用户名: 密码: 验证码:
牛肌肉生成抑制素基因遗传变异及基因免疫的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌肉发育一直是肉牛育种领域中最受关注的问题之一。我国一些地方牛品种肉质好、耐粗饲,但是生长速度缓慢,产肉率低。属于TGF-β超家族的肌肉生成抑制素具有抑制肌肉增殖和分化的功能。肌肉生成抑制素功能缺失性突变的个体肌纤维数量和直径显著增大,导致肌肉产量显著增加。为了探索牛肌肉生成抑制素基因遗传变异与肉质性状的关系,本研究以8个品种(安格斯、海福特、利木赞、西门塔尔、夏洛来、鲁西牛、秦川牛和晋南牛)321个个体为研究对象,检测了牛肌肉生成抑制素基因的SNPs,并对其与肉质性状进行了关联分析;同时,本文对利用肌肉生成抑制素基因免疫提高动物生长性能做了初步研究。得到如下主要结果:
     1.对每个品种2个个体牛肌肉生成抑制素基因DNA 5’侧翼区进行扩增和测序,未发现扩增区间内的碱基存在变异。利用PCR-RFLP法对g433 C>A和g2974 C>T位点多态性进行了检测,并分析了各位点在不同品种中的基因频率和分布差异。对g433 C>A和g2974 C>T位点与牛生产性状进行关联分析,结果发现:g433 C>A位点与净肉率性状显著相关(P<0.05),AA型显著高于CC型(P<0.05);g433 C>A位点与大理石花纹等级和眼肌面积两个性状存在极显著相关(P<0.01),AA基因型个体的大理石花纹得分和眼肌面积极显著的高于AC和CC基因型个体(P<0.01)。g2974 C>T位点与眼肌面积存在极显著相关(P<0.01),TT型极显著高于CC和CT型(P<0.01)。
     2.通过DNAMAN软件分析发现,牛、人、小鼠、大鼠、猪、马、狗、绵羊和猕猴的肌肉生成抑制素的前体蛋白氨基酸序列的同源性在96%以上,成熟蛋白氨基酸序列的同源性在99%以上。利用DNAStar程序、Antheprot软件和JaMBW软件对肌肉生成抑制素成熟蛋白氨基酸序列分析,发现1-17位氨基酸由易发生形变和与抗体结合的无规则卷曲和β-转角构成;具有较强的亲水性,暴露在蛋白表面的可能性较强,抗原性较强。
     3.以乙肝表面抗原S基因为载体,将两拷贝肌肉生成抑制素N端基因片段分别插入S基因第112~113氨基酸密码子之间和C末端,构建肌肉生成抑制素重组表达质粒pVAX-S2M;将一拷贝肌肉生成抑制素N端基因片段和一拷贝抑制素N端片段分别插入S基因C末端和第112~113氨基酸密码子之间,构建重组表达质粒pVAX-SMI。酶切和测序鉴定表明序列正确。重组质粒转染Hela细胞,转染后48小时成功用RT-PCR和Western blot检测到重组质粒的转录产物和重组蛋白。重组质粒pVAX-S2M表达产物具有肌肉生成抑制素抗原性,pVAX-SMI质粒表达的重组蛋白同时具有肌肉生成抑制素和抑制素抗原性。
     4.利用电脉冲介导,将重组质粒免疫小鼠双侧胫骨前肌。经斑点免疫杂交检测,pVAX-S2M成功诱导机体产生肌肉生成抑制素抗体,pVAX-SMI成功诱导机体产生肌肉生成抑制素抗体和抑制素抗体。对免疫小鼠的生长和繁殖性状检测,结果发现(1)免疫后0-6周,对pVAX-S2M处理组、pVAX-SMI处理组和对照组体重比较发现,在免疫后2周时,对照组公鼠体重显著高于两个处理组(P<0.05),两个处理组之间差异不显著,其余时间组间差异不显著;母鼠在免疫后0-6周期间,三组间差异不显著。(2)pVAX-S2M免疫组母鼠产仔数极显著的低于对照组(P<0.01),仔鼠平均初生重极显著的高于对照组个体(P<0.01)。pVAX-SMI组和其他两组相比,产仔数和平均初生重差异均不显著。(3)对pVAX-S2M处理组、pVAX-SMI处理组和对照组仔鼠体重比较发现,pVAX-S2M处理组子代公鼠4-8周龄体重显著高于对照组(P<0.05),pVAX-SMI处理组子代公鼠5-7周龄体重显著高于对照组(P<0.05),pVAX-S2M处理组和pVAX-SMI处理组间子代公鼠体重差异不显著;pVAX-S2M处理组子代母鼠5-8周龄体重显著高于对照组和pVAX-SMI处理组(P<0.05),对照组和pVAX-SMI处理组间差异不显著。(4)pVAX-S2M处理组子代公鼠的腓肠肌重显著高于pVAX-SMI处理组和对照组(P<0.05),pVAX-SMI处理组和对照组之间差异不显著;pVAX-S2M处理组、pVAX-SMI处理组和对照组的子代母鼠之间腓肠肌重差异不显著。(5)pVAX-S2M处理组的子代公鼠和母鼠的肌纤维的截面积分别显著高于pVAX-SMI处理组和对照组子代公鼠和母鼠(P<0.05);pVAX-SMI处理组和对照组之间差异不显著。
Muscle growth is one of the most interested traits in beef cattle breeding. Some of local cattle breeds have advantages of good beef quality and bearing the careless feed, while disadvantages of low growth speed and meat yield. Myostatin, a member of TGF-βsuperfamily, plays an essential role in regulating skeletal muscle growth and functions by inhibiting myoblast proliferation and differentiation. Animals with loss-of-function mutations in myostatin gene have excellent growth performance due to large fiber number and size. In this study, a total of 321 cattle, including Angus, Hereford, Simmental, Charolais, Limousin, Luxi, Qinchuan and Jinnan, were used to investigate genetic variations of bovine myostatin gene and the relationship between SNPs and meat quality traits; meanwhile, effects of myostatin gene immunization on mice were also investigated. The results were as the following:
