用户名: 密码: 验证码:
高速动车组列车网络控制若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国高速动车组的发展及对其研究的深入,列车网络控制作为其关键技术之一,得到越来越多的研究者的关注。基于列车通信网络(Train Communication Network, TCN)的控制系统代替原有的、传统的微机集中式控制,具有交互性好、系统布线少、易于扩展和维护、系统的柔性和可靠性高等优点。同时列车通信网络的介入使得控制系统的设计和分析面临更复杂的因素,需要与列车网络控制系统相适应的分析和设计理论。因此,本文结合唐山轨道客车有限责任公司CRH3型高速动车组的消化吸收以及CRH380BL型动车组的设计开发,围绕列车网络控制的性能、稳定性和实时性以及实时调度特性进行研究和分析。
     TCN网络传输介质采用屏蔽双绞线,是高速动车组网络控制信号的承载,对控制系统的稳定性起着至关重要的作用。TCN传输介质-双绞线采用四个性能指标进行评价:衰减、近端串扰、阻抗特性和时延。在CRH3型动车组调试过程中经常出现由于MVB(Multifunction Vechicle Bus)、WTB(Wired Train Bus)电缆不满足性能且不能准确判断问题产生的原因,基于此,本文推导并建立了双绞线的分布参数模型,应用传输线理论对插入损耗、时延偏移和近端串扰进行求解。利用所建立的模型,对高速动车组上所采用的传输线进行仿真,并和试验结果进行了对比研究。为了研究布线方式对传输线特性的影响,改变导线的布置,计算此时的特性参数,并对此进行比较、仿真和分析。为了研究特性参数对性能的恶化程度,改变单个特性参数进行仿真研究。试验和仿真结果表明:本文推导的模型具有非常高的适用性,可以利用此模型对高速动车组的双绞线进行分析和布局优化;特性参数的扰动对传输介质性能的恶化非常明显,使得各性能指标的裕量降低;不同的特性参数的改变,对性能恶化的程度和范围不同。
     本文针对CRH3型高速动车组TCN控制网络的特点,提出了基于OPNET仿真的TCN网络研究方法,并结合其周期轮询策略,推导并建立了MVB总线和WTB总线初运行模型。数据通量、延时和碰撞特性一直是网络性能评估的重点,对于新型动车组控制网络的开发,也需要对上述的网络性能进行评估,因此本文根据MVB网络的过程数据调度和消息数据响应机制,在不同的仿真场景下进行了仿真测试,研究了不同消息数据发送节点、不同消息数据发送率等条件对MVB网络性能的影响。为了研究CRH3高速动车组列车重联过程中的列车控制流程,本文深入研究了WTB总线初运行机制,并在正常初运行模式和WTB重联过程模式下进行仿真,研究了WTB编组的自适应特性。为了研究MVB数据链路层协议机制,实现了MVB控制器的编码和解码算法,通过采用FPGA方案代替MVB控制器与MVB专用网卡进行了互联验证。
     由于通信网络在控制系统中的使用,使得时延成为一个不得不考虑的因素。不合理的延时设定或对延时的估计不准确,会影响系统的稳定性裕度乃至不稳定,从而导致列车控制系统部分功能的锁闭。在CRH3型高速动车组的试验过程中,也曾出现由于时延计算和设置不准确而导致高压牵引系统锁闭的现象。本文利用李雅普诺夫理论、矩阵理论和线性矩阵不等式从不同的角度研究了网络控制系统的稳定性,得到了使网络控制系统渐近稳定的最大允许网络延时和稳定条件。研究结果表明,只要实际网络控制系统的传输延时小于最大允许网络延时或满足网络控制系统稳定定理,闭环网络控制系统就总是渐进稳定的。因此应该针对实际问题选取适当的控制网络以及设计合适的网络控制算法,使网络控制系统稳定。针对确定时延网络控制系统,本文给出了基于输出反馈的状态观测器和控制器设计理论。
     高速动车组需要控制的系统较多,引起所需要的控制端口大量增加,同时各端口的长度和特征周期也不一致,因此需要对列车通信网络进行可靠的调度轮询。本文针对CRH3型高速动车组周期轮询策略中周期负载总线利用率均匀度的不足,提出了一种新的列车网络周期调度算法。通过计算高速动车组的周期数据负载率,归纳出了以总线负载率均匀度为目标的多层次优化调度算法。根据MVB轮询周期表的特点,在求解过程中增加层次性的约束条件,以局部目标函数代替全局目标函数,提高了算法的运行效率。对单调速率算法、遗传算法和多约束条件均匀度优先算法的关系进行论证,表明了此优化算法在多约束条件下具有极大优势。对优化算法进行了可调度性分析,验证了周期轮询表优化结果的有效性。仿真结果进一步证实了此优化算法实现了负载信息均匀度最优。针对非周期数据,根据事件仲裁算法,提出了基于OPNET仿真的事件调度模型,并进行了仿真分析和研究。
     最后,在总结全文的基础上,提出了有待进一步研究和完善的方向。
With the rapid development of Chinese High-speed Electric Multiple Unit (EMU) and the depth of its research, the train network control system takes more and more attention of researchers as one of its key technologies. The control system based on the train communication network replacing the original and traditional centralized computer control, has the advantages of interactive, less cabling, easy to expand and maintenance, the system's flexibility, high reliability, and etc. Meanwhile, the design and analysis of the control system confronts with more complex factors because of the involvement of the train communication network and the adaptive theory of the train communication network control system analysis and design must be utilized. This dissertation does the research and analysis around the train network control performance, stability, real-time and real-time scheduling features, combined with the digestion and absorption of CRH3high-speed EMU as well as the development of the CRH380BL EMU in Tangshan Railway Vehicles Co., Ltd.
