用户名: 密码: 验证码:
光伏驱动的粮仓空间空调系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温储粮是指使粮堆平均温度长期保持在15℃(低温)或20℃(准低温)及以下。随着人们对粮食安全的更高要求及节能技术的发展,低温储粮新技术的开发与其相关综合技术的应用研究具有非常重要的意义。本文以合肥某高大拱板平房仓为研究对象,旨在通过建立仓顶光伏发电驱动粮仓补冷空间通风空调系统降低粮温,并优化组合其它低温储粮工艺,实现零能耗低温储粮。
     首先,研究了粮仓围护结构传热及冷负荷。根据气象参数及粮仓建筑的特点,采用CFD模拟法、空调负荷概算法、空调谐波法分别研究计算,并对其结果对比分析。
     其次,研究了粮仓通风系统气流组织。根据仓内传热温度分布特点,采用了粮仓补冷空间通风低温储粮,对其通风效果进行CFD模拟,用多目标决策层次分析法对模拟得到的气流组织评价指标结果优化选择,确定了具体的粮仓补冷空间通风气流组织方案。
     最后,设计了粮仓补冷空间空调系统和仓顶光伏发电系统,并进行了各系统的投资预算;制定了低温储粮优化组合方案,并对其用于粮食储藏技术进行了经济性分析。
     研究结果得出:1)要使堆粮线上部空间的温度降到15℃,需要补给的冷量为48kW。通过仓房屋面进入仓内的热流量占整个粮仓围护结构热负荷的比重约为83%;2)当送风速度6m/s,送风温度10℃,送风口距堆粮线高度2.3m,送风口个数30,送风口尺寸300mm×100mm时,形成最优1/4粮仓补冷空间上送下回通风气流组织;3)粮仓补冷空间空调通风系统选用风冷涡旋冷水机组制备冷源,初投资为18万元,162kWp的仓顶光伏发电系统总造价为646万元,每年发电量为166.3MWh,其能在静态回收期9.7年内节省标煤582t,减排CO_21610t等;4)光伏发电驱动粮仓补冷空间空调低温储粮系统虽然初投资高,但优化组合的技术推广到500亿斤仓容,每年可形成经济效益2011.5万元,且带来社会、环境效应也是巨大的,因此可被广泛推广应用于国家仓储行业。
Low-temperature grain storage means the average temperature of the grain bulk kepts at and below 15 (low temperature) or 20 (standard low temperature) centigrade. With higher demands on food security and the development of energy saving technology, the development of new technology for low-temperature grain storage and application of related comprehensive technology has important significance. This study takes Hefei Tall Arch Board Storehouse as a research object. It aims to build the Photovoltaic power generation system to drive the air-conditioning of the barn space filled cold air to cool the grain and optimizes the combination of other low-temperature grain storage technology. At the end, zero energy-consumption at low temperature grain storage is realized.
     Firstly, the heat transfer and cooling load of the barn is studied. According to meteorological parameters and the characteristics of the barn building, the CFD simulation, air-conditioning load estimates method, air-conditioning of harmonic method is applied to calculate and compare the cooling load of the barn.
     Secondly, the air distribution of the ventilation system of the barn is studied. According to the temperature distribution of warehouses, the air distribution of the ventilation system of the barn space filled cold air for low temperature grain storage is simulated by CFD software. The method of Multi-Objective Decision Analytic Hierarchy Process is used to optimize the simulation results. Subsequently, the specific program of air distribution in the barn is decided.
