用户名: 密码: 验证码:
亚波长金属周期结构的负折射和局域场增强效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对光与物质之间相互作用的理解以及对光及电磁波的操控,一直是人们梦寐追逐的目标,也是科技领域中至关重要的课题。随着工艺技术的长足进步,人们可以制造微米,甚至纳米级的具有任意形状或图案的金属周期结构。当电磁波与这些具有亚波长尺寸的金属周期结构发生作用时,出现一系列新现象和新效应,例如metamaterials(即电磁超介质)和表面等离子体。“电磁超介质”是通过周期排列某种几何结构单元获得的具有自然媒质所不具备的新型电磁特性的一种人工材料。电磁波能够在有效介电常数和有效磁导率同时为负值的电磁超介质中表现出后向波传输、负折射、倏逝波放大等奇异特性。电磁超介质的电磁性能高度依赖单元的几何结构,这为人们获得具有超常电磁性能的“新媒质”提供了一种全新的材料设计理念,为人们操纵、控制光及电磁波提供了新的途径。
     电磁超介质通常基于金属的结构单元,采用金属便于实现形状或图案各异的周期结构,但金属的损耗问题是限制金属电磁超介质负折射性能及其应用的关键。结构简单,易于制备,且性能(低损耗、宽频带、固态的、均匀各向同性)良好的电磁超介质是科研工作者追求的目标。本论文设计并研究了几种工作在微波、太赫兹和红外波段的电磁超介质,探索可以实现“负折射”,且能有效降低损耗的结构和机制。同时,针对制约表面增强光谱技术实际广泛应用的瓶颈,即传统衬底结构可控性差导致的表面增强光谱重现性差的问题,对具有可控、稳定、高效的电磁场增强效果的电磁超介质结构在表面增强光谱衬底方面的应用进行了探索。
     本文的研究工作和创新点如下:
     1.研究了电磁波垂直入射时双闭合环和双劈裂环共振器的电磁响应及其微观机制。发现由于内外环电响应的共振耦合,双环共振器具有低频的反对称模和高频的对称模。利用外电场激发内外环“断续线”型电响应和反对称模贡献的负磁导率,双环共振器可以在电磁波垂直激发时实现负折射。
     2.设计了一种工作在太赫兹波段的等方型十字孔渔网电磁超介质结构,研究了主要结构参数对其电磁响应以及左手性能的影响,并利用磁响应的LC有效电路模型解释左手频带对结构参数的依赖关系。与现有的矩形孔渔网状“金属/电介质/金属”电磁超介质相比,该结构的电磁响应可以不依赖入射电磁波的偏振,并且具有较高品质因数(FOM>4)和透射率(T>80%)。
     3.探索分布有孔阵列的渔网电磁超介质结构在其左手通带发生的超强透射现象的起因,发现左手通带紧邻与波导谐振模式关联的超强透射峰,利用超强透射效应可以有效降低电磁超介质的损耗,提高品质因数。渔网结构中电介质层和金属层厚度对磁共振以及左手性能的影响主要源自于波导谐振模式对孔尺寸以及深度的依赖。
     4.提出一种偏振可控的近红外双左手通带平面电磁超介质,即具有不对称十字孔(十字孔的两臂长或臂宽不同)阵列的“金属/电介质/金属”结构。详细讨论并利用理论模型解释改变臂长和臂宽对双左手通带的调制作用。进一步计算空间局域电场分布发现与等离子体模式关联的激发电场可以在两金属板中间区域引起12倍的电场增强,当探针分子处于这些“热点”位置时可以获得-104的拉曼信号增强。
     5.系统研究了不对称双劈裂环阵列结构在光波垂直入射下的可调谐等离子体光学性能和不同共振模式激发时的场增强效应。该结构在近红外和可见光区域有两个强消光峰,分别对应等离子体的一阶共振(Ⅰ)和二阶共振(Ⅱ)。通过激发不同的共振模式,不对称双劈裂环阵列结构可以在近红外和可见光波段,在相同空间区域,即裂口位置获得显著增强的电场,电磁场热点位置位于金属弧的棱边和棱角附近,最大电场增强接近或超过-103,分别对应红外吸收和拉曼增强因子-105和1012-1013,并且增强效果可以通过缩小裂口宽度和优化金属弧顶端结构得到进一步提高。
Understanding the interaction between light and matter and manipulating light and electromagnetic waves at will have always been the people's pursuit, and also been the essential issues in science and technology. With the advance of technology, micron and even nano-scale metal periodic structures can be fabricated. When electromagnetic waves illuminate these structures with sub-wavelength size, there will appear a series of new phenomena or effects, such as "metamaterials" and surface plasmons. Metamaterials are artificial composite or structured materials constructed by periodically arranging special geometric elements, which exhibit properties not found in naturally occurring materials or compounds. Wave propagation in metamaterials with simultaneously negative dielectric permittivity and magnetic permeability can exhibit exotic properties, for instance backward-wave transmission, negative refraction, evanescent wave amplification etc. The electromagnetic properties of matematerials depend highly on the element's geometry. This flexibility provides a novel concept for us to design new materials with extraordinary electromagnetic properties, and also open a new channel to manipulate and control the light and electromagnetic waves.
