用户名: 密码: 验证码:
同杆并架线路继电保护与故障测距新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,电力负荷不断增长,对于提高电网输电容量的需求更加迫切。然而,我国输电走廊建设和耕地资源保护的矛盾非常突出,并已成为制约电网发展的主要瓶颈之一。因此,在不增加输电走廊的基础上提高输电线路的输电容量有着重要的经济价值和社会意义。近年来,同杆并架输电技术因其输送容量大、节约输电走廊等优势在我国电网中得到广泛应用。同杆并架线路具有线间距离近,耦合情况复杂,故障种类繁多,运行方式多样的特点,使得传统应用于单回输电线路和平行双回线路的参数计算方法、数字仿真和物理模型构建方法、电流差动保护方案、自动重合闸技术等均难以直接应用于同杆并架输电线路。此外,由于输电需求的不同,实际输电系统中存在着众多不同结构的非全程同杆并架输电线路,输电线路架设形式的多样化也给故障测距技术提出了新的挑战。因此,适时地针对同杆并架线路继电保护和故障测距技术展开研究具有重要的理论和现实意义。本论文主要围绕同杆并架线路的参数计算与对称性分析,数字仿真系统与物理模型的构建、电流差动保护、自适应重合闸和故障测距等方面的关键技术问题展开研究和论述
     输电线路参数计算是进行电力系统潮流计算、短路电流计算和继电保护整定计算的重要基础,论文根据同杆并架线路的特点,提出了一种基于“单导线-大地”回路的同杆并架线路参数计算方法,有效的克服了当前单回线及平行双回线的参数计算方法在反映线路复杂耦合情况和运行方式变化等方面的不足,可适用于各种架设形式的同杆并架线路。与数字仿真和线路实测参数的对比分析表明,所提出的参数计算方法具有使用灵活方便,计算精度高等特点,能够满足工程应用的要求。在此基础上,论文进一步对比分析了同杆并架双回线三种典型相序排列结构对线路序阻抗参数对称性的影响,并据此对同杆并架线路的相序排列结构和换位方式提出建议。
     数字仿真和动模试验是进行保护原理研究和性能评估的重要手段。论文以PSCAD数字电磁暂态仿真软件为基础,提出了一种基于输电线路杆塔结构参数的同杆并架双回线仿真平台构建方法,该方法解决了传统平行双回线路模型无法反映线路参数不对称的问题,并能够准确模拟同杆并架双回线的各种简单和跨线故障。在此基础上,根据输电线路基本电磁特性分析理论,提出了一种基于共最小互阻抗原理的同杆并架双回线路物理模型的构建方法,该方法从双回线各导线间的耦合情况着手,能够全面有效的反映双回线各相间的互感差异,克服了现有双回线物理模型只能反映线间零序互感的不足。论文以某实际同杆并架线路为原型,利用该方法研制了物理试验模型,试验结果表明,该模型满足设计要求,能够正确模拟同杆并架双回线的故障暂态特征,可用于同杆并架双回线路继电保护原理和设备的检测试验。
     同杆并架双回线路中各相导线相距较近,分布电容较大,且电容参数随着线路运行方式的变化而改变,给线路差动保护性能带来了诸多不利影响。论文分析了同杆并架线路分布电容参数的变化特点,提出了一种新型同杆并架双回线差动保护方案。在该方案中,采用多差动判据配合的方式使方案的整体性能达到最优,其中分相电流差动采取适当抬高定值门槛的方法,以躲过零序分布电容参数变化所产生的不平衡电流,主要用于反应各种区内严重故障;故障分量相差电流差动判据和负序电流差动判据的电容电流补偿精度不受双回线运行方式和沿线环境等因素的影响,补偿效果好,判据安全性高。两判据均由故障量电流构成,不受线路负荷电流的影响,区内故障时灵敏度高,能够有效弥补分相电流差动判据反应区内轻微故障能力的不足。数字仿真和动模测试的结果验证了新方案的有效性和正确性。
     自适应重合闸技术对防止重合于永久性故障时给电网和电气设备带来的二次冲击,保证电力系统的运行安全具有重要作用。论文针对不带并联电抗器的同杆并架双回线路,提出了一种多判据综合应用的自适应重合闸方案。该方案由电压相位自适应重合闸判据、电压幅值自适应重合闸判据、二次电弧熄弧判据和按相重合方法共同构成,克服了单一自适应重合闸判据在应用中存在的不足,可有效判断同杆并架双回线发生单相接地故障、单相跨单相跨线故障时的故障性质和二次电弧熄灭时间。此外,对于带并联电抗器的同杆并架双回线路,论文分析了同杆并架线路并联电抗器断开相电流和中性点小电抗器电流的特性,并借鉴单回线的故障性质判别方法,提出一种适用于带并联电抗器的同杆并架双回线的瞬时性故障和永久性故障识别方案。最后,通过数字仿真和动模试验,验证了的论文提出同杆并架双回线自适应重合闸方案的有效性和正确性。
     论文分析了现有测距方案应用于非全程同杆并架线路时存在的问题,提出了一种适用于非全程同杆并架线路的双端故障测距方法。该方法从非全程同杆并架线路的特点出发,依据不同的架设方式对线路进行分段,并分别利用各段的参数矩阵,从线路两端求取沿线的电压。该方法不受线路对称性和架设结构的影响,克服了目前常用的同杆并架线路故障测距方案仅能应用于对称线路的不足。数字仿真的结果证明了该方案能够应用于非全程同杆并架线路的故障测距,且精度较高。
     论文的最后,对全文工作进行了系统的总结,并指出了下一步需要开展的工作。
With the fast development of domestic economic and growth of power load, therequirement of improving the transmission capacity of power grid becomes more and moreurgent. However, the contradiction between construction of transmission corridor andprotection of arable land resources is very serious, and it has been the main limitation of thedevelopment of power gird. Hence, it is of important economic value and socialsignificance to improve the capacity of transmission lines without adding transmissioncorridor. In recent years, due to its advantage in large transmission capacity and saving oftransmission corridor, parallel transmission lines on same tower have been widely adoptedin the domestic power gird. The parallel transmission lines on same tower have thefollowing characteristics: small distance between lines, complicated coupling condition, agreat variety of fault types and various operation modes. These characteristics make thetraditional parameter calculation method, digital simulation method, physical modelingmethod, current differential protection and auto-reclosure scheme which are applied onsingle transmission line and parallel transmission lines can not be applied on paralleltransmission lines on same tower directly. Moreover, limited by transmission corridor,incomplete-journey parallel transmission lines on same tower with different structures existin power transmission system. Diversification of the construction mode of transmissionlines brings new challenge for fault location. Therefore, it is of important significance tostudy the relay protection and fault location technology for parallel transmission lines onsame tower specifically. Thus, the key technical problems of parallel transmission lines onsame tower, like parameter calculation, symmetry analysis, digital simulation model,construction of physical model, current differential protection, adaptive reclosure, faultlocation and so on, are studied and discussed in this dissertation.