     1. 5’flanking sequences of bovine myostatin gene from 16 samples (2 of each breed) were amplified and sequenced. No variation was detected in the amplified 5’flanking region. The g433 C>A and g2974 C>T sites were genotyped by PCR-RFLP. The allele and genotype frequencies were analyzed within and across breeds. The association between production traits and SNPs was analyzed and the results showed that: g433 C>A site was associated significantly with meat percentage (P<0.05), the mean of genotype AA was significantly higher than that of genotype CC (P<0.05); g433 C>A site was associated significantly with marbling score and LM area (P<0.01), the mean of genotype AA was significantly higher than that of genotype CC (P<0.01); g2974 C>T site was associated significantly with LM area (P<0.01), the mean of genotype TT was significantly higher than that of genotype CC and CT (P<0.01).
     2. The homology of myostatin propeptide and mature peptide from cattle, human, mouse, rat, pig, horse, dog, sheep and macaque were analyzed by DNAMAN software. The results showed that the homology of propeptide from these spacies was more than 96% and that the homology of mature peptide was more than 99%. The myostatin mature peptide sequence was analyzed by DNAStar, Antheprot and JaMBW software. The results showed that: the region of amino acids 1-17 was composed of random coil andβ-turn structure and was flexible to combine with antibodies; the region of amino acids 1-17 had high hydrophilicity, surface probability and antigenicity.
     3. Two DNA fragments encoding N-term of myostatin were incorporated into Hepatitis B virus S gene at C-term and site of amino acid sequence 112 and 113 to construct an expression plasmid of pVAX-S2M. Two DNA fragments encoding N-term of myostatin and N-term of inhibin were incorporated into Hepatitis B virus S gene at C-term and site of amino acid sequence 112 and 113 to construct an expression plasmid of pVAX-SMI. The plasmids were identified by restriction endonuclease digestion and sequencing. The plasmids were then transfected into HeLa cells. The transcripts and recombinant protein were detected 48 h after tranfection by RT-PCR and Western Blot, respectively. The results showed that: the plasmid pVAX-S2M could express recombined protein with antigencity of myostatin; the plasmid pVAX-SMI could express recombined protein with antigencity of both myostatin and inhibin.