     Finally, the air-conditioning system of the barn space filled cold air and the roof photovoltaic power generation system are designed and budgeted. The program of optimized combination for low temperature grain storage is developed, and its economic analysis is done The main fruits in my study are as follows:
     1) To drop the temperature of the space over the bulk line to 15℃, the supplied cooling capacity is 48kW. The heat load through the roof into the envelope of the warehouse accounts for about 83% of total heat load of the envelope. 2) When the air velocity is 6m/s, air temperature is 10℃, the air outlet located 2.3m over the bulk line , the number of the outlets are 30 and the size of them are all 300mm×100mm, the air distribution of the ventilation system in the 1/4 barn is best. 3) The cold air sources is made by air-cooled water chillers units. The initial investment of the air conditioning system of the barn space filled cold air is 180 thousand yuan. The total cost of the 162kWp roof photovoltaic power generation system is 6.46 million yuan. The annual electricity generation is 166.3MWh. It can save 582 tons of standard coal and reduce 1610 tons of CO_2 emissions during the static payback period of 9.7 year. 4) The initial investment of the system of PV-driven air-conditioning for Low-temperature grain storage is high, but 20.115 million yuan can be earned each year using the optimal combination of technology to the storage capacity of 50 billion kilograms. The environmental and social benefits are also enormous. It can be applied to national storage.
引文
[1]兰盛斌,丁建武,黎万武.我国粮食储存技术[A].第三届全国粳稻米产业大会专集.长春区宇特产食品推广中心专集协办
    [2]靳祖训等.农业领域拓展战略课题.国家中长期科技发展规划战略研究.2004
    [3]靳祖训.粮食储藏科技发展问题研究专题报告.十一五粮食流通科技发展战略研究专题报告之一,2005.7
    [4]Ls/T1211-2088中华人民共和国粮食行业标准粮油储藏技术规范
    [5]沈辉,曾祖勤.太阳能光伏发电技术[M].北京,化学工业出版社,2005.8
    [6]MuhlbauerW.The present status of grain drying in the Federal Republic ofGermany.American Society of Agricultural Engineers,1987,paper No.87–6016.St.Joseph,Michigan,USA.
    [7]Maier,D E,Rulon,R A.Evaluation and optimization of a new commercial grain chiller.Applied Engineering in Agriculture,1996,(12):725-730.
    [8]Maier,D E,Rulon R A,Mason L J.Chilled versus ambient aeration and fumigation of stored popcorn-Part 1:Temperature management.Journal of Stored Products Research,1997,(33):39-49.
    [9]Rulon R A,Maier D E,Boehlje M D.A post-harvest economic model to evaluate grain chilling as an IPM technology.Journal of Stored Products Research,1999,(35):369-383.
    [10]Hunter A J and Taylor P A.Refrigerated aeration for the preservation of bulk grains.Journal of stored products Research,1980,(16):123-131.
    [11]Maier D E,Bakker-Arkema F W and Ilangantileke S G.Ambient and chilled aeration under Thai conditions.Agricultural Engineering Journal,1993,(2):15-33.
    [12]中国储备粮管理总公司.粮油储藏[M].北京:中国财政经济出版社,2007
    [13]白旭光,卞科,田书普,王若兰,曹阳.中国典型储粮生态区低温储粮的优化集成方案[J].粮食储藏,2006(1):24-28
    [14]郝伟,章其兴,于素平等.机械制冷低温储粮技术与装备[J].中国农业科技报,2001,3(6):30-35
    [15]王若兰,白旭光,卞科,田书普.粮食仓房隔热性能对低温储粮效果的影响[J].粮食储藏,2004,32(4):41-44
    [16]路路路.粮油储藏学[M].北京:中国建筑工业出版社,2001
    [17]崔国华,曹毅.粮食低温储藏的应用实践和发展建议[J].粮食储藏,2004(2):20-24
    [18]刘圣安,邹贻方,董光明等.新型反辐射防水隔热涂料控温效果研究[J].粮食储藏,2004,(3):38-40
    [19]唐为民.高大平房仓的隔热和密闭[J].粮食储藏,2004,(3):9-13
    [20]程德军,毛淑娟.高大平房仓准低温储粮实验报告[J].粮油仓储科技通讯,2003,(6):9-11.