     According to the characteristics of parallel transmission lines on same tower, aparameter calculation method based on “single conductor-ground” circuit is proposed. Thismethod effectively overcome the disadvantages that existing parameter calculation methodsfor single transmission line and parallel transmission lines have in reflecting complicated coupling condition and change of operation condition, and it is applicable for paralleltransmission lines on same tower with different construction modes. The comparison of theline parameters calculated by this method and the measured line parameters shows that thismethod is flexible and convenient and its result has high accuracy which can satisfy therequirements of engineering application. Based on it, the influences of three classicalphase-sequence arrangement modes on symmetry of sequence impedance is analyzed andcompared. Then, some suggestions about the phase-sequence arrangement mode andtransposition of parallel transmission lines on same tower are proposed.
     A simulation modeling method of parallel transmission lines on same tower based ontower structure parameters is proposed. The proposed method solves the problem oftraditional parallel transmission lines model that it can not reflect the asymmetry of lineparameter. And the method can simulate the simple fault conditions and inter-line faultconditions of parallel transmission lines on same tower accurately. With the combination oftheoretical analysis and digital simulation, a physical modeling method of paralleltransmission lines on same tower based on the principle of minimum mutual impedance isproposed. Based on the coupling between different conductors of the two lines, the physicalmodeling method can reflect the difference of mutual inductance between different phasescompletely and effectively. It overcomes the disadvantage of existing physical models thatthey can only reflect zero-sequence mutual inductance between lines. This method isapplied to develop a physical model for a practical parallel transmission lines on sametower. The results of digital simulation and dynamic analog test show that the model cansatisfy the design requirements. And it can simulate the fault transient characteristics ofparallel transmission lines on same tower. Hence, it can be used for the test of relayprotection principle and equipments for parallel transmission lines on same tower.
     A novel differential protection scheme for parallel transmission lines on same towerbased on on-line calculation of positive-sequence capacitor is proposed. This schemeeffectively solve the problem of inaccurate capacitor current compensation caused by theinfluence of operation environment and operation mode on distributed capacitor of paralleltransmission lines on same tower. The whole performance is optimized by the coordinationof multi differential criteria. An appropriate higher threshold is adopted by segregatedcurrent differential protection to avoid the influence of the unbalanced current caused by the change of zero-sequence distributed capacitor, to reflect all kinds of internal severe fault.The accuracy of capacitor current compensation of fault component current differentialcriterion and negative-sequence current differential criterion is not affected by operationenvironment and operation mode. Hence, the compensation effect is good and the securityof criteria is high. Because both criteria consist of fault component, they are not affected byload current, have good sensibility of internal fault and can effectively make up thedisadvantage of segregated current differential protection that its sensibility of internalminor fault is not good enough. Results of digital simulation and dynamic analog test verifythe effectiveness and correctness of the novel scheme.