     TCN network transmission medium using shielded twisted pair, is the bearer of the high-speed EMU network control signal, and plays a vital role in the stability of the control system. Aiming at evaluating the performance of the transmission media-twisted pairs used for TCN network, including attenuation, near-end crosstalk, impedance and delay. It is often occurred that the MVB and WTB cable does not meet the performance and cannot be qualitatively judged the cause of the problem in CRH3EMU debugging process, which is based, the distributed parameter model of the twisted pair is derived and established in this dissertation, then using transmission line theory to solve the insertion loss, delay, offset and near-end crosstalk. Through the model simulation of the transmission line used in the high-speed EMU, and a comparative study and experimental results is researched. In order to study the impact of wiring on the transmission line characteristics, changing the layout of the wire, calculating the parameters, and comparison, simulation and analysis is obtained. Then changing the single characteristic parameters and doing simulation research to study the characteristic parameters of the deterioration of the performance. Experimental and simulation results show that:the derivate model has very high applicability, and which can be used for analysis and layout optimization of twisted-pair on the high-speed EMUs; Disturbance of the characteristic parameters deteriorates the transmission medium performance, which make the performance margin decreased. The extent and scope of performance deterioration varies form the difference among the parameters changing.
     This dissertation presents a TCN network research method based on OPNET simulation software for the characteristics of CRH3high-speed EMU TCN control network, combined with periodic polling strategy adopted in CRH3high-speed EMU, derives and establishes the MVB model and WTB inauguration model. Data throughput, delay, and collision characteristics have been the focus of the network performance assessment, also for the development of new EMU control network. According to the process scheduling and message data response mechanism of the MVB network, the simulation tests are realized in the different simulation scenarios. Under the Conditions of different message data sending node numbers and different messages data sending rate, the effects on the MVB network performance are researched. In order to research the control procedure in train coupling process of CRH3high-speed EMU, WTB inauguration mechanism is in-depth studied, and the simulation under normal inauguration mode and the WTB coupling process is done to study the adaptive features of WTB marshaling. The MVB controller encoding and decoding algorithms are achieved. Through the usage of FPGA scheme replacing the MVB controller and inter-connect verification with the dedicated MVB card, the MVB data link layer protocol mechanism is researched.