     4. The plasmids were immunized to tibialis anterior of mice mediated by electric pules. The antibodies were detected by dot blot and the results showed that pVAX-S2M could induce myostatin antibodies in mice and that pVAX-SMI could induce myostatin and inhibin antibodies. The growth traits and reproductive traits were measured and analyzed. The results showed that: (1) the body weight (BW) of mice from pVAX-S2M, pVAX-SMI and control groups was compared. Male mice in control group had higher BW than that of pVAX-S2M, pVAX-SMI group at 2 weeks after immunization (P<0.05), while BW of male mice among three groups showed no significant difference on the other time; BW of female mice in pVAX-S2M, pVAX-SMI and control groups had no significant difference from 1 to 6 weeks after immunization. (2) The litter size (LS) of pVAX-S2M group was significantly less than control group (P<0.01), and average birth weight (ABW) of pVAX-S2M group was significantly higher than control group (P<0.01). The LS and ABW of pVAX-SMI showed no significant difference with those of pVAX-S2M and control groups. (3) The male offspring of female mice from pVAX-S2M group had significantly higher BW than that of control group from 4 to 8 week-age (P<0.05). The male offspring of female mice from pVAX-SMI group had significantly higher BW than that of control group from 5 to 7 week-age (P<0.05). There was no significant difference between the pVAX-S2M group and pVAX-SMI group. The female offspring of female mice from pVAX-S2M group had significantly higher BW than that of pVAX-SMI and control group from 5 to 8 week-age (P<0.05). There was no significant difference between the the control group and pVAX-SMI group. (4) The male offspring of female mice from pVAX-S2M group had significantly higher gastrocnemius weight (GW) than that of pVAX-SMI and control group (P<0.05). There was no significant difference between the pVAX-SMI and control group. Female offspring of female mice from pVAX-S2M, pVAX-SMI and control group had no significant GW. (5) Male and female offspring from pVAX-S2M group had significantly larger cross section area (CSA) than that of pVAX-SMI and control group (P<0.05). There was no significant difference between pVAX-SMI and control group.
引文
1.姜勋平.抑制素和bcl_2基因免疫对小鼠繁殖和生长的影响[博士学位论文].哈尔滨:东北师范大学, 2001.
    2.姜勋平,熊远著&杨利国.基因免疫的原理和方法.北京:科学出版社, 2004, 1.
    3.茆达干,杨利国,何晓红et al.抑制素与乙肝表面抗原融合基因免疫对大鼠生殖能力的影响.畜牧兽医学报, 2006, 37(11): 1160-1166.
    4.茆达干,杨利国,曹少先et al.卵泡抑制素与乙肝表面抗原融合基因表达质粒的构建及表达.中国免疫学杂志, 2003, 19(11): 775-778.
    5.徐文忠,杜念兴&李光地.生长抑制与乙肝表面抗原融合基因重组痘苗病毒的构建及其表达.南京农业大学学报, 1992, 15(3): 74-78.
    6.曹少先,邢朝芳&张德坤.双拷贝抑制素基因疫苗pcISI的构建和表达及免疫.畜牧兽医学报, 2008, 39(5): 672-676.
    7.曹少先,张文伟,茆达干et al.生长抑素基因疫苗质粒pcS/2SS的构建、表达及免疫.农业生物技术学报, 2005b, 13(4): 477-481.
    8.曹少先,杨利国,张文伟et al.生长抑素基因疫苗质粒pEGS/2SS的构建及表达.中国兽医学报, 2005a, 25(5): 499-502.
    9.薛春林,茆达干,程瑞禾et al.生长抑素基因免疫对湖羊羔羊生长及GH和IGF-I的影响.中国农业大学学报, 2006, 11(4): 16-22.
    10.陈爱社,管惟滨&方振伟.恶性疟原虫杂合45肽与乙肝病毒表面抗原融合基因在酵母中表达.中国寄生虫病防治杂志, 1997, 10(3): 161-164.
    11. Alarcon J.B., Waine G.W. & Mcmanus D.P. DNA vaccines: technology and application as anti-parasite and anti-microbial agents. Adv Parasitol, 1999, 42: 343-410.
    12. Amthor H., Christ B., Rashid-Doubell F. et al. Follistatin regulates bone morphogenetic protein-7 (BMP-7) activity to stimulate embryonic muscle growth. Dev Biol, 2002a, 243(1): 115-127.
    13. Amthor H., Connolly D., Patel K. et al. The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis. Dev Biol, 1996, 178(2): 343-362.
    14. Amthor H., Huang R., Mckinnell I. et al. The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev Biol, 2002b, 251(2): 241-257.
    15. Anderson S.T., Bindon B.M., Hillard M.A. et al. Increased ovulation rate in Merino ewes immunized against small synthetic peptide fragments of the inhibin alpha subunit. Reprod Fert Develop, 1998, 10(5): 421~431.
    16. Andre S., Seed B., Eberle J. et al. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J Virol, 1998, 72(2): 1497-1503.
    17. Barry M.A., Lai W.C. & Johnston S.A. Protection against mycoplasma infection using expression-library immunization. Nature, 1995, 377(6550): 632-635.
    18. Barton E.R., Morris L., Musaro A. et al. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol, 2002, 157(1): 137-148.