     A thorough adaptive auto-reclosure scheme for parallel transmission lines on sametower without shunt reactors is proposed. The scheme consists of adaptive auto-reclosurecriterion based on voltage phase, adaptive auto-reclosure criterion based on voltagemagnitude, arc extinction criteria of secondary arc and phase by phase reclosure method. Itovercomes the disadvantages of single auto-reclosure criterion in application, and it canidentify the fault characteristics of parallel transmission lines on same tower and arcextinction time of secondary arc when single phase grounded fault and inter-line fault ofsingle phase to single phase happen. Furthermore, for parallel transmission lines on sametower with shunt reactors, the characteristics of switched-off phase current and currentthrough the small reactor of neutral point are analyzed. Learning from the identificationmethod of fault characteristics of single transmission line, an identification scheme ofinstantaneous and permanent fault on parallel transmission lines on same tower with shuntreactors is proposed. In the end, the effectiveness and correctness of the proposed adaptiveauto-reclosure scheme for parallel transmission lines on same tower is verified by digitalsimulation and dynamic analog test.
     The error of the existing fault location scheme when it is applied onincomplete-journey parallel transmission lines on same tower is analyzed. And atwo-terminal fault location method which is suitable for incomplete-journey paralleltransmission lines on same tower is proposed. Based on the characteristics ofincomplete-journey parallel transmission lines on same tower, the proposed method dividesthe line into different sections in accordance with construction mode, and calculates thevoltage along transmission line from the two end of line with the parameter matrixes of different sections. The method is not affected by the line symmetry and construction mode,and it overcomes the disadvantage of existing fault location schemes for paralleltransmission lines on same tower that they can only be used on symmetrical line. Digitalsimulation results verify that this scheme is applicable for incomplete-journey paralleltransmission lines and it has high accuracy.
     In the end, the dissertation gives systematical summary and points out the furtherwork.
引文
[1]中华人民共和国国家统计局.中华人民共和国2011年国民经济和社会发展统计公报.中国统计,2012,(3):4-10.
    [2]刘开俊,葛旭波,王楠.能源基地建设与特高压电网规划.中国电力,2008,41(1):1-3.
    [3]舒印彪.我国特高压输电的发展与实施.中国电力,2005,38(11):1-8.
    [4]赵庆波,张正陵,白建华.能源资源格局与“一特三大”电力发展战略.能源基地建设,2007,40(12):1-5.
    [5]董鹏,朱艺颖,呙虎,等.特高压电网建设初期“三华”电网数模混合实时仿真试验研究.2012,32(1):18-25.
    [6]印永华.特高压大电网发展规划研究.电网与清洁能源,2009,25(10):1-3.
    [7] Ishii M., Kawaamura T, Kouno T, et al. Multistory Transmission Tower Model forLightning Surge Analysis. IEEE Transactions on Power Delivery.1991,6(3):1327-1335.
    [8] Landers T.L., Richeda R. J., Krizanskas E., et al. High Phase Order Economics:Constructing a New Transmission Line. IEEE Transaction on Power Delivery.1998,13(4):1521-1526.
    [9] Boos K. V. Experiences Gained in Operation of Multiple Circuit High VoltageOverhead Lines of Design, CIRGRE SC22-12,1986:385-391.
    [10]徐建国.对国外超高压同塔多回送电线路技术的调研分析,电力建设,2001,22(7):15-18.
    [11]黄爱华,郑旭,钱光忠.同杆并架多回路技术的应用,华东电力,2006,34(8):60-63.
    [12]俞波.超高压同杆并架双回线路微机保护的研究.华北电力大学博士学位论文,2002.
    [13]康小宁,梁振锋.同杆平行双回线路保护及自动重合闸综述.继电器,2004,32(23):72-76.
    [14]陈宝喜,甑威,唐永红.四川洪龙500kV同塔双回线继电保护及自适应重合闸装置RTDS实时仿真试验.四川电力技术,2004,6:1-5.
    [15]吴彤.基于空间磁场的同杆并架双回线动态物理模型的研究.华中科技大学博士学位论文,2011.
    [16]葛耀中.新型继电保护与故障测距的原理与技术(第2版).西安:西安交通大学出版社,2007.
    [17]索南加乐,葛耀中,陶惠良,等.同杆双回线的六序选相原理.中国电机工程学报,1991,11(6):1-9.
    [18]郭玉藻,林声宏,梁研珍,等.高压输电线的动态物理模型.华南理工大学学报(自然科学版),1996,24(1):145-150.
    [19] Dommel H. H. Overhead Line Parameters From Handbook Formulas and ComputerPrograms. IEEE Computer Applications in Power,1990,3(1):34-38.
    [20] Chen K. C., Damrau K. M. Accuracy of Approximate Transmission Line Formula forOverhead Wires. IEEE Trans On Electromagn Compat,1989,31(3):396-401.
    [21] Anderson J. G.345kV及以上超高压输电线路设计参考手册.北京:电力工业出版社,1981.
    [22]毛为民.电力电缆相序阻抗计算与分析.供用电,2002,19(4):24-25.
    [23]李永庄,林集明,曾昭华.电力系统电磁暂态计算理论.北京:水利电力出版社,1991.
    [24]沈其瑜.架空线路参数计算方法探讨.四川电力技术,1995,(4):52-56.
    [25]惠子厚.应用计算机计算输电线路参数.华北电力技术,1994,(1):57-59,64.