     Due to the usage of the communication network in the control system, the delay become one of factors had to be considered. Unreasonable delay setting or inaccurate estimate will affect the system stability margin as well as unstable, and lead to locking some features of the train control system. We have seen the phenomenon of high-voltage traction system locking in the testing process of CRH3high-speed EMU because of inaccurate delay calculation and setting. This dissertation has researched on the stability of networked control systems from different perspective using Lyapunov theory, matrix theory and linear matrix inequality, and derived the maximum allowable network delay and stability conditions to asymptotically stable the networked control systems. The results show that as long as actual network control system transmission delay less than the maximum allowable network delay or meeting the network control system stability theorem, the closed-loop network control system is always asymptotically stable. Therefore, the appropriate network type and control algorithms should be designed against the practical conditions to stable the network control system. The state observer and controller design theory based on the output feedback has been given against the deterministic delay network control systems.
     In high-speed EMU this is more systems need to be controlled, which caused a significant increase of the control port and which is also inconsistent in the length of the port and the characteristic period, therefore reliable scheduling polling is required for train communication network. This dissertation proposes a new train network period scheduling algorithm against the lack of uneven periodic bus-load utilization in CRH3high-speed EMU polling strategy. The multi-level scheduling optimization algorithm as the target on bus load rate uniformity is obtained by calculating the high-speed EMU period-data load rate. According to the characteristics of MVB polling periodic table, some hierarchical constraints are added and the Local objective function take place of global objective function in the solution process. The operational efficiency of the algorithm is greatly improved. This dissertation has also demonstrated the relationship between the rate monotonic algorithm, genetic algorithm and multi-constraint conditions evenness priority scheduling algorithm, in order to show that the optimization algorithm has great advantages under the conditions. The schedulability analysis for the optimization algorithm is processed and it shows the validity of the results after the periodic polling table is optimized. The simulation results further confirm that the optimization algorithm has achieved optimum uniformity of the load information. The event schedule model based on OPNET simulation is proposed according to the event arbitration algorithm for non-periodic data.
     Finally, the research conclusions are presented and the future research works are discussed.
引文
[1]IEC61375-1:1999. Electric railways equipment-train bus-part 1:Train Communication Network [S].1999.
    [2]UIC556 leaflet. Information Transmission in the Train,2nd edition [S]. International Union of Railways.1999.1.
    [3]李国平.列车通信网络WTB/MVB与Lon Works的技术比较与应用[J].铁道车辆.2004.42(1):22-24.
    [4]奚国华,路向阳,夏寅.我国列车通信网络的实践与开发探讨[J].机车电传动.2000.1:2-5.
    [5]王磊,何正友.高速列车通信网络技术特点及其应用[J].城市轨道交通.2008.2:57-64.
    [6]左健存,蒋晓黎.高速列车通信网的技术特点及其在机车车辆上的应用[J].交通与计算机.1999.4(17):41-44.
    [7]钱存元,邵德荣,谢维达.现场总线在列车控制网络中的应用与发展[J1.交通与计算机.2004.22(1):68~72.
    [8]杨志仁,王雪梅.基于Lon Works技术的列车通信网络[J].测控技术.2000.9(6):13-15.
    [9]曾嵘,杨卫峰等.列车分布式网络通信与控制系统[J].机车电传动.2009.3(9):17-19,31.
    [10]彭代文,李红辉,张春.列车通信网络及其访问控制协议和选用原则[J].铁路计算机应用.2006.15(10):47~49.
    [11]L G Bushnell. Networks and control [J]. IEEE Control Systems Magazine.2001.21(1): 22-23.
    [12]Paul C R. Solution of the Transmission-Line Equations for Three-Conductor Lines in Homogeneous Media [J]. IEEE Transactions on Electromagnetic Compatibility.1978. Volume: EMC-20(1). Part:Ⅱ:216-222.
    [13]Paul C R. Computation of Crosstalk in a Multiconductor Transmission Line [J]. IEEE Transactions on Electromagnetic Compatibility.1981. EMC-23(4):352-358.
    [14]James C, DiBene J T. The charge density distributions and mutual capacitance of a shielded twisted four-wire transmission line [C]. IEEE International Symposium on Electromagnetic Compatibility.1998.2:1156-1160.
    [15]EN 50265-2-1:1998. Common test methods for cables under fire conditions-Test for resistance flame to vertical flame propagation for a single insulated comductor or cable-Part 2-1:Procedures-1KW Pre-mixed flame [S].1998.