    19. Bellinge R.H., Liberles D.A., Iaschi S.P. et al. Myostatin and its implications on animal breeding: a review. Anim Genet, 2005, 36(1): 1-6.
    20. Bhardwaj N., Young J.W., Nisanian A.J. et al. Small amounts of superantigen, when presented on dendritic cells, are sufficient to initiate T cell responses. J Exp Med, 1993, 178(2): 633-642.
    21. Bogdanovich S., Krag T.O., Barton E.R. et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature, 2002, 420(6914): 418-421.
    22. Bohm W., Kuhrober A., Paier T. et al. DNA vector constructs that prime hepatitis B surface antigen-specific cytotoxic T lymphocyte and antibody responses in mice after intramuscular injection. J Immunol Methods, 1996, 193(1): 29-40.
    23. Bojak A., Hammer D., Wolf H. et al. Muscle specific versus ubiquitous expression of Gag based HIV-1 DNA vaccines: a comparative analysis. Vaccine, 2002, 20(15): 1975-1979.
    24. Burger H.G. Inhibin: definition and nomenclature, including related substances. J Endocrinol, 1988, 117(2): 159-160.
    25. Campion D.R. The muscle satellite cell: a review. Int Rev Cytol, 1984, 87: 225-251.
    26. Cappucio I., Marchitelli C., Serracchioli A. et al. A G-T transversion introduces a stop codon at the mh locus in hypertrophic Marchigiana beef subjects. Anim. Genet., 1998, 29: 51.
    27. Carabatsos M.J., Elvin J., Matzuk M.M. et al. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol, 1998, 204(2): 373-384.
    28. Cdc. CDC and Fort Dodge Animal Health Achieve First Licensed DNA Vaccine. 2005.
    29. Charlier C., Coppieters W., Farnir F. et al. The mh gene causing double-muscling in cattle maps to bovine Chromosome 2. Mamm Genome, 1995, 6(11): 788-792.
    30. Chow Y.H., Chiang B.L., Lee Y.L. et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol, 1998, 160(3): 1320-1329.
    31. Clop A., Marcq F., Takeda H. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006, 38(7): 813-818.
    32. Danko I. & Wolff J.A. Direct gene transfer into muscle. Vaccine, 1994, 12(16): 1499-1502.
    33. Daopin S., Piez K.A., Ogawa Y. et al. Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science, 1992, 257(5068): 369-373.
    34. Davis H.L., Mancini M., Michel M.L. et al. DNA-mediated immunization to hepatitis B surface antigen: longevity of primary response and effect of boost. Vaccine, 1996, 14(9): 910-915.
    35. Davis H.L., Michel M.L., Mancini M. et al. Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen. Vaccine, 1994, 12(16): 1503-1509.
    36. Davis H.L., Michel M.L. & Whalen R.G. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum Mol Genet, 1993a, 2(11): 1847-1851.
    37. Davis H.L., Whalen R.G. & Demeneix B.A. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther, 1993b, 4(2): 151-159.
    38. De Kretser D.M., Meinhardt A., Meehan T. et al. The roles of inhibin and related peptides in gonadal function. Mol Cell Endocrinol, 2000, 161(1-2): 43~46.
    39. De Winter J.P., Ten Dijke P., De Vries C.J. et al. Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors. Mol Cell Endocrinol, 1996, 116(1): 105-114.
    40. Delpeyroux F., Chenciner N., Lim A. et al. A poliovirus neutralization epitope expressed on hybrid hepatitis B surface antigen particles. Science, 1986, 233(4762): 472-475.
    41. Deveaux V., Cassar-Malek I. & Picard B. Comparison of contractile characteristics of muscle from Holstein and double-muscled Belgian Blue foetuses. Comp Biochem Physiol A Mol Integr Physiol, 2001, 131(1): 21-29.
    42. Dunner S., Miranda M.E., Amigues Y. et al. Haplotype diversity of the myostatin gene among beef cattle breeds. Genet Sel Evol, 2003, 35(1): 103-118.
    43. Eigenbrot C. & Gerber N. X-ray structure of glial cell-derived neurotrophic factor at 1.9 A resolution and implications for receptor binding. Nat Struct Biol, 1997, 4(6): 435-438.
    44. Elvin J.A., Yan C., Wang P. et al. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol, 1999, 13(6): 1018-1034.
    45. Esmailizadeh A.K., Bottema C.D., Sellick G.S. et al. Effects of the myostatin F94L substitution on beef traits. J Anim Sci, 2008, 86(5): 1038-1046.