    [26]余颖辉,李建华,杨增辉.同塔4回输电线路参数计算方法研究.上海电力,2009,(2):99-102.
    [27]孙秋芹,王冠,李庆民,等.特高压双回线路耦合效应的计算与分析.高电压技术,2009,35(04):737-742.
    [28]班连庚.同塔架设的220kV~500kV输电线路感应电流与感应电压仿真分析.电网技术,2009,33(6):45-49.
    [29]和敬涵.解耦变换在电力系统暂态保护中的应用研究.北京交通大学学报,2006,30(5):101-104.
    [30]永庄译. Dommel电力系统电磁暂态计算理论.北京:水利水电出版社,1991.
    [31]朱声石.高压电网继电保护原理与技术(第三版).北京:中国力工业出版社,2005.
    [32]陈恺,林章岁.500kV同塔双回线路不平衡度及换位方式研究.电力与电工,2009,29(3):5-8.
    [33]陈亚伦,李志国.伊敏-冯屯500kV同塔双回线路不平衡度,感应电流及潜供电流研究.电网技术,1995,19(6):13-17.
    [34]朱迎春,樊友平,唐诚.强不对称互感输电线路序阻抗参数和不平衡性的理论计算与测量研究.广西电力,2009,(6):7-12.
    [35]韦钢,黄金生.同杆并架多回线序参数及不平衡计算.电网技术,1998,22(10):8-11.
    [36]张要强,张天光,王予平,等.1000kV同塔双回输电线路电气不平衡度及换位问题研究.电网技术,2009,33(1):1-4.
    [37]邹林,林福昌,龙兆芝,等.输电线路不平衡度影响因素分析.电网技术,2008,32(S2):283-286.
    [38]丁洪发,段献忠.不换位输电线路产生的不对称问题及解决方法.电网技术,2004,28(19):24-28.
    [39]黄道春,阮江军,赵华.同杆并架4回输电线路相导线排列方式研究.高电压技术,2006,32(3):18-20.
    [40] Huang Weigang. Study on conductor configuration of500kV chang-fang compactline. IEEE Trans on PWRD,2003,18(3):1002-1008.
    [41]韦刚,张子阳,房正良,等.多回输电线路并架的不平衡性分析.高电压技术,2004,30(10):9-11.
    [42]汤涌.电力系统数字仿真技术的现状与发展.电力系统自动化,2002,26(17):66-70.
    [43]郭征,贺家李,杨洪平,等.电力系统故障时继电保护装置动态特性的数字仿真.电力系统自动化,2003,27(11):38-41.
    [44]钱华,张良.新一代地区电网RTDS中的继电保护仿真.电力系统及其自动化学报,2002,14(4):72-75.
    [45]郑三立,黄梅,张海红.电力系统数模混合实时仿真技术的现状与发展.现代电力,2004,21(6):29-33.
    [46] Wenzel T.; Leibfried T. Vacuum Circuit Breakers in Flexible AC TransmissionSystems. IEEE Transactions on Power Delivery,27(1):236-244.
    [47] Faruque M. O.; Yuyan Zhang; Dinavahi V. Detailed Modeling of CIGRE HVDCBenchmark System Using PSCAD/EMTDC and PSB/SIMULINK. IEEETransactions on Power Delivery,21(1):378-387.
    [48]李阳,傅仲文,李群.电力系统数字仿真及其发展趋势.仿真技术,2005,122(4):42-46.
    [49]鄂志君,,房大中,王立伟.基于EMTDC的混合仿真算法研究.继电器,2005,33(8):47-51.
    [50]靳希,安平,张承学.电力系统电磁暂态仿真软件.上海电力学院学报,2004,20(3):42-46.
    [51]孙宏伟,李梅,寇晓括,等.基于PSCAD/EMTDC的谐波仿真分析.2004,38(3):22-24.
    [52]吴大立.输电线路保护新原理及实现技术的研究.华中科技大学博士学位论文,2008.
    [53]张兰.电力系统动态模拟及其应用综述.湖南工程学院学报,2004,14(1):20-23.
    [54]李国久.电力系统动态模拟原理与指导.武汉:华中理工大学出版社,1997.
    [55]李欣然,于永源.超高压输电线路模拟的研究.长沙水电师院学报,1992,7(2):115-120.
    [56]杨德先,李国久,陈德树,等.双回路输电线非全相状态动态模拟研究.实验技术与管理,2002,19(5):68-70.
    [57]付育颖,严干贵,戴武昌,等.500kV同杆并架双回线路的动态物理模型.吉林电力,2006,34(2):11-13.
    [58]吴国瑜.电力系统仿真.武汉:水利电力出版社,1987.
    [59]甘良杰.电力系统动态模拟装置中同杆双回线的模拟.电力系统及其自动化学报,1991,3(2):60-65.
    [60]黄震,沈其瑜,李天华,等.同杆双回线跨线故障继电保护方案研究.四川电力技术,2002,25(1):11-15.
    [61]陈金熠,范春菊,刘玲.不同电压等级的四回线的纵联差动保护方案.电力系统保护与控制,2011,39(18):72-79.