    [16]BSEN 50289-1-2:2001. Communication cables-Specifications for test methods-Part 1-2: Electrical test methods-DC resistance[S].2001.
    [17]BSEN 50289-1-5:2001. Communication cables-Specifications for test methods-Part 1-5: Electrical test methods-Capacitance[S].2001.
    [18]EN50289-1-6:2002. Cmmunication cables-specificatiions for test methods part 1-6:electrical test methods-electromagnetic performance[S].2002.
    [19]BSEN 50289-1-8:2001. Communication cables-Specifications for test methods-Part 1-8: Electrical test methods-Attenuation[S].2001.
    [20]BSEN 50289-1-10:2002. Communication cables-Specifications for test methods-Part 1-10: Electrical test methods-Crosstalk[S].2002.
    [21]BSEN 50289-1-11:2002. Communication cables-Specifications for test methods-Part 1-11: Electrical test methods-Characteristic impedance, input impedance, return loss[S].2002.
    [22]IEC61196-1:2005. Coaxial communication cables-Part 1:Generic specification-General, definitions and requirements[S].2005.
    [23]CHARLES.S.WALKER, Capacitance, Inductance and Crosstalk Analysis [M]. Artech House. Norsvaod. Mass.1990.
    [24]Omazic S, Umek A. A simple formula for calculation of power loss in digital transmission lines [J]. IEEE Transactions on Communications.1992.3(40):484-486.
    [25]H. W. Johnson and M. Graham, High-speed digital design [M],5. Printed. Englewood Cliffs, N.J.:Prentice Hall,1993.
    [26]Valenti C. NEXT and FEXT Models for Twisted-Pair North American Loop Plant [J]. IEEE Journal on Selected Areas in Communications.2002.5(20):893-900.
    [27]E Bogatin. Signal Integrity-Simplified [M]. N J:Prentice Hall.2003.
    [28]Holte N. An analytical model for the probability distributions of crosstalk power sum for a subset of pairs in a twisted pair cable [C]. Global Telecommunications Conference. GLOBECOM 04. IEEE.2004.1:313-317.
    [29]Nedev N H, McLaughlin S, Cook, J W. Wideband Unshielded-Twisted-Pair (UTP) Cable Measurements and Modeling for Multiple-Input-Multiple-Output (MIMO) Systems [J]. IEEE Transactions on Instrumentation and Measurement.2007.56(6):2515-2521.
    [30]Ruan Li-gang, Wang Li. A Transmission Line Model for Prediction of Crosstalk Involving Three-Core Twisted Cables [C].2010 International Conference on Electrical and Control Engineering (ICECE).2010:3241-3244.
    [31]Al-Asadi M M, Wills A J, Hodge K, Duffy A P. Modelling as a tool for analysing handling effects in structured wire cabling.10th International Conference on Electromagnetic Compatibility [C].1997. No.445:131-136.
    [32]Paul C R. Prediction of Crosstalk in Ribbon Cables:Comparison of Model Predictions and Experimental Results [J]. IEEE Transactions on Electromagnetic Compatibility.1978. EMC-20(3):394-406.
    [33]Umek A. Theoretical and available transmission capacity of UTP [C]. Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology (TENCON). 2001.2:698-702.
    [34]Jobava R, Diaz L, Karkashadze D, Bogdanov F, Yavolovskaya E, Gheonjian A, Badzagua I, Iosava S. Development of simulation model for shielded twisted pair cables in EMC immunity problems [C]. Proceedings of Xth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory.2005:84-89.
    [35]Huang C-W P, Smith C E, Elsherbeni A Z, Hammond B. Simplified equations of a 4-port scattering parameter model for characterizing 4-pair cabling systems of local area networks [C]. Southeastcon '99. Proceedings. IEEE.1999:189-192.
    [36]刘建强,郑琼林,张永峰,杜会谦,孙帮成.CRH3型动车组列车网络传输介质电气特性研究[J].机车电传动.2010.10:7-11.
    [37]乔崇.长双绞线信号传输的研究[博士学位论文].北京:中国科学技术大学.2005.