     Metamaterials are usually based on metallic structure units since it is convenient to use metal to realize structure with various shapes or patterns. However, conducting loss is the major drawback limiting their applications. Metamaterials with simple structures for easy preparation and excellent performance (low loss, broadband, solid, uniform isotropic) are desired. In this thesis, several novel structured metamaterials working respectively in microwave, terahertz and infrared frequencies are designed aiming at achieving negative refraction with lower losses and clarifying related mechanisms therein. Moreover, metallic structures based on metamaterials with tunable, stable and large local field enhancement are explored for possible applications as substrates of surface-enhanced spectroscopy, aiming at breaking the bottleneck hindering wide applications of surface-enhanced spectroscopy, namely, the poor reproducibility of signals with traditional substrates due to the lack of control in metal particles produced by chemical process.
     The main progresses and innovation of this work are listed as follows:
     (1) We investigated the electromagnetic responses and mechanisms of double split-and closed-ring resonators at normal-to-plane incidence. It is found that the double ring metamaterials exhibit respectively antisymmetric and symmetric modes in lower and higher frequencies due to the resonance coupling of the inner and outer rings. By combining the cut-wire type electric resonance in both outer and inner rings excited by external electric field and the negative magnetic response associated with antisymmetric mode, negative refraction can be achieved in the double-ring metamaterials at normal-to-plane incidence.
     (2) We designed an isotropic-like fishnet metamaterial in terahertz frequencies. The influences of its main geometry parameters on both the electromagnetic response and the left-handed property are investigated. An effective LC circuit description for magnetic resonance is employed to explain the dependence of left-handed frequency band on geometry parameters. Compared to the current "metal/dielectric/metal" fishnet metamaterials with rectangular holes, this structure is insensitive to polarization configurations, exhibits a large figure of merit (FOM>4) and has a high transmission (T>80%).
     (3) The physical mechanism that the left-handed behavior occurring together with the extraordinary optical transmission (EOT) in fishnet metamaterials is explored. It is found the left-handed band is adjacent to the EOT peak that is associated with waveguide resonant mode, and the EOT effect can be used to reduce the losses and improve the figure of merit in metamaterials. The influence of metal-layer thickness on magnetic resonance and left-handed performance in fishnet metamaterials with rectangular-hole or cross-hole originate mainly from the dependence of waveguide resonant mode on the hole's size and depth.
