用户名: 密码: 验证码:
膨化饲料热特性参数研究及热风干燥数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着饲料工业这个行业的发展,越来越多的饲料生产厂家对干燥技术和设备提出了更高的要求。为了适应生产厂家的要求,干燥设备的设计和研发也偏向于大型化、系列化、低能耗。多层立式干燥器一种新型干燥器,它的特点是:一是干燥室内无机械运动部件,日常维护少。二是可连续运行,效率高、产量大(产能≥10t/h)。三是干燥器体积巨大,造价高昂。饲料生产中干燥过程是个很重要的环节,多层立式干燥器向干燥室内送风方式是底部送风和两侧送风。对送风方式以及热风在干燥室内的流动状态进行研究,可以为立式干燥器的优化和改进提供参考依据。
     本文先对膨化饲料的热特性进行了研究,然后利用计算流体力学(CFD)对多层立式干燥器中的热风流动情况进行数值模拟,具体研究如下:
     1)试验材料选用某饲料生产厂的3种膨化饲料(002、556、561),用KD2 PRO热特性分析仪测量膨化饲料在3种初始温度T℃(25℃、35℃、45℃)和8种含水率水平M下的导热系数λ。得出了导热系数关于含水率、温度的二元回归方程是:
     2)用质量体积法测量2种膨化饲料(556、561)的孔隙率,2种饲料颗粒外形是比较规则的圆柱体。通过研究的孔隙率可以看出,膨化饲料颗粒的大小对其孔隙率的影响不是很大。膨化饲料堆积体常被看成一个整体,实际上颗粒之间存在很多的空隙,而且颗粒表面也存在气孔,还有颗粒之间也有相互的挤压作用,使得堆积体的表面张力会偏大,这些孔隙也不容易被检测出来,所以得到的孔隙率测量值会偏小。孔隙率在本文是干燥室建模的关键参数之一
     3)建立了立式干燥器干燥室内的模型,重点研究了干燥过程中底部送风方式和两侧送风方式,得出了干燥室内的风压矢量图、风压分布图、风速矢量图、风速分布图。通过对模型数值的分析和研究,发现采用底部送风方式干燥室模型最佳的干燥区域是:X=0-400mm, Y=0-750mm和X=1500-2400mm, Y=1300-2400mm。采用两侧送风方式干燥室模型最佳干燥区域是:X=0-100mm, Y=0-500mm,和X=1800-2400mm, Y=1300-2400mm。
Along with the development of feed industry, drying technology and equipment were put forward higher request by more and more feed producers. In order to adapt to the manufacturer's request, the design and research of dryer equipment focus on hugeness, serration, low energy consumption. Multi-storey vertical dryer is a new type of dryer, Its characteristic is:dry room with no mechanical parts, and daily maintenance need less; running continuously, high efficiency, high capacity≥10t/h;expensive. Drying is an important link in the feed manufacturing process, Air distribution mode in multi-storey vertical dryer is bottom air supply and sides supply. In this paper, following Patten of hot air in dryer chamber was researched; provide the reference to the optimization and improvement of vertical dryer.
     Firstly the thermal characteristics of expanded feed were studied, and then the air flow condition of multilayer vertical dryer was simulated by using computational fluid dynamics (CFD). Specific research as follows:
     1) Test material was a factory 3 expanded feed (002、556、561), using KD2 PRO thermal characteristic analyzer measure thermal conductivityλof expanded feed at initial temperature T(25℃、35℃、45℃)and 8 kinds of moisture content M. Thermal conductivity relations of coefficient were found out.
     2) Using quality volume method measure the porosity of expanded feed (556、561), two expanded feed' grain appearance are cylinder. Through the research of porosity, expanded feed grain size affect porosity smaller. Expanded feed together is often as a whole, actually there are many gaps between particles. Surface exists hole, make the surface tension become larger. These pore also not easily detected, so the values of porosity measured is small.
     3) Vertical dryer dry indoor model was established, the way of ventilation air side supply and bottom supply was focused on. The dry indoor air pressure distribution vector diagram, air pressure, wind velocity vector diagram, wind velocity distribution were found out. By anglicizing and researching numerical model, found out the best dry area of ventilation dry room model of bottom air supply is:X=0-400mm, Y=0-750mm and X=1500-2400mm, Y=1300-2400mm is best, the best dry area of dry room model of Sides supply is:X=0-100mm, Y=0-500mm and X=1800-2400mm, Y=1300-2400mm.