    [38]吕文红,郭银景,唐富华等.电磁兼容原理及应用教程(第二版)[M].北京:清华大学出版社.2008.
    [39]胡军.车载通信系统电磁兼容测试与互连性能评估[硕士学位论文].西安电子科技大学.2007.
    [40]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社.2000.
    [41]刘刚,付宇卓.多负载总线系统驱动能力研究[J].信息技术.2008.9:124-126.
    [42]张凯.均匀传输线的实验研究[硕士学位论文].重庆:重庆大学.2007.
    [43]赵长青.线间串扰及其抑制方法[J].电站设备自动化.2006.6(2):19-21.
    [44]马宏斌.5类电缆性能测试的基本指标[J].信息技术.2005.29(5):98-99.
    [45]张艳珠,薛定宇.基于分数阶模型的传输线瞬态分析与研究[J].仪器仪表学报.2008.29(5):1054-1057.
    [46]张亦慧,韩凤玲,束洪春.耦合传输线参数测试[J].哈尔滨工业大学学报.1994.6.3(26):79-83.
    [47]尚晓航,解文彬,马颂阳.介质长度对五类非屏蔽双绞线电气性能的影响[J].北京联合大学学报(自然科学版).2006.20(3):64-68.
    [48]李莉,万里兮,咸金龙等.多导体传输线互耦实验研究[J].电波科学学报.1996.6.2(14):166-171.
    [49]杨云江.综合布线系统测试技术与Fluke测试报告分析[J].贵州大学学报.2004.4:411-415
    [50]Mianyu Wang, Lin E, Woertz E, Kam M, Collision resolution simulation for distributed control architectures using LonWorks [C]. IEEE International Conference on Automation Science and Engineering.2005:319-326.
    [51]Liman Yang, Yunhua Li, and Guilin Yang. Analysis of Delay and Traffic Load in Networked Control System [C]. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. USA:IEEE/ASME.2005:1425-1430.
    [52]Sidhu T S, Yuejie Yin. Modelling and Simulation for Performance Evaluation of IEC61850-Based Substation Communication Systems [J]. IEEE Transactions on Power Delivery.2007.22:1482-1489.
    [53]Banu J, Chew Yong Huat, Chin F P S. The Effect of Node Connectivity Control on the Throughput of Distributed MAC Networks [C]. IEEE Wireless Communications and Networking Conference. USA:IEEE.2008:1656-1660.
    [54]Hui Ma, Rajiv Vijayakumar, Sumit Roy, Jing Zhu. Optimizing 802.11 Wireless Mesh Networks Based on Physical Carrier Sensing [J]. IEEE/ACM Transactions on Networking. 2009.17(5):1550-1563.
    [55]Andersson B, Tovar E. The utilization bound of non-preemptive rate-monotonic scheduling in Controller Area Networks is 25% [C]. IEEE International Symposium on Industrial Embedded Systems.2009:11-18.
    [56]Jimenez J, Martin J L, Bidarte U, Astarloa A, Zuloaga A. Design of a Master Device for the Multifunction Vehicle Bus [J]. IEEE Transactions on Vehicular Technology.2007.56: 3695-3708.
    [57]Jimenez J, Martin J L, Zuloaga A. Comparison of two designs for the multifunction vehicle bus [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2006.25(5):797-805.
    [58]Moreno J C, dLaloya E, Navarro J. A Link-Layer Slave Device Design of the MVB-TCN Bus (IEC 61375 and IEEE 1473-T) [J]. IEEE Transactions on Vehicular Technology.2007.56: 3457-3468.
    [59]Barghi H, Bredeson J G, Cronenwett W. Throughput and delay analysis for a new efficient CSMA/CD based protocol [J]. Twenty-Second Southeastern Symposiums on System Theory. 1990:209-214.
    [60]M Young. A Basic Study on Algorithm of Real-Time Schedule Table for Fieldbus [C]. Proceedings of the 4th World Congress on Intelligent Control and Automation.2002.3: 1760-1763.
    [61]徐超,李正平,汪长勤.基于CSMA/CD的CAN总线访问的建模与仿真的研究[J].仪器仪表学报.2008.29(4):866-869.