     (4) A metal-dielectric-metal sandwich structure perforated by an array of asymmetric cross holes (i.e. both arms in cross hole have different length or width) is proposed and a novel planar metamaterial with dual left-handed bands is demonstrated. The tunability of dual left-handed bands by changing the arms' length or width is investigated, and the mechanism is elucidated with a theoretical model. Furthermore, by investigating the corresponding electric field distributions, the maximum field enhancement factor of 12 is achieved within the dielectric layer between two metal plates, meaning a Raman signal enhancement of~104 for probe molecules located at these positions.
     (5) We investigated the plasmon resonance properties at normal incidence and the large field enhancement effects from different plasmon excitations in asymmetric double split rings (ADSRs) arrays. The ADSRs exhibit two intense excitation peaks in the near-infrared and visible regions, corresponding to first-and second-order resonance modes. By exciting different resonances, the electric field can be effectively localized and enhanced in the same area, i.e. the gap regions, in both the infrared and the visible for ADSRs with different asymmetries. The field "hotspots" are demonstrated to be at the tips or the edges with the maximum field enhancement close to or over 103, corresponding to a infrared absorption and Raman enhancement factor of about~105 and 1012~1013 respectively. The local field enhancement can be further enhanced by decreasing the gap's width and optimizing the tips'ends of split rings.
引文
[1]V. G Veselago, "The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ" Sov. Phys. Usp.1968,10:509-514.
    [2]I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media-media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters 2001,31:129-133.
    [3]D. R. Smith, and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters 2000,85:2933-2936.
    [4]J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 2000,85: 3966-3969.
    [5]N. Seddon, and T. Bearpark, "Observation of the Inverse Doppler Effect," Science 2003,302: 1537-1539.
    [6]J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, "Cerenkov radiation in materials with negative permittivity and permeability," Optics Express 2003,11: 723-734.
    [7]V. A. Podolskiy, and E. E. Narimanov, "Near-sighted superlens," Optics Letters 2005,30:75-77.
    [8]P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media:Always positive and very inhomogeneous," Physical Review Letters 2002,88:187401.
    [9]D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Applied Physics Letters 2002,81:2713-2715.
    [10]I. Lindell, S. Tretyakov, K. Nikoskinen, and S. Ilvonen, "BW media-media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters 2001,31:129-133.
    [11]R. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Optics Express 2003,11:662-681.
    [12]S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Optics Express 2005,13:4922-4930.
    [13]D. Felbacq, and A. Moreau, "Direct evidence of negative refraction at media with negative epsilon and mu," Journal of Optics a-Pure and Applied Optics 2003,5:L9-L11.
    [14]A. Lakhtakia, "Positive and negative Goos-Hanchen shifts and negative phase-velocity mediums (alias left-handed materials)," Aeu-International Journal of Electronics and Communications 2004, 58:229-231.
    [15]冉立新,章献民,陈抗生,T.M.Grzegorczyk, J.A.Kong,“异常媒质及其实验验证,”科学通报2003,48:1271-1273.
    [16]S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 2004,306:1351-1353.
    [17]C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Physical Review Letters 2005,95:203901.
    [18]D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Cut-wire-pair structures as two-dimensional magnetic metamaterials," Optics Express 2008,16:15185-15190.
    [19]W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials:Theoretical and experimental investigations," Physical Review B 2007,75:041102(R).
    [20]H. T. Chen, J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Optics Express 2007,15:1084-1095.
    [21]F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, "Terahertz electric response of fractal metamaterial structures," Physical Review B 2008,77:045124.
    [22]R. Wu, and D. Zou, "Phase diagram of lossy negative index metamaterials," Applied Physics Letters 2008,93:101106.
    [23]M. Mrozowski, Guided Electromagnetic Waves:Properties and Analysis Research Studies Press (Taunton, UK) and John Wiley (New York),1997.
    [24]J. D. Jackson, Classical Electrodynamics Wiley, New York,1999 (3rd ed.).
    [25]L. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media Oxford: Pergamon Press,1984.
    [26]C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Journal of Applied Physics 2001,90: 5483-5486.
