附、扩散及催化转化过程的分子模拟研究[D].上海交通大学博士论文,2010.
    [99]张丽.甲烷分子在微孔材料中吸附与扩散行为研究[D].浙江大学大学博士论文,2008.
    [100]王水利,葛岭梅.碳纤维分子筛吸附分离瓦斯组分的分子模拟研究[J].煤矿安全,2010,8:1-5.
    [101] Yang Q Y, Zhong C L. Molecular simulation of carbon dioxide/methane/hydrogenmixture adsorption in metal-organic frameworks[J]. Phys. Chem. B,2006,110(36):17776-17783.
    [102]李晓锋,吴智勇,何文军,等.分子模拟方法预测流体热力学性质[J].计算机与应用化学,2011,28(8):979-981.
    [103]王三跃.金属-有机骨架材料中流体吸附性质的量化计算与分子模拟研究[D].北京化工大学博士论文,2007.
    [104] Lim S Y, Tsotsis T T. Molecular simulation of diffusion and sorption of gases in anamorphous polymer[J]. Journal of Chemical physics.2003,119(1):496-503.
    [105] Müller-Plathe F, Rogers SC, Gunsteren WFV. Computational evidence for anomalousdiffusion of small molecules in amorphous polymers[J]. Chem Phys Lett,1992,199(3):237-140.
    [106] Piotr Kowalezyk, HidekiTanaka, et. al. Monte Carlo simulation study of methane adsorptionat an open graphite surface[J]. Langmuir,2005,21,5639-5646.
    [107] Macedonia M D, Moore D D, Maginn E J, Olken M M. Adsorption studies of methane,ethane, and Argon in the Zeolite Mordenite: Molecular Simulations and experiments[J]. Langmuir,2000,16(8):3823-3534.
    [108] MATRANGA K R, STELLO A, MYERS A L. Molecular simulation of adsorbed naturalgas[J]. Separation Science and Technology,1992,27(14):1825-1836.
    [109] Donohue M D,Aranovich G L. A new classification of isotherms for Gbiss adsorption ofgases on solids[J]. Fluid Phase Equilibria,1999,158:557-563.
    [110] Takanohashi T, Iino M, Nakamura K. Computer simulation of methanol swelling of coalmolecules[J]. Energy Fuels,1999,13(4):922-926.
    [111] Busch N A,Wertheim M S, Chiew Y C,Yarmush M L. A Monte Carlo method for simulatingassociating fluids[J]. Chem. Phys.,1994,101(4):3147-3256.
    [112]王三跃,曾凡桂,田承圣,张通.分子模拟在煤大分子结构演化研究中的应用及进展[J].太原理工大学学报,2004,35(5):541-544.
    [113] Carlson GA. Computer simulation of the molecular structure of bituminous coal[J]. EnergyFuels,1992,6(6):771-778.
    [114]陈皓侃,李保庆,李文.分子力学和分子动力学方法研究不同变质程度烟煤的分子结构[J].燃料化学学报,2000,28(5):459-462.
    [115]贾建波.神东镜质组结构模型的构建及其热解甲烷生成机理的分子模拟[D].太原理工大学博士论文,2010.
    [116]荆雯.甲烷在构造煤中吸附与扩散的分子模拟[D].太原理工大学硕士论文,2010.
    [117] BOJAN M J, SLOOTEN R V, STEELE W. Computer simulation studies of the storage ofmethane in microporous[J]. Carbons,1992,14(27):1837-1856.
    [118]周健,汪文川.Gibbs系综Monte Carlo模拟甲烷的吸附平衡[J].物理化学学报.2001,17(8):723-727.
    [119] Vishnyakov A, Piotrovskaya E M. Capillary condensation and melting/freezing transitionsfor methane in silt coal pores[J]. Adsorption,1998,4:207-224.
    [120] Haixiang Hu, Xiaochun Li, Zhiming Fang, et al. Small-molecule gas sorption and diffusionin coal: Molecular simulation[J]. Energy,2010(35):2939-2944.
    [121]李希建,蔡立勇,等.基于分子动力学模拟研究煤层瓦斯流动的可行性初探[J].煤矿安全,2008,(7):74-87.
    [122]李希建,蔡立勇.瓦斯流动的分子动力模拟中势函数的研究[J].山东理工大学学报(自然科学版),2008,22(5):19-21.
    [123]李希建,徐浩.煤层甲烷吸附与解吸的MC模拟可行性分析[J].煤炭技术,2010,29(9):84-86.
    [124]李希建,蔡立勇,徐浩.分子模拟方法在煤层瓦斯流动规律研究中的应用[J].矿业研究与开发,2011,31(1):77-79.
    [125]李希建,徐浩.MC模拟甲烷吸附宏观因素微观化[J].煤炭技术,2011,30(2):93-95.