引文
1. 陈健,周兴华,向枭.水产膨化饲料的现状及展望[J].养殖与饲料,2002,(5):6-7
    2. 陈坤杰,龚红菊.基于非稳态热探针法的稻谷导热系数的测定[J].农业机械学报,2005,36(1):65-67
    3.陈龙健,刘德旺,吕黄珍.5HCCX-1.6型多单元带式穿流干燥机干燥过程的计算机模拟[J].农业工程学报,2006,22(2):122-126
    4. 崔清亮,郭玉明.农业物料物理特性的研究及其应用进展[J].农业现代化研究,2007,28(1):124-127
    5. 曹崇文.农产品干燥工艺过程的计算机模拟[M].北京:中国农业出版社,1999
    6. 池桂良.玉米热风干燥模拟实验系统的研究[D].吉林大学硕士学位论文,2005
    7. 范有明,宁练,时章明,马安君.热线法快速测量微粒导热系数的研究[J].计量测试与检定,2006,16(6):1-3
    8.盖志杰.内循环流化床的数值模拟与实验验证[D].哈尔滨工业大学硕士学位论文,2006
    9.韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    10.洪文彪.浅谈水产膨化饲料的发展趋势[J].养殖与饲料,2003,6:5
    11.胡志超,王海鸥,谢焕雄等.几种谷物横流干燥数学模型及其应用[J].农业工程学报,2010,26(1):76-82
    12.金国淼.干燥设备[M].北京:化学工业出版社,2002
    13.江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008
    14.刘建学.高湿农副产品物料热物性及测定装置的研究[D].中国农业大学硕士学位论文,1993
    15.刘建学,吴守一.BP神经网络预测高水分农产品物料比热的探索[J].江苏理工大学学报,1999,20(1):16-19
    16.刘恬,过世东.虾饲料的表观质量对耐水性的影响[J].中国饲料,2008,20:30-32
    17.刘曦.温度和湿度对可燃物平衡含水率的影响研究[D].东北林业大学硕士学位论文,2007
    18.林鸳缘,曾绍校,郑向华.发芽糙米微波干燥特性的研究[J].农产品加工,2008,(1):10-12
    19.苗帅,柴本银,彭丽华等.膨化颗粒饲料振动床干燥工艺的研究与改进[J].干燥技术与设备,2007,5(5):250-253
    20.彭小飞.颗粒饲料热特性参数的研究[D].华中农业大学硕士学位论文,2004
    21.沈晓萍,王蒙蒙,卢晓黎.熟化甘薯热风干燥特性及数学模型研究[J].机械与设计,2007,23(3):119-122
    22.陶斌斌.多孔介质对流干燥传热传质机理的研究及其数值模拟[D].河北工业大学硕士学位论文,2004
    23.王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    24.王超.膨化饲料特性及带式穿流干燥机气流场数值模拟研究[D].武汉:华中农业大学,2010
    25.王红涛,张进疆,徐成海等.对撞流干燥器中流动特性的数值模拟[J].干燥技术与设备,2004,2(3):29-33
    26.王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007
    27.王纬武.流体流动与传热[M].北京:化学工业出版社,2002
    28.王海霞.辣椒热风干燥特性研究[D].西南大学硕士学位论文,2006
    29.吴德铭,郜冶.实用计算流体力学基础[M].哈尔滨:哈尔滨工程大学出版社,2008
    30.肖远金.新兴饲料干燥设备和干燥方法[J].装备使用,2005,(1):36
    31.徐桂转,梁新,岳建芝.利用热线法对松散类生物质导热系数的测试[J].研究与试验,2004,(5):23-25
    32.於海明,薛金林.特种稻谷(籼稻)比热的试验测定[J].粮油加工.2006,(6):67-71
    33.易维明,郭超,姚宝刚.生物质导热系数的测定方法[J].农业工程学报,1996,12(3):38-41
    34.尤长静,刘相东.多层水平气流带式穿流干燥机的数学模型[J].干燥技术与设备,2006,4(2):91-95
    35.于辅超.玉米真空薄层干燥工艺的研究[D].吉林大学硕士学位论文,2006
    36.杨洲,罗锡文,李长友.稻谷热特性参数的试验测定[J].农业机械学报.2003,34(4):76-78
    37.周国燕,黄国纲,李彩侠.探针法测量低温下生物材料导热系数研究[J].工程热物理学报,2006,27(2):110-112
    38.曾令彬,赵思明,熊善柏,郭先松.风干白鲢的热风干燥模型及内部水分扩散特性[J].农业工程学报.2008,24(7):280-283
    39.曾祥福,闵庆祝,战洪仁,宁志高.一种智能化的准稳态法导热系数测量装置[J].实验室科学,2008,(3):70-72
    40.曾亚森,罗宇玲.基于Ansys CFX喷雾流化干燥数值模拟与流动特性[J].茂名学院学报,2009,19(1):32-34
    41.张建军,王海霞,马永昌,郑严.辣椒热风干燥特性的研究[J].农业工程学报,2008,24(3):298-301
    42.张钟,王华.不同干燥方法对大豆分离蛋白功能性质的影响[J].食品与机械,2003,(2):11-13
    43.张忠杰,李琼,杨德勇等.准静态仓储粮堆温度场的CFD模拟[J].中国粮油学报,2010,(4):45-50
    44.郑国生,曹崇文.颗粒物料气流干燥的数学模型[J].北京农业工程大学学报,1994,14(2):35-42
    45.郑国生.气流干燥机的性能分析[J].上海水产大学学报,1997,(6):25-31
    46.郑晓冬.脉冲式气流干燥器的操作与结构优化模拟研究.青岛科技大学硕士学位论文,2006
    47.赵金红等.多层带式穿流干燥机风速场的CFD模拟及检验[J].干燥技术与设备,2007,5(1):15-21
    48.赵渊.CFD技术在影剧院空调系统气流组织优化设计中的应用研究[D].重庆大学硕士学位论文,2005