    [27]J. B. Brock, A. A. Houck, and I. L. Chuang, "Focusing inside negative index materials," Applied Physics Letters 2004,85:2472-2474.
    [28]D. Schurig, and D. R. Smith, "Negative index lens aberrations," Physical Review E 2004,70: 065601.
    [29]J. B. Pendry, "Negative refraction," Contemporary Physics 2004,45:191-202.
    [30]R. Ruppin, "Surface polaritons of a left-handed material slab," Journal of Physics-Condensed Matter 2001,13:1811-1818.
    [31]R. Ruppin, "Surface polaritons of a left-handed medium," Physics Letters A 2000,277:61-64.
    [32]M. W. Feise, P. J. Bevelacqua, and J. B. Schneider, "Effects of surface waves on the behavior of perfect lenses," Physical Review B 2002,66:035113.
    [33]N. Garcia, and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Physical Review Letters 2002,88:207403.
    [34]J. B. Pendry, "Comment on "Left-handed materials do not make a perfect lens"," Physical Review Letters 2003,91:099701.
    [35]J. B. Pendry, and D. R. Smith, "Comment on "Wave refraction in negative-index media:always positive and very inhomogeneous"," Physical Review Letters 2003,90:029703.
    [36]S. A. Ramakrishna, "Physics of negative refractive index materials," Reports on Progress in Physics 2005,68:449-521.
    [37]A. Grbic, and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Physical Review Letters 2004,92:117403
    [38]A. N. Lagarkov, and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Physical Review Letters 2004,92:077401.
    [39]N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 2005,308:534-537.
    [40]N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Optics Express 2003,11:682-687.
    [41]J. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Physical Review Letters 1996,76:4773-4776.
    [42]N. Engheta, and R. Ziolkowski, Metamaterials:physics and engineering explorations Wiley-IEEE Press,2006.
    [43]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics-Condensed Matter 1998,10:4785-4809.
    [44]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques 1999, 47:2075-2084.
    [45]R. Marques, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Physical Review B 2002,65:144440.
    [46]J. Garcia-Garcia, F. Martin, J. D. Baena, R. Marques, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," Journal of Applied Physics 2005,98:033103.
    [47]T. Koschny, L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Physical Review B 2005,71:121103.
    [48]K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New Journal of Physics 2005,7:168.
    [49]P. Gay-Balmaz, and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," Journal of Applied Physics 2002,92:2929-2936.
    [50]N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters 2004,84: 2943-2945.
    [51]W. J. Padilla, "Group theoretical description of artificial electromagnetic metamaterials," Optics Express 2007,15:1639-1646.
    [52]J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Physical Review Letters 2005,95:223902.
    [53]C. M. Soukoulis, T. Koschny, J. F. Zhou, M. Kafesaki, and E. N. Economou, "Magnetic response of split ring resonators at terahertz frequencies," Physica Status Solidi B 2007,244:1181-1187.
    [54]M. W. Klein, M. Wegener, N. Feth, and S. Linden, "Experiments on second-and third-harmonic generation from magnetic metamaterials," Optics Express 2007,15:5238-5247.
    [55]N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials 2008,7:31-37.
    [56]J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic and electric excitations in split ring resonators," Optics Express 2007,15:17881-17890.
    [57]A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Applied Physics Letters 2007,90:143105.
    [58]H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Physical Review B 2007,76:92073101.
    [59]T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, "Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial," Applied Physics Letters 2008,92:131111.
    [60]H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies," Physical Review Letters 2006,97:243902.
    [61]R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 2001,292:77-79.
    [62]C. R. Simovski, and S. L. He, "Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Omega particles," Physics Letters A 2003,311:254-263.
    [63]T. M. Grzegorczyk, C. D. Moss, J. Lu, X. D. Chen, J. Pacheco, and J. A. Kong, "Properties of left-handed metamaterials:Transmission, backward phase, negative refraction, and focusing," Ieee Transactions on Microwave Theory and Techniques 2005,53:2956-2967.