    [126]蔡立勇,李希建,徐浩.煤中瓦斯流动MD模拟的细节问题研究[J].煤,2008,8:8-16.
    [127]李海龙,李立清,郜豫川,等.用微孔填充理论研究活性炭对有机气体的吸附性能[J].化工环保,2007,27(2):113-116.
    [128]张晓东,秦勇,桑树勋.煤储层吸附特征研究现状及展望[J].中国煤田地质,2005,17(1):16-21.
    [129]李家俊,乔志军,赵乃勤,等.活性炭纤维吸附甲烷的理论计算[J].天津工业大学学报,2002,21(2):1-3.
    [130]欧成华,李士伦,郭平,等.储层孔隙介质气体吸附理论模型研究探讨[J].西南石油学院学报,2002,24(1):53-56.
    [131]王淑梅,高光华,于养信,等.氮气和氧气在膜表面和狭缝孔内平衡吸附的分子模拟[J].高等学校化学学报,2005,26(11):2113-2116.
    [132]侯艳君,高金胜,张洪全,等.巨正则系统蒙特卡罗法研究异丙醇在活性炭上的吸附特性[J].黑龙江大学自然科学学报,2005,22(4):463-467.
    [132] D.H. Everett and J.C. Powl, J. Chem. Soc. Faraday Trans. I,72(1976)619.
    [133] Rahman A. Correlations in the motion of atoms in liquid argon[J]. Physical ReviewA,1964,136:405-411.
    [134] Daw M S, Baskes M I. Embedded atom method derivation and application to impurities,surfaces, and other defects in metals[J]. Physical Review B,1984,29(12):8486-8495.
    [135] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapordeposition of diamond films[J]. Phys.Rev.B,1990,42:9458-9471.
    [136]徐全智,杨晋浩.数学建模[M].北京:高等教育出版社,2003.
    [137]罗陨飞.煤的大分子结构-煤中惰质组结构及煤中氧的赋存形态[D].煤炭科学研究总院硕士论文,2002.
    [138]李希建,林柏泉.煤与瓦斯突出机理研究现状及分析[J].煤田地质与勘探,2010,38(2):7-13.
    [139]王生全,朱红娟.基于煤层气吸附—解吸性能提高抽放性的途径探[J].陕西煤炭,2002,4:19-21.
    [140]王红刚,吴奉亮.半承压煤层瓦斯流动的数学模型[J].煤矿安全,2009(3):9-11.
    [141]文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73.
    [142]吴世跃.煤层中的耦合运动理论及其应用-具有吸附作用的气固耦合运动理论[M].北京:科学出版社,2009.
    [143]徐献芝,李培超,李川亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42-45.
    [144]许江,彭守建,等.蠕变对含瓦斯煤渗透率影响的试验分析[J].岩石力学与工程学报,2009,28(11):2273-2279.
    [145]许友生.用晶格Boltzmann方法研究多孔介质内流体的复杂动力学特征[D].上海:华东师范大学博士论文,2006.
    [146]许友生,刘慈群,林机.Darcy渗流定律的微观界定及其应用[J].应用数学和力学,2004,25(3):253-261.
    [147]肖晓春,潘一山.考虑滑脱效应的煤层气渗流数学模型及数值模拟[J].岩石力学与工程学报,2005,24(16):2966-2970.
    [148]杨建平,陈卫忠,等.低渗透介质温度–应力–渗流耦合三轴仪研制及其应用[J].岩石力学与工程学报,2009,28(12):2377-2382.
    [149]殷开梁.分子动力学模拟的若干基础应用和理论[D].浙江大学博士论文,2006.
    [150]严微微,刘阳,许友生.用格子Boltzmann研究多孔介质内的自然对流换热问题[J].西安石油大学学报(自然科学版),2007,22(2):149-152.
    [151]尹光志,王登科,等.煤岩全应力–应变过程中瓦斯流动特性试验研究[J].岩石力学与工程学报,2010,29(1):170-175.
    [152]尹光志,李晓泉,等.地应力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2008,27(12):2557-2561.
    [153]尹光志,李小双,等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):697-702.
    [154]易俊,姜永东,等.应力场、温度场瓦斯渗流特性实验研究[J].中国矿业,2007,16(5):113-116.
    [155]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [156]张春会.非均匀、随机裂隙展布岩体渗流应力耦合模型[J].煤炭学报,2009,34(11):1460-1464.
    [157]张春会,赵全胜,等.非均匀煤岩双重介质渗流-应力耦合模型[J].采矿与安全工程学报,2009,26(4):481-485.
    [158]朱万成,杨天鸿,等.基于数字图像处理技术的煤层瓦斯渗流过程数值模拟[J].煤炭学报,2009,34(1):18-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700