    49. Barrozo M A S, Silva A A M., Oliveira D T.The use of curvature and bias measure to discriminate anong equilibrium moisture equations for mustard seed[J]. J. Stored Prod Res.,2008,44:65-70
    50. Cordeiro D S, Raghavan G S V, Oliveira W P.Equilibrium moisture content model for Maytenus ilicifolic leaves[J].Biosyst. Eng J.,2006,94(2):221-228
    51. Doymaz I. Air-drying characteristics of tomatoes. J. Food Eng.,2007,78:1291-1297
    52. Doymaz I.Influence of blanching and slice thickness on drying characteristics of leek slices[J].Chem. Eng. Process.,2008,47(1):41-47
    53. Fluent Inc. FLUENT 6.3 User's Guide. Fluent Inc.,2006
    54. Halsey G. Physical adsorption on uniform surfaces[J]. J.Chem.Eng.,1985,16(10): 931-937
    55. Hu J, Sari O, Eicher S, Rakotozanakajy A.R.Determination of specific heat of milk at different fat content between 1℃ and 59℃ using micro DSC[J].J.Food Eng.,2009,90:395-399
    56. Ibrahim Doymaz. Influence of blanching and slice thickness on drying characteristics of leek slices[J]. Chemical Engineering and Processing.2008.47 (1):41-47.
    57. John W, Gardiner F J. Through-drying:heat transfer mechanism and machine system response[J].Tappi,1976,59(4):82-87
    58. Kaletunc G.Prediction of specific heat of cereal flours:A quantitative empirical correlation[J].J. Food Eng.,2007,82:589-594
    59. Kiranoudis C T, Markatos N C.Pareto design of conveyor-belt dryers[J].J.Food Eng.,2000,(46):145-155
    60. Kamil Sacilik. The thin layer drying characteristics of organic apple slices[J]. Journal of Food Engineering.2006,73 (3):281-289.
    61. Lahsasni S, Kouhila M, Mahrouz M. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica) [J]. Energy Convers. Manage.,2004,45(2):249-261
    62. Luangmalawata P, Prachayawarkorn S, Nathakaranakule A, Soponronnarit S.Effect of temperature on drying characteristics and quality of cooked rice[J]. Food Sci. Technol..,2008,41(4):716-723
    63. Li X, Tabil L G.Ikechukwuka N.Oguocha, Panigrahi S.Thermal diffusivity,thermal conductivity,and specific heat of flax fiber-HDPE biocomposites at processing temperatures[J].Compos.Sci. Technol.,2008,68:1753-1758
    64. Muramatsu Y, Tagawa A., Sakaguchi E.,T.Kasai.Prediction of thermal conductivity of kernels and a packed bed of brown rice[J].J.Food Eng.,2007,80:241-248
    65. Park K J, Vohnikova Z, Brod F P R. Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.) [J]. J.Food Eng., 2002,51:193-199
    66. Pfost H B,Mourer S G, Chung D S, Milliken G A.Summarizing and reporting equilibrium moisture data for grains [J]. ASAE Paper,1976,76-3520
    67. Sacilik K. Elicin A K.The thin layer drying characteristics of organic apple slices[J]. J.Food Eng,2006,73(3):281-289
    68. Thompson T L, Peart R M. Foster G H. Mathematical simulation of corn drying-A new model[J]. Trans. ASAE,1968,1(4):582-586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700