    [64]H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, and K. S. Chen, "Left-handed materials composed of only S-shaped resonators," Physical Review E 2004,70:057605.
    [65]H. S. Chen, L. X. Ran, J. T. Huangfu, X. F. Zhang, K. M. Chen, T. M. S. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency bands," Journal of Applied Physics 2004,96:5338-5340.
    [66]X. Zhou, and X. P. Zhao, "Evaluation of imaging in planar anisotropic and isotropic dendritic left-handed materials," Applied Physics a-Materials Science & Processing 2007,87:265-269.
    [67]X. Zhou, and X. Zhao, "Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability," Applied Physics Letters 2007,91:181908.
    [68]G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Optics Letters 2005,30:3198-3200.
    [69]J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Applied Physics Letters 2006,88:221103.
    [70]J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Physical Review B 2006,73:41101.
    [71]V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters 2005,30: 3356-3358.
    [72]G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Optics Letters 2006,31:1800-1802.
    [73]U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, S. M. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial:double negative at 813nm and single negative at 772nm," Optics Letters 2007,32:1671-1673.
    [74]M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials:The fishnet structure and its variations," Physical Review B 2007,75: 235114.
    [75]S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters 2005,95:137404.
    [76]G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 2007,32:53-55.
    [77]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 2008,455: 376-379.
    [78]S. Zhang, W. Fan, K. Malloy, S. Brueck, N. Panoiu, and R. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," Journal of the Optical Society of America B 2006,23:434-438.
    [79]K. Aydin, Z. F. Li, L. Sahin, and E. Ozbay, "Negative phase advance in polarization independent, multi-layer negative-index metamaterials," Optics Express 2008,16:8835-8844.
    [80]O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Optics Express 2008,16:6736-6744.
    [81]M. Kang, N. H. Shen, J. Chen, Y. X. Fan, J. P. Ding, H. T. Wang, and P. H. Wu, "A new planar left-handed metamaterial composed of metal-dielectric-metal structure," Optics Express 2008,16: 8617-8622.
    [82]N. Garcia, and M. Nieto-Vesperinas, "Is there an experimental verification of a negative index of refraction yet?," Optics Letters 2002,27:885-887.
    [83]K. Guven, A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Bilayer metamaterial:analysis of left-handed transmission and retrieval of effective medium parameters," Journal of Optics a-Pure and Applied Optics 2007,9:S361-S365.
    [84]J. Woodley, and M. Mojahedi, "Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors," Journal of the Optical Society of America B-Optical Physics 2006,23:2377-2382.
    [85]K. Kim, D. K. Phung, F. Rotermund, and H. Lim, "Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses," Optics Express 2008, 16:1150-1164.
    [86]G. D'Aguanno, N. Akozbek, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, "Dispersion-free pulse propagation in a negative-index material," Optics Letters 2005,30: 1998-2000.
    [87]E. Kyriakou, D. R. McKenzie, N. Suchowerska, and R. R. Fulton, "Breathing as a low frequency wave propagation in nonlinear elastic permeable medium," Physica B-Condensed Matter 2007, 394:311-314.
    [88]C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media:Propagation, impedance, and negative refraction," Physical Review B 2007,75: 155120.
    [89]C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Physical Review B 2008,78:155102.
    [90]G Dolling, M. Wegener, A. Schadle, S. Burger, and S. Linden, "Observation of magnetization waves in negative-index photonic metamaterials," Applied Physics Letters 2006,89:231118.
    [91]D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E 2005,71:036617.
    [92]R. P. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory," Physical Review E 2007,76:026606.
    [93]X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E 2004,70:016608.
    [94]D. R. Smith, and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," Journal of the Optical Society of America B-Optical Physics 2006,23:391-403.
    [95]J. B. Pendry, "Time reversal and negative refraction," Science 2008,322:71-73.