    [62]周悦,吴齐,杨少文.基于DSPN的WorldFIP,总线MAC子层的建模和分析[J].沈阳建筑大学学报.2007.23(3):518-521.
    [63]李晓汀,丁凡等.基于OPNET的CAN网络建模与仿真[J].北京航空航天大学学报.2009.35(3):284-287,346.
    [64]况长虹,李家武等.基于OPNET的ARCNET列车通信网络的建模与仿真[J].铁路计算机应用.2008.17(5):49-51.
    [65]刘建伟.轨道交通车辆MVB通信网络的研究与设计实现[硕士学位论文].北京:北京交通大学.2006.
    [66]倪文波,王雪梅.高速列车网络与控制技术[M].成都:西南交通大学出版社.2008.
    [67]李常贤,邹积岩,赵明花.一种基于MVB网络通信的中央控制设备设计方案及其实现.铁道学报.2010.32(2):125-130.
    [68]徐晓松,谢维达.绞线式列车总线原型节点的设计[J].工业控制计算机.2001.20(8):54-58.
    [69]刘全利,王晓琳,党伟.CPCI架构MVB通信卡硬件设计与实现.控制工程.2009.16(5):634-637.
    [70]侯宁,丁荣军,王永翔.MVB网卡的帧收发器设计.机车电传动.2006.(1):19-22.
    [71]谢希仁.计算机网络[M].北京:电子工业出版社.2003.
    [72]王文博,张金文OPNET Modeler与网络仿真[M].北京:人民邮电出版社.2003.
    [73]李笑歌,宇伟,高尚伟.基于OPNET软件的数据网络建模与仿真研究[J].系统仿真学报.2006.18(9):2653-2656.
    [74]张岩,唐涛,马连川.基于交换式以太网安全通信协议的模型和仿真研究.铁道学报.2010.32(3):43-48.
    [75]刘珩,杨杰,安建平等.网络仿真技术在CAN总线协议分析中的应用[J].计算机仿真.2003.(z1):397-400.
    [76]徐超,李正平,汪长勤.基于CSMA/CD的CAN总线访问的建模与仿真的研究[J].仪器仪表学报.2008.29(4):866-869.
    [77]Hirai K. Satoh Y. Stability of a system with variable time-delay [J]. IEEE transations on AC. 1980.25(3):552-554.
    [78]Ray A, Halevi Y. Integrated communication and control systems:Part1 analysis [J]. ASME Journal of Dynamic Systems, Measurement and Control.1988.110(4):367-373.
    [79]Branicky M S, Phillips S M, Wei Zhang. Stability of networked control systems:explicit analysis of delay [C]. Proceedings of the 2000 American Control Conference.2000. 4:2352-2357.
    [80]Raji R S. Smart networks for control [J]. IEEE Spectrum.1994.31 (6):49-55.
    [81]Baruch J, Cox M. Remote control and robots:an internet solution [J]. Computing & Control Engineering Control.1996.7:39-45.
    [82]Feng-Li Lian, Moyne J R, Tilbury D M. Control performance study of a networked machining cell. Proceedings of the American Control Conference [C].2000.4(3):2337-2341.
    [83]Wei Zhang, Branicky M S, Phillips S M. Stability of networked control systems [J]. IEEE Control Systems Magazine.2001.21(1):84-99.
    [84]Walsh G C, Hong Ye, Bushnell L G. Stability analysis of networked control systems [J]. IEEE Transactions on Control Systems Technology.2002.10(3):438-446.
    [85]Wing Shing Wong, Brockett R W. State estimation with finite communication bandwidth constraints [C]. Proceedings of the 34th IEEE Conference on Decision and Control.1995.2: 1400-1401.
    [86]Goodwin C. Juan Carlo A. State estimation for systems having random measurement delays using errors in variables [C], The 15th Triennial World Congress.2002.
    [87]Beldiman O, Walsh G C. Predictors for networked control systems [C]. Proceedings of ACC. 2000.4:2347-2351.
    [88]Rogelio L. Ray A. An Observe-based compomsators for distributed delays [J]. Automatica. 1990. (7):189-202.