    [62]吴永刚,思晓兰,张惠芳.330kV同杆并架双回线继电保护优化配置及应用.电力系统自动化,2001,25(9):64-66.
    [63]黄益庄,李春光.微处理机方向横差保护装置的研究与应用.清华大学学报(自然科学版),1997,37(1):45-48.
    [64]解建宝,梁振锋,康小宁,等.平行双回线电流平衡保护的仿真研究.电网技术,2007,31(9):81-83.
    [65]王梅义.电网继电保护应用.北京:中国电力出版社,1999.
    [66]陈德树.计算机继电保护原理与技术.北京:水利电力出版社,1992.
    [67]华中工学院编.电力系统继电保护原理与运行.北京:水利电力出版社,1981.
    [68]贺家李.电力系统继电保护原理(第三版).北京:水利电力出版社,1994.
    [69]丁蕾,房鑫炎.基于电容电流半补偿的高压电力电缆分相电流差动保护研究.电网技术,2005,29(04):45-49.
    [70]郭征,贺家李.输电线路纵联差动保护的新原理.电力系统自动化,2004,28(11):1-5.
    [71]郭征.特高压长线路分相电流差动保护新原理.天津大学博士学位论文,2004.
    [72]郑玉平,吴通华,丁琰,等.基于贝瑞隆模型的线路差动保护实用判据.电力系统自动化,2004,28(23):50-55.
    [73]吴通华,郑玉平,朱晓彤.基于暂态电容电流补偿的线路差动保护.电力系统自动化,2005,29(12):61-67.
    [74]苏斌,董新洲,孙元章.适用于特高压线路的差动保护分布电容电流补偿算法.电力系统自动化,2005,29(8):36-40.
    [75]文明浩,陈德树,尹项根.远距离输电线路的能量平衡保护.中国电机工程学报,2001,21(2):74-79.
    [76]吴大立,尹项根,张哲,等.输电线路复合差动保护方案.电网技术,2008,32(7):87-91.
    [77] Yining, Z., Jiale S. Phaselet-based Current Differential Protection Scheme Based onTransient Capacitive Current IET Compensation. Generation, Transmission&Distribution,2008,2(4):469-477.
    [78] Du Z. Q., Ran L., Wu Y. K. A Current Differential Relay for a1000-kV UHVTransmission Line. IEEE Transactions on Power Delivery,2007,22(3):1392-1399.
    [79] Nourai A., Kolcio N. Electrical Testing of Insulated Aerial Lifts for ContaminationUsing Capacitive Current Compensation Technique. IEEE Transactions on PowerDelivery,1990,5(2):1054-1061.
    [80]宋国兵,蔡新雷,高淑萍,等. VSC-HVDC频变参数电缆线路电流差动保护新原理.中国电机工程学报,2011,31(22):105-111.
    [81]杨军,吴方林,张哲,等.高温超导电缆分相电流差动保护的电容电流补偿方案.电网技术,2008,32(14):65-69,74.
    [82]文明浩,陈德树,尹项根,等.远距离输电线路等传变瞬时值差动保护.中国电机工程学报,2007,27(28):59-65.
    [83]伍叶凯,邹东霞.电容电流对差动保护的影响及补偿方案.继电器,1997,25(4):4-8.
    [84]索南加乐,张怿宁,齐军,等. Π模型时域电容电流补偿的电流差动保护研究.中国电机工程学报,2006,26(5):12-18.
    [85]李岩,陈德树,张哲,等.超高压长线电容电流对差动保护的影响及补偿对策仿真分析.继电器,2001,29(6):6-9.
    [86]文明浩,陈德树,尹项根.超高压长线相量差动保护的研究.电力系统自动化,2000,24(20):37-40.
    [87]刘凯.超/特高压线路差动保护电容电流补偿方法.电力自动化设备,2011,31(8):94-98.
    [88]李岩,陈德树,尹项根,等.超高压长线的分相纵差保护方案设计.电力系统自动化,2002,26(15):49-52.
    [89]张琦兵,邰能灵.同塔四回线电流差动保护的电容电流补偿分析.电力系统自动化,2010,34(1):46-50.
    [90]索南加乐,刘凯,粟小华,等.输电线路综合阻抗纵联保护新原理.电力系统自动化,2008,32(3):36-40.
    [91]毕天姝,于艳莉,黄少锋,等.超高压线路差动保护电容电流的精确补偿方法.电力系统自动化,2005,29(15):30-34.
    [92]李斌,李学斌,丁茂生,等.特高压同杆双回线的环流不平衡及其影响.电工技术学报,2012,27(4):202-208,223.
    [93]索南加乐,杨铖,杨忠礼,等.用于同杆双回线保护的时域电容电流的分相补偿方法.中国电机工程学报,2010,30(1):77-81.
    [94]李博通.同塔多回线智能跳合闸方案的研究.天津大学博士学位论文,2010.
    [95] Jamali S., Parham A. New Approach to Adaptive Single Pole Auto-Reclosing ofPower Transmission Lines. IET Generation, Transmission&Distribution,2010,4(1):115-122.