    46. Fainsod A., Deissler K., Yelin R. et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev, 1997, 63(1): 39-50.
    47. Findlay J.K. An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis. Biol Reprod, 1993, 48(1): 15-23.
    48. Findlay J.K. & Clarke I.J. Regulation of the secretion of FSH in domestic ruminants. J Reprod Fertil, 1987, 34: 27~37.
    49. Findlay J.K., Russell D.L., Doughton B. et al. Effect of active immunization against the amino-terminal peptide (alpha N) of the alpha 43 kDa subunit of inhibin (alpha 43) on fertility of ewes. Reprod Fert Develop, 1994, 6(2): 265~267.
    50. Fynan E.F., Webster R.G., Fuller D.H. et al. DNA vaccines: a novel approach to immunization. Int J Immunopharmacol, 1995, 17(2): 79-83.
    51. Fynan E.F., Webster R.G., Fuller D.H. et al. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA, 1993, 90(24): 11478-11482.
    52. Gamer L.W., Wolfman N.M., Celeste A.J. et al. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. Dev Biol, 1999, 208(1): 222-232.
    53. Gerrard D.E., Thrasher K.H., Grant A.L. et al. Serum-induced myoblast proliferation and gene expression during development of double muscled and normal cattle. J Anim Sci, 1991, 69: 317.
    54. Griffith D.L., Keck P.C., Sampath T.K. et al. Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci USA, 1996, 93(2): 878-883.
    55. Grobet L., Martin L.J., Poncelet D. et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet, 1997, 17(1): 71-74.
    56. Grobet L., Poncelet D., Royo L.J. et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome, 1998, 9(3): 210-213.
    57. Gurunathan S., Irvine K.R., Wu C.Y. et al. CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol, 1998, 161(9): 4563-4571.
    58. Haddad D., Liljeqvist S., Stahl S. et al. Comparative study of DNA-based immunization vectors: effect of secretion signals on the antibody responses in mice. FEMS Immunol Med Microbiol, 1997, 18(3): 193-202.
    59. Han L., Mao D.G., Zhang D.K. et al. Development and evaluation of a novel DNA vaccine expressing inhibin alpha (1-32) fragment for improving the fertility in rats and sheep. Anim Reprod Sci, 2007.
    60. Hanset R. Breeding for disease resistance in farm animals. CAB International. 1991.
    61. Hanset R. & Michaux C. On the genetic determinism of muscular hypertrophy in the Belgian White and Blue cattle breed. I. Experimental data. Genet. Sel. Evol., 1985, 17: 359-368.
    62. Hayette S., Gadoux M., Martel S. et al. FLRG (follistatin-related gene), a new target of chromosomal rearrangement in malignant blood disorders. Oncogene, 1998, 16(22): 2949-2954.
    63. Hill J.J., Davies M.V., Pearson A.A. et al. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem, 2002, 277(43): 40735-40741.
    64. Hill J.J., Qiu Y., Hewick R.M. et al. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol Endocrinol, 2003, 17(6): 1144-1154.
    65. Hinck A.P., Archer S.J., Qian S.W. et al. Transforming growth factor beta 1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor beta 2. Biochemistry, 1996, 35(26): 8517-8534.
    66. Hocquette J.F., Bas P., Bauchart D. et al. Fat partitioning and biochemical characteristics of fatty tissues in relation to plasma metabolites and hormones in normal and double-muscled young growing bulls. Comp Biochem Physiol A Mol Integr Physiol, 1999, 122(1): 127-138.
    67. Huet C., Li Z.F., Liu H.Z. et al. Skeletal muscle cell hypertrophy induced by inhibitors of metalloproteases; myostatin as a potential mediator. Am J Physiol Cell Physiol, 2001, 281(5): C1624-1634.
    68. Hui K.M. & Chia T.F. Eradication of tumor growth via biolistic transformation with allogeneic MHC genes. Gene Ther, 1997, 4(8): 762-767.
    69. Iemura S., Yamamoto T.S., Takagi C. et al. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc Natl Acad Sci USA, 1998, 95(16): 9337-9342.
    70. Jiang M.S., Liang L.F., Wang S. et al. Characterization and identification of the inhibitory domain of GDF-8 propeptide. Biochem Biophys Res Commun, 2004, 315(3): 525-531.
    71. Joulia-Ekaza D. & Cabello G. Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp Cell Res, 2006, 312(13): 2401-2414.
    72. Joulia D., Bernardi H., Garandel V. et al. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res, 2003, 286(2): 263-275.