    [89]Aeyels D, Peuteman J. A new asymptotic stability criterion for nonlinear time-variant differential equations [J]. IEEE Transactions on Automatic Control.1998.43(7):968-971.
    [90]G F Flranklin, J D Powell, M Workman. Digital Cotrol of Dynamic Systems [M]. Addision Eesley Longman. Reading. MA.1994. Sencond Edition.
    [91]Ray A. Output feedback control under randomly varying distributed delays [J]. Measurement and control.1994.17(4):701-711.
    [92]Nilsson J. Real-time control systems with delays [P. H. D Dissertation]. Switchland:Lund institute of Technology.1998.
    [93]Tatikonda S, Sahai A, Mitter S. Control of LQG systems under communication constraints [C]. Poceedings of the 1999 American Control Conference.1999.4:2778-2782.
    [94]于之训,陈辉堂,王月娟.时延网络控制系统均方指数稳定的研究[J].控制与决策.2000.15(3):278-281.
    [95]吴麟.自动控制原理[M].北京:清华大学出版社.2001.
    [96]吴迎年,张建华,侯国莲,李泉.网络控制系统研究综述(Ⅱ)[J].现代电力.2003.6.
    [97]方来华.网络控制系统分析、建模与控制研究[博士学位论文].天津:天津大学.2005.
    [98]郑英,方华京,谢林柏等.具有随机时延的网络化控制系统基于等价空间的故障诊断[J]信息与控制.2003.32(2):155-159.
    [99]朱其新,胡寿松.网络控制系统的分析与建模[J].信息与控制.2003.32(1):5-8,13.
    [100]Liu C L, layland J W. Scheduling algorithms for multiprogramming in hard real-time environment [J]. Journal of the ACM.1973.20(1):46-61.
    [101]Lopez J M, Diaz J L, Garcia D.F. Minimum and maximum utilization bounds for multiprocessor rate monotonic scheduling [J]. IEEE Transactions on Parallel and Distributed Systems.2004.15(7):642-653.
    [102]Raja P, Noubir G. Static and nyilamic Polling Mechanism for Fieldbus Networks [J]. ACM Operation System Review.1993.27(1):34-45.
    [103]Almeida L, Pasadas R, Fonseca J A. Using a planning scheduler to improve the flexibility of real-time fieldbus networks [J]. Control Engineering Practice.1999.7:101-108.
    [104]Zuberi, K. M.; Shin, K. G.:Design and Implementation of efficient message scheduling for controller area network [J]. IEEE Transactions on Computers.2000.49(2):182-188.
    [105]Yue Zhou, Tian-Ran Wang, Hai-Bin Yu, Min-Zhe Yuan. An optimizing heuristic algorithm for schedule table of FF system [C]. The 29th Annual Conference of the IEEE.2003.1:617-619.
    [106]Cavalieri S, Stefano A D, Mirabella O. Pre-run-time scheduling to Reduce Schedule Length in the Fieldbus Environment [J]. IEEE Transactions on Software Engineering.1995.21(11): 865-880.
    [107]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社.1999.
    [108]蒲维,周益仁.FF现场总线系统调度问题研究[J].信息与控制.2002.31(6):513-517,523
    [109]陈积明,王智,Song Yeqiong,孙优贤.WorldFIP和FF非周期信息调度的性能比较[J].仪器仪表学报.2005.26(4):386-390.
    [110]朱琴跃.列车通信网络实时性理论与方法研究[博士学位论文].上海:同济大学.2008
    [111]刘怀,沈捷,黄建新.一类分布式控制系统的容错优化调度算法[J].系统仿真学报.2008.20(22):6222-6225.
    [112]王永翔,王立德.多功能车辆总线周期扫描表的最优化设计[J].铁道学报.2009.31(6):46-52.
    [113]王万良,蒋一波,李祖欣,雷必成等.网络控制与调度方法及应用[M].北京:科学出版社.2009.
    [114]刘鲁源,方任君,李斌.基于TTCAN协议的网络控制系统静态调度算法的研究[J].控制与决策.2004.19(7):813-816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700