    [96] Jiale, S., Wenquan S., Guobing S., et al. A Novel Single-Phase Adaptive ReclosureScheme for Transmission Lines With Shunt Reactors. IEEE Transactions on PowerDelivery,2009,24(2):545-551.
    [97] Ge Yaozhong, Sui Fonghai, Xiao Yuan. Prediction Methods for PreventingSingle-Phase Reclosing on Permanent Fault. IEEE Transactions on Power Delivery,1989,4(1):114-121.
    [98] Aboreshaid S., R. Billinton, S.O. Faried. Effect of Adaptive Single-Pole Reclosing onthe Stochastic Behavior of Turbine-Generator Shaft Torsional Torques. IEEETransactions on Energy Conversion,1998,13(2):133-139.
    [99] Bo Z.Q. Adaptive Noncommunication Protection for Power Lines BO Scheme I: TheDelayed Operation Approach. IEEE Transactions on Power Delivery,2002,17(1):85-91.
    [100] Bo Z.Q. Adaptive Noncommunication Protection for Power Lines BO Scheme2: TheInstant Operation Approach. IEEE Transactions on Power Delivery,2002,17(1):92-96.
    [101] Phadke A.G., S.H. Horowitz. Adaptive Relaying. IEEE Transactions on ComputerApplications in Power,1990,3(3):47-51.
    [102] Horowitz S. H., A. G. Phadke, J. S. Thorpe. Adaptive Transmission System Relaying.IEEE Transactions on Power Delivery,1988,3(4):1436-1445.
    [103] Websper S. P., Johns A. T., Aggarwal R. K., et al., An investigation into breakerreclosure strategy for adaptive single pole autoreclosing. IEE Proceedings-Generation,Transmission and Distribution,1995,142(6):601-607.
    [104] Xiangning Lin, Hanli Weng, Haifeng Liu, et al. A Novel Adaptive Single-PhaseReclosure Scheme Using Dual-Window Transient Energy Ratio and MathematicalMorphology. IEEE Transactions on Power Delivery,2006,21(4):1871-1877.
    [105]郑玉平.串补线路继电保护的研究与同杆双回线继电保护及重合闸的研究.武汉大学博士学位论文,2004.
    [106]刘毅,尹项根,张哲,等.同杆并架双回线自适应重合闸组合判据.电力系统自动化,2011,35(2):56-61.
    [107]李斌,李永丽,曾治安,等.基于电压谐波信号分析的单相自适应重合闸.电网技术,2002,26(10):53-56.
    [108]郭相国,张保会.自适应自动重合闸现状与发展.继电器,2004,32(16):77-80.
    [109]李斌,李永丽,黄强,等.单相自适应重合闸相位判据的研究.电力系统自动化,2003,27(22):41-44.
    [110] Djurie M. B., Terzija V. V. A New Approach to the Arcing Faults Detection for FastAuto reclosing in Transmission Systems. IEEE Transactions on Power Delivery,1995,10(4):1793-1798.
    [111] Tsai J. L. A New Single-Pole Switching Technique for SuppressingTurbine-Generator Torsional Vibrations and Enhancing Power Stability andContinuity. IET Generation, Transmission&Distribution,2007,1(5):804-810.
    [112] Xiangning Lin, Haifeng Liu, Hanli Weng, et al. A Dual-Window Transient EnergyRatio-Based Adaptive Single-Phase Reclosure Criterion for EHV Transmission Line.IEEE Transactions on Power Delivery,2007,22(4):2080-2086.
    [113] Johns A. T., R. K. Aggarwal, Y. H. Song. Improved Techniques for Modelling FaultArcs an Faulted EHV Transmission Systems. IEE Proceedings-Generation,Transmission and Distribution,1994,141(2):148-154.
    [114]郑玉平,黄震,张哲,等.同杆并架双回线自适应重合闸的研究.电力系统自动化,2004,28(22):58-62.
    [115] Bo Z. O., R. K. Aggarwal, Johns A. T., et al. New Concept in Transmission LineReclosure Using High-Frequency Fault Transients. IEE Proceedings-Generation,Transmission and Distribution,1997,144(4):351-356.
    [116] Bollen M. H. J. Travelling-Wave-Based Protection of Double-Circuit Lines. IEEProceedings-Generation, Transmission and Distribution,1993,140(1):37-47.
    [117] Zoran M. R., S. Joong-Rin. New Digital Algorithm for Adaptive Reclosing Based onthe Calculation of the Faulted Phase Voltage Total Harmonic Distortion Factor. IEEETransactions on Power Delivery,2007,22(1):37-41.
    [118] Zahlay F. D., K. S. R. Rao, T. B. Ibrahim. A New Intelligent Autoreclosing SchemeUsing Artificial Neural Network and Taguchi's Methodology. IEEE Transactions onIndustry Applications,2011,47(1):306-313.
    [119]索南加乐,梁振锋,宋国兵.自适应熄弧时刻的单相重合闸的研究.电力系统保护与控制,2012,40(5):37-41.
    [120]范越,施围.输电线路单相自动重合闸中电压判据的修正.电力系统自动化,2000,24(6):44-47.