    [21]张德顺,亚军.空调低温储粮技术[J].现代化农业,2001(8):35-36
    [22]王信忠,李茂达,邱一鸣.空调准低温储粮技术的应用[J].广西工学院学报,1994(1):72-76
    [23]张德峰.谷冷机低温储粮技术的应用与分析[J].问题与对策.2007,(4):216
    [24]李培森.争气机诞生记一记谷物冷却机的国产化工作.中国机电工业,1999,(10):12-13
    [25]周富生,黄大椿,严平贵等.低温储粮新冷源的开发和应用技术研究报告[J].粮食科技与经济,2004,(2):32-36
    [26]王荣光,沈天行,可再生能源利用与建筑节能[M].机械工业出版社.2004
    [27]付剑波.太阳能制冷低温稻谷储藏实验研究[D].上海交通大学,2007
    [28]高丽荣,华贲.LNG冷能用于低温储粮研究[D].华南理工大学,广州,2008
    [29]朱森阳.粮仓机械通风系统优化设计研究[D].上海交通大学,上海,2007
    [30]罗会龙.太阳能制冷低温储粮研究[D].上海交通大学博士论文,上海,2006
    [31]钱永刚.钢板粮仓架空隔热层传热的数值模拟研究[D].北京科技大学,北京,2006
    [32]国家粮食局粮食行政管理司.储粮新技术教程[S].北京.中国商业出版社,2001
    [33]国家粮食局粮食.仓库建设标准(修订版)[S].北京,2001
    [34]李琼,汪喜波,杨德勇.CFD方法在仓储粮堆温度场研究中的应用探索[J].粮食储藏技术,2008(3):21-24
    [35]温正,石良辰,任毅如.FLUENT流体计算应用教程[M].清华大学出版社.2009:1-9
    [36]赵育新.Fluent教程中文版[M].第六章
    [37]赵荣义,范存养,薛殿华,钱以明.空气调节[M].北京.中国建筑工业出版社,2006
    [38]高路树,吴建忠.准低温仓制冷设备的配置与使用[J].粮油仓储科技通讯,2005,(1):38-40.
    [39]袁素华.低温粮仓围护结构传热系数K值的确定方法与计算[J].粮食储藏,1989(2)16-22
    [40]修永文.地下超大空间气流组织的数值模拟[D].哈尔滨工程大学,哈尔滨,2007,05
    [41]杨尚一.体育馆不同气流组织方案的比较研究[D].天津大学,天津,2006,12
    [42]李莉.低温送风大空间热环境研究[D].东北电力大学,2007,05
    [43]邵敏.印刷车间高大厂房气流组织CFD优化研究[D].西安建筑科技大学,2009,05
    [44]蒋水合.大空间空气环境参数检测方法及控制策略研究[D].重庆大学,2006,04
    [45]赵焕臣,许树柏,金生.层次分析方法[M].科学出版社,1986
    [46]许树柏.层次分析方法原理[M].天津大学出版社,1988
    [47]陈言桂.琅琊山水电站地下厂房发电机层拱顶送风气流组织试验与研究[D].重庆大学,2005,10
    [48]陆耀庆.实用供热空调设计手册(下册)[M].中国建筑工业出版社,第二版
    [49]台佳中央空调产品资料目录.台佳风冷涡旋冷水机组[M].2008年04月版
    [50]张德顺,亚军.空调低温储粮技术[J].现代化农业,2001(8):35-36
    [51]张德峰.谷冷机低温储粮技术的应用与分析[J].问题与对策,2007(4):216-218
    [52]周辛逸.太阳能光伏发电并网系统工程设计[J].光伏系统及工程,第十届中国太阳能光伏会议论文集
    [53]赵春江,朱元昊等. 200kw太阳能光伏发电系统设计实践[J].节能技术,2007(4):326-329
    [54]车孝轩.太阳能光伏系统概论[M].武汉大学出版社,2006.10
    [55]黄汉云.太阳能光伏发电应用原理[M].化学工业出版社,2009. 1
    [56] http://www.retscreen.net/zh/license.html
    [57]http://www.ahpc.gov.cn .《中央财政补贴光伏发电,工矿企业实惠最多》.安徽省发展和改革委员会,2009年7月
    [58]邓兰卿,王兰花.中储粮企业如何减少粮食损耗[J].粮油仓储科技通讯2006(3), 3-4
    [59]黄志军,金建德,刘林等.智能型制冷温控系统应用试验[J].浙江省粮食局直属粮油储备库,119-120
    [60]国家粮食安全中长期规划纲要(2008-2020年)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700