    73. Juengel J.L. & Mcnatty K.P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update, 2005, 11(2): 143-160.
    74. Kambadur R., Sharma M., Smith T.P. et al. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res, 1997, 7(9): 910-916.
    75. Kim H.S., Liang L., Dean R.G. et al. Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures. Biochem Biophys Res Commun, 2001, 281(4): 902-906.
    76. Kim J.J., Tsai A., Nottingham L.K. et al. Intracellular adhesion molecule-1 modulates beta-chemokines and directly costimulates T cells in vivo. J Clin Invest, 1999, 103(6): 869-877.
    77. Kirsch T., Sebald W. & Dreyer M.K. Crystal structure of the BMP-2-BRIA ectodomain complex.Nat Struct Biol, 2000, 7(6): 492-496.
    78. Kocabas A.M., Kucuktas H., Dunham R.A. et al. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochim Biophys Acta, 2002, 1575(1-3): 99-107.
    79. Krieg A.M., Yi A.K., Matson S. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 1995, 374(6522): 546-549.
    80. Kwissa M., Von Kampen K., Zurbriggen R. et al. Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control. Vaccine, 2000, 18(22): 2337-2344.
    81. Langley B., Thomas M., Bishop A. et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem, 2002, 277(51): 49831-49840.
    82. Lee S.J. & Mcpherron A.C. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA, 2001, 98(16): 9306-9311.
    83. Leitner W.W., Ying H., Driver D.A. et al. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res, 2000, 60(1): 51-55.
    84. Liang Y.C., Yeh J.Y. & Ou B.R. Effect of maternal myostatin antibody on offspring growth performance and body composition in mice. J Exp Biol, 2007, 210(Pt 3): 477-483.
    85. Lin J., Arnold H.B., Della-Fera M.A. et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun, 2002, 291(3): 701-706.
    86. Liu M.A. DNA vaccines: a review. J Intern Med, 2003, 253(4): 402-410.
    87. Lynch G.S., Cuffe S.A., Plant D.R. et al. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice. Neuromuscul Disord, 2001, 11(3): 260-268.
    88. Ma X., Cao Y., Shu D. et al. Cloning and expression of swine myostatin gene and its application in animal immunization trial. Sci China C Life Sci, 2005, 48(4): 368-374.
    89. Maccatrozzo L., Bargelloni L., Cardazzo B. et al. A novel second myostatin gene is present in teleost fish. FEBS Lett, 2001, 509(1): 36-40.
    90. Marchitelli C., Savarese M.C., Crisa A. et al. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm Genome, 2003, 14(6): 392-395.
    91. Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67: 753-791.
    92. Matzuk M.M., Lu N., Vogel H. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature, 1995, 374(6520): 360-363.
    93. Mccroskery S., Thomas M., Maxwell L. et al. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol, 2003, 162(6): 1135-1147.
    94. Mcdaniel L.S., Loechel F., Benedict C. et al. Immunization with a plasmid expressing pneumococcal surface protein A (PspA) can elicit protection against fatal infection with Streptococcus pneumoniae. Gene Ther, 1997, 4(4): 375-377.
    95. Mcpherron A.C., Lawler A.M. & Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997a, 387(6628): 83-90.
    96. Mcpherron A.C. & Lee S.J. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest, 2002, 109(5): 595-601.
    97. Mcpherron A.C. & Lee S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA, 1997b, 94(23): 12457-12461.
    98. Medan M.S., Akagi S., Kaneko H. et al. Effects of re-immunization of heifers against inhibin on hormonal profiles and ovulation rate. Reproduction, 2004, 128(4): 475~482.
    99. Medan M.S., Takedom T., Aoyagi Y. et al. The effect of active immunization against inhibin on gonadotropin secretions and follicular dynamics during the estrous cycle in cows. J Reprod Dev, 2006, 52(1): 107~113.
    100. Medan M.S., Watanabe G., Sasaki K. et al. Ovarian and hormonal response of female goats to active immunization against inhibin. J Endocrinol, 2003, 177(2): 287~294.
    101. Michel M.L., Mancini M., Sobczak E. et al. Induction of anti-human immunodeficiency virus (HIV) neutralizing antibodies in rabbits immunized with recombinant HIV--hepatitis B surface antigen particles. Proc Natl Acad Sci USA, 1988, 85(21): 7957-7961.
    102. Mittl P.R., Priestle J.P., Cox D.A. et al. The crystal structure of TGF-beta 3 and comparison to TGF-beta 2: implications for receptor binding. Protein Sci, 1996, 5(7): 1261-1271.