    [121]商立群,白维祖,程刚,等.带并联电抗器的线路单相自适应重合闸故障判别原理.电力系统自动化,2008,32(6):81-84.
    [122] Shah K. R., E. D. Detjen, A. G. Phadke. Feasibility of Adaptive DistributionProtection System Using Computer Overcurrent Relaying Concept. IEEETransactions on Industry Applications,1988,24(5):792-797.
    [123] Sang-Pil A., Chul-Hwan Kim, Aggarwal R. K., et al. An Alternative Approach toAdaptive Single Pole Auto-Reclosing in High Voltage Transmission Systems Basedon Variable Dead Time Control. IEEE Transactions on Power Delivery,2001,16(4):676-686.
    [124]房鑫炎,郁惟镛,王曼.自适应重合闸中首合相判据的分析.电力自动化设备,1997,63(3):21-23.
    [125]袁越,张保会.电力系统自动重合闸研究的现状与展望.中国电力,1997,30(10):44-47.
    [126] Zoran M. R., S. Joong-Rin. New One Terminal Digital Algorithm for AdaptiveReclosing and Fault Distance Calculation on Transmission Lines. IEEE Transactionson Power Delivery,2006,21(3):1231-1237.
    [127] Yu I. K., Y. H. Song. Wavelet Transform and Neural Network Approach toDeveloping Adaptive Single-Pole Auto-Reclosing Schemes for EHV TransmissionSystems. IEEE Transactions on Power Engineering Review,1998,18(11):62-64.
    [128] Aboreshaid S., R. Billinton, M. Fotuhi-Firuzabad. Probabilistic Transient StabilityStudies Using the Method of Bisection Power Systems. IEEE Transactions on PowerSystems,1996,11(4):1990-1995.
    [129]林湘宁,刘海峰,鲁文军,等.基于广义多分辨形态学梯度的自适应单相重合闸方案.中国电机工程学报,2006,26(7):101-106.
    [130]杨军.高温超导电缆保护理论与技术研究,华中科技大学博士学位论文,2006.
    [131]程玲,吴剑波.自适应单相重合闸的研究现状及展望.继电器,2007,35(S1):246-250.
    [132]朱建红,陈福锋,魏曜,等.新型同杆双回线自适应重合闸方案研究.电力自动化设备,2007,27(4):47-51.
    [133]程玲,徐玉琴,宋秭霖.基于电弧特性的特高压输电线路单相自适应重合闸.继电器,2007,35(22):18-22.
    [134]杨军,李诚,张哲,等.高温超导电缆自动重合闸方案研究.继电器,2007,35(7):15-18.
    [135]索南加乐,邵文权,宋国兵,等.带并联电抗器输电线路永久性故障识别新方法.中国电机工程学报,2008,28(28):80-85.
    [136]索南加乐,刘辉,吴亚萍,等.基于故障测距的单相自动重合闸永久故障电压自适应补偿判据.中国电机工程学报,2004,24(4):80-84.
    [137]王增平,刘浩芳,徐岩,等.基于改进型相关法的单相自适应重合闸新判据.中国电机工程学报,2007,27(10):49-55.
    [138]刘浩芳.特高压输电线路保护新原理及自适应重合闸技术的研究.华北电力大学博士学位论文,2007.
    [139] Fitton D. S., Dunn R. W., Aggarwal R. K., et al. Design and Implementation of anAdaptive Single Pole Auto Reclosure Technique for Transmission Lines UsingArttifical Neural Networks. IEEE Transactions on Power Delivery,1996,11(2):748-756.
    [140] Aggarwal R. K., Johns A. T., Song Y. H., et al. Neural-network Based AdaptiveSingle-pole Autoreclosure Technique for EHV Transmission System. IEEProceedings-Generation, Transmission&Distribution,1994,14(2):155-160.
    [141]林湘宁,朱海昱,刘沛.基于模糊综合决策的自动重合闸优化判据的研究.电力系统自动化,1997,21(9):31-34,76.
    [142]李斌,李永丽,盛鹃,等.带并联电抗器的超高压输电线单相自适应重合闸的研究.中国电机工程学报,2004,24(5):52-56.
    [143]索南加乐,孙丹丹,付伟,等.带并联电抗器输电线路单相自动重合闸永久故障的识别原理研究.中国电机工程学报,2006,26(11):75-81.
    [144] Apostolopoulos C. A., G. N. Korres. A Novel Fault-Location Algorithm forDouble-Circuit Transmission Lines without Utilizing Line Parameters. IEEETransactions on Power Delivery,2011,26(3):1467-1478.
    [145] S. H. Kang, Y. J. Ahn, Y. C. Kang, et al. A Fault Location Algorithm Based onCircuit Analysis for Untransposed Parallel Transmission Lines. IEEE Transactions onPower Delivery,2009,24(4):1850-1856.
    [146] G. Song, J. Suonan, Q. Xu, et al. Parallel Transmission Lines Fault LocationAlgorithm Based on Differential Component Net. IEEE Transactions on PowerDelivery,2005,20(4):2396-2406.