    103. Miyazono K., Hellman U., Wernstedt C. et al. Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem, 1988, 263(13): 6407-6415.
    104. Mor G., Singla M., Steinberg A.D. et al. Do DNA vaccines induce autoimmune disease? Hum Gene Ther, 1997, 8(3): 293-300.
    105. Nakamura T., Takio K., Eto Y. et al. Activin-binding protein from rat ovary is follistatin. Science, 1990, 247(4944): 836-838.
    106. Nakashima M., Toyono T., Akamine A. et al. Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev, 1999, 80(2): 185-189.
    107. Nishi M., Yasue A., Nishimatu S. et al. A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem Biophys Res Commun, 2002, 293(1): 247-251.
    108. Okuda K., Xin K.Q., Haruki A. et al. Transplacental genetic immunization after intravenous delivery of plasmid DNA to pregnant mice. J Immunol, 2001, 167(9): 5478-5484.
    109. Ostbye T.K., Galloway T.F., Nielsen C. et al. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem, 2001, 268(20): 5249-5257.
    110. Pangas S.A. & Matzuk M.M. Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol, 2004, 225(1-2): 83-91.
    111. Parker S.E., Borellini F., Wenk M.L. et al. Plasmid DNA malaria vaccine: tissue distribution and safety studies in mice and rabbits. Hum Gene Ther, 1999, 10(5): 741-758.
    112. Peng B., Zhao Y., Xu L. et al. Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity. Vaccine, 2007, 25(11): 2064-2073.
    113. Rebbapragada A., Benchabane H., Wrana J.L. et al. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol, 2003, 23(20): 7230-7242.
    114. Rehemtulla A. & Kaufman R.J. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood, 1992, 79(9): 2349-2355.
    115. Rescan P.Y., Jutel I. & Ralliere C. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J Exp Biol, 2001, 204(Pt 20): 3523-3529.
    116. Rios R., Carneiro I., Arce V.M. et al. Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol, 2002, 282(5): C993-999.
    117. Rios R., Carneiro I., Arce V.M. et al. Myostatin regulates cell survival during C2C12 myogenesis.Biochem Biophys Res Commun, 2001, 280(2): 561-566.
    118. Roberts S.B. & Goetz F.W. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett, 2001, 491(3): 212-216.
    119. Robertson D.M., Foulds L.M., Leversha L. et al. Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun, 1985, 126(1): 220-226.
    120. Rodgers B.D. & Weber G.M. Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone americana. Comp Biochem Physiol B Biochem Mol Biol, 2001a, 129(2-3): 597-603.
    121. Rodgers B.D., Weber G.M., Sullivan C.V. et al. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology, 2001b, 142(4): 1412-1418.
    122. Sasaki K., Medan M.S., Watanabe G. et al. Immunization of goats against inhibin increased follicular development and ovulation rate. J Reprod Dev, 2006, 52(4): 543~550.
    123. Scheufler C., Sebald W. & Hulsmeyer M. Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol, 1999, 287(1): 103-115.
    124. Schlunegger M.P. & Grutter M.G. An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2. Nature, 1992, 358(6385): 430-434.
    125. Schultz E. & Mccormick K.M. Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol, 1994, 123: 213-257.
    126. Sellick G.S., Mcgrice H., Bouwman A. et al. Polymorphisms within the cattle myostatin gene. Proceedings of the 30th International Congress of Animal Genetics. 2006.
    127. Sellick G.S., Pitchford W.S., Morris C.A. et al. Effect of myostatin F94L on carcass yield in cattle. Anim Genet, 2007, 38(5): 440-446.
    128. Shi F., Mochida K., Suzuki O. et al. Development of embryos in superovulated guinea pigs following active immunization against the inhibin alpha-subunit. Endocr J, 2000, 47(4): 451~459.
    129. Skipper M. A lean feat-microRNAs and muscle mass. Nat Rev Genet, 2006.
    130. Smet S.D., E.C. W., Claeys E. et al. Effect of dietary energy and protein levels on fatty acid composition of intramuscular fat in double-muscled Belgian Blue bulls. Meat Sci, 2000, 56: 73-79.
    131. Stickland N.C. & Goldspink G. A possible indicator muscle for the fibre content and growth characteristics of porcine muscle. Anim Prod, 1973, 16: 135-146.
    132. Stock A.E., Woodruff T.K. & Smith L.C. Effects of inhibin A and activin A during in vitro maturation of bovine oocytes in hormone- and serum-free medium. Biol Reprod, 1997, 56(6): 1559-1564.
    133. Strath R.A. & Thompson J.R. Reproduction in Cattle Displaying Muscular Hypertrophy. 60th Annual Feeders' Day Report. Department of Animal Science, University of Alberta, Canada, 1981.
    134. Tang D.C., Devit M. & Johnston S.A. Genetic immunization is a simple method for eliciting an immune response. Nature, 1992, 356(6365): 152-154.
    135. Taylor J.L., Turner O.C., Basaraba R.J. et al. Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect Immun, 2003, 71(4): 2192-2198.
    136. Taylor W.E., Bhasin S., Artaza J. et al. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab, 2001, 280(2): E221-228.
    137. Temin H.M. Overview of biological effects of addition of DNA molecules to cells. J Med Virol,1990, 31(1): 13-17.
    138. Thies R.S., Chen T., Davies M.V. et al. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors, 2001, 18(4): 251-259.
    139. Thomas M., Langley B., Berry C. et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem, 2000, 275(51): 40235-40243.
    140. Thompson T.B., Woodruff T.K. & Jardetzky T.S. Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions. Embo J, 2003, 22(7): 1555-1566.
    141. Tilbrook A.J., De Kretser D.M. & Clarke I.J. A role for inhibin in the regulation of the secretion of follicle stimulating hormone in male domestic animals. Domest Anim Endocrinol, 1992, 9(4): 243~260.
    142. Tsuchida K., Arai K.Y., Kuramoto Y. et al. Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. J Biol Chem, 2000, 275(52): 40788-40796.
    143. Uytterhaegen L., Claeys E. & Demeyer D. Effects of exogenous protease effectors on beef tenderness development and myofibrillar degradation and solubility. J Anim Sci, 1994, 72(5): 1209-1223.
    144. Vale W., Rivier J., Vaughan J. et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature, 1986, 321(6072): 776-779.
    145. Valenzula P., Coit D. & A. M.-S.M. Antigen engineering in yeast: synthesis and assembly of hybrid hepatitis B surface antigen-herpes simplex 1 gD particles. Bio Technology, 1985, 3: 323-327.
    146. Vitadello M., Schiaffino M.V., Picard A. et al. Gene transfer in regenerating muscle. Hum Gene Ther, 1994, 5(1): 11-18.
    147. Wagner K.R., Mcpherron A.C., Winik N. et al. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol, 2002, 52(6): 832-836.
    148. Webb E.C., De Smet S., Van Nevel C. et al. Effect of anatomical location on the composition of fatty acids in double-muscled Belgian Blue cows. Meat Sci, 1998, 50: 45-53.
    149. Welt C., Sidis Y., Keutmann H. et al. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood), 2002, 227(9): 724-752.
    150. West R.L. Red to white fiber ratios as an index of double muscling in beef cattle. J Anim Sci, 1974, 38(5): 1165-1175.
    151. Whittemore L.A., Song K., Li X. et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun, 2003, 300(4): 965-971.
    152. Widera G., Austin M., Rabussay D. et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol, 2000, 164(9): 4635-4640.
    153. Wiener P., Smith J.A., Lewis A.M. et al. Muscle-related traits in cattle: The role of the myostatin gene in the South Devon breed. Genet Sel Evol, 2002, 34(2): 221-232.
    154. Williams R.S., Johnston S.A., Riedy M. et al. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci USA, 1991, 88(7): 2726-2730.
    155. Wise R.J., Barr P.J., Wong P.A. et al. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA, 1990, 87(23): 9378-9382.
    156. Wolff J.A., Malone R.W., Williams P. et al. Direct gene transfer into mouse muscle in vivo.Science, 1990, 247(4949 Pt 1): 1465-1468.
    157. Wolfman N.M., Mcpherron A.C., Pappano W.N. et al. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA, 2003, 100(26): 15842-15846.
    158. Wu Y. & Kipps T.J. Deoxyribonucleic acid vaccines encoding antigens with rapid proteasome-dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J Immunol, 1997, 159(12): 6037-6043.
    159. Yamashita H., Ten Dijke P., Huylebroeck D. et al. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol, 1995, 130(1): 217-226.
    160. Yang J., Ratovitski T., Brady J.P. et al. Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev, 2001, 60(3): 351-361.
    161. Ying S.Y. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev, 1988, 9(2): 267-293.
    162. Zhu X., Hadhazy M., Wehling M. et al. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett, 2000, 474(1): 71-75.
    163. Zimmers T.A., Davies M.V., Koniaris L.G. et al. Induction of cachexia in mice by systemically administered myostatin. Science, 2002, 296(5572): 1486-1488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700