    [147]束洪春,司大军,葛耀中,等.长输电线路电弧故障定位方法研究.电力系统自动化,2000,24(21):27-30,39.
    [148]孙立山,张晓友,陈学允.平行双回线故障测距算法的研究.电力系统自动化,1999,23(5):28-30.
    [149]索南加乐,葛耀中.同杆双回线跨线故障的准确定位方法.中国电机工程学报,1992,12(3):1-9.
    [150]李红巍.一种实用的双回线测距方法.电力系统自动化,1995,19(9):30-33.
    [151] Liao Y., Elangovan S. Digital Distance Relaying Algorithm for First-Zone Protectionfor Parallel Transmission Lines. IEE Proceedings-Generation, Transmission andDistribution,1998,145(5):531-536.
    [152] Zhang Qingchao, Zhang Yao, Song Wennan, et al. Fault Location of Two-ParallelTransmission Line for Non-Earth Fault Using One-Terminal Data. IEEE Transactionson Power Delivery,1999,14(3):863-866.
    [153]粟小华.基于平行双回线单端实时数据的准确故障测距实用新方法.继电器,2001,29(5):5-7.
    [154]索南加乐,吴亚萍,宋国兵,等.基于分布参数的同杆双回线单线故障准确测距原理.中国电机工程学报,2003,23(5):39-43.
    [155]索南加乐,王树刚,张超,等.利用单端电流的同杆双回线准确故障定位研究.中国电机工程学报,2005,25(23):25-30.
    [156]宋国兵,索南加乐,许庆强,等.基于单端电流量的同杆双回线故障定位方法.继电器,2004,32(7):1-6.
    [157]宋国兵,索南加乐,许庆强,等.基于双回线环流的时域法故障定位.中国电机工程学报,2004,24(3):24-29.
    [158]曾祥君.电力线路故障检测与定位新原理及其信息融合实现研究.华中科技大学博士学位论文,2000.
    [159]肖东辉,刘沛,程时杰.架空输电线路故障测距方法综述.电力系统自动化,1993,17(8):46-56.
    [160]全玉生,王晓蓉,杨敏中,等.工频双端故障测距算法的鲁棒性问题和新算法研究.电力系统自动化,2000,24(10):28-31.
    [161]贺家李,葛耀中.超高压输电线路故障分析与继电保护.北京:科学出版社,1983.
    [162] H. Lee, A. M. Mousa. GPS Travelling Wave Fault Locator Systems: Investigationinto the Anomalous Measurement Related to Lightning Strikes. IEEE Transactions onPWRD,1996,11(3):1214-1223.
    [163] Z. Q. Bo, G. Weller, M. A. Redfern. Accurate Fault Location Technique forDistribution System Using Fault-Generated High-Frequency Transient VoltageSignals. IEE Proceedings-C Generation, Transmission&Distribution,1999,146(1):73-79.
    [164] MEI-Hami, L. L. Lai, D. J. Daruvala, et al. A New Travelling Wave Based Schemefor Fault Detection on Overhead Power Distribution Feeders, IEEE Transactions onPWRD,1992,7(4):1825-1833.
    [165]徐丙垠.利用暂态行波的输电线路故障测距技术.西安交通大学博士学位论文,1991.
    [166]董新洲,葛耀中,贺家李,等.输电线路行波保护的现状与展望.电力系统自动化,2000,24(10):56-62.
    [167] Balu N., Bertram T., Bose A., et al. On-Line Power System Security Analysis.Proceedings of the IEEE,1992,80(2):262-282.
    [168] McCalley J. D., Vittal V., and Abi-Samra N. An Overview of Risk Based SecurityAssessment. IEEE Power Engineering Society Summer Meeting,1999,(1):173-178.
    [169] Gomez J. C., Morcos M. M. Coordinating Overcurrent Protection and Voltage Sag inDistributed Generation Systems. IEEE Power Engineering Review,2002,22(2):16-19.
    [170]张哲.高性能微机距离保护的综合研究.华中理工大学博士学位论文,1992.
    [171]束洪春,司大军,葛耀中,等.利用双端不同步数据的高压输电线路故障测距实用算法及其实现.电网技术,2000,24(2):45-49.
    [172]牛敏,赵舫.一种改进的双端测距算法.电力系统及其自动化学报,1998,10(1):17-21.
    [173]束洪春,高峰,李卫东.利用单端工频量的高压输电线路故障测距实用方法研究.电工技术学报,1998,13(5):9-15,56.
    [174]索南加乐,宋国兵,许庆强,等.利用两端非同步电流的同杆双回线故障定位研究.中国电机工程学报,2004,19(8):99-106.
    [175]余胜,许钢,余琼,等.不同电压等级同杆并架多回线路的故障定位.电力系统保护与控制,2009,37(6):44-47.
    [176]何仰赞,温增银.电力系统分析(第三版).武汉:华中科技大学出版社,2002.
    [177]孙敏,孙亲锡,叶齐政.工程电磁场基础.北京:科学出版社,2001.
    [178]吴幼明,罗旗帜.一类二阶常系数微分方程组的通解.佛山科学技术学院学报(自然科学版),2002,20(2):10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700