    [96]H. Shin, and F. Shanhui, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Physical Review Letters 2006,96:073907.
    [97]X. B. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-angle broadband negative refraction of metal waveguide arrays in the visible range:Theoretical analysis and numerical demonstration," Physical Review Letters 2006,97:073901.
    [98]J. B. Pendry, "A chiral route to negative refraction," Science 2004,306:1353-1355.
    [99]T. M. Grzegorczyk, and J. A. Kong, "Electrodynamics of moving media inducing positive and negative refraction," Physical Review B 2006,74:33102.
    [100]P. Ginzburg, and M. Orenstein, "Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures," Journal of Applied Physics 2008,103: 083105.
    [101]V. A. Podolskiy, and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Physical Review B 2005,71:201101.
    [102]J. R. Plumridge, R. J. Steed, and C. C. Phillips, "Negative refraction in anisotropic waveguides made from quantum metamaterials," Physical Review B 2008,77:205428.
    [103]X. X. Cheng, H. S. Chen, L. X. Ran, B. I. Wu, T. M. Grzegorczyk, and J. A. Kong, "Negative refraction and cross polarization effects in metamaterial realized with bianisotropic S-ring resonator," Physical Review B 2007,76:24402.
    [104]W. T. Lu, and S. Sridhar, "Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction," Physical Review B 2008,77:233101
    [105]A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Physical Review Letters 2003,91:037401.
    [106]A. Namdar, S. R. Entezar, H. Tajalli, and Z. Eyni, "Backward nonlinear surface Tamm states in left-handed metamaterials," Optics Express 2008,16:10543-10548.
    [107]Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys Rev Lett 2007,99:153901.
    [108]I. V. Shadrivov, and Y. S. Kivshar, "Spatial solitons in nonlinear left-handed metamaterials," Journal of Optics a-Pure and Applied Optics 2005,7:S68-S72.
    [109]P. P. Banerjee, and G. Nehmetallah, "Spatial and spatiotemporal solitary waves and their stabilization in nonlinear negative index materials," Journal of the Optical Society of America B-Optical Physics 2007,24:A69-A76.
    [110]Y. J. Xiang, S. C. Wen, X. Y. Dai, Z. X. Tang, W. H. Su, and D. Y. Fan, "Modulation instability induced by nonlinear dispersion in nonlinear metamaterials," Journal of the Optical Society of America B-Optical Physics 2007,24:3058-3063.
    [111]A. Maluckov, L. Hadzievski, N. Lazarides, and G. P. Tsironis, "Left-handed metamaterials with saturable nonlinearity," Physical Review E 2008,77:046607.
    [112]A. Chowdhury, and J. A. Tataronis, "Nonlinear wave mixing and susceptibility properties of negative refractive index materials," Physical Review E 2007,75:016603.
    [113]C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 2006,14:8827-8836.
    [114]C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies-an electrodynamic approach," Optics Express 2007,15:8871-8883.
    [115]H. C. Guo, N. Liu, L. W. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, "Resonance hybridization in double split-ring resonator metamaterials," Optics Express 2007,15: 12095-12101.
    [116]T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, "Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial," Physical Review E 2007,76:016606.
    [117]T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Optics Express 2006,14:11155-11163.
    [118]C. Zhang, and T. J. Cui, "Negative reflections of electromagnetic waves in a strong chiral medium," Applied Physics Letters 2007,91:194101.
    [119]C. Sabah, "Left-handed chiral metamaterials," Central European Journal of Physics 2008,6: 872-878.
    [120]Q. Cheng, and T. J. Cui, "Negative refractions and backward waves in biaxially anisotropic chiral media," Optics Express 2006,14:6322-6332.
    [121]M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Optics Letters 2007,32:856-858.
    [122]S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, "Scattering theory derivation of a 3D acoustic cloaking shell," Physical Review Letters 2008,100:024301
    [123]A. Alu, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Physical Review E 2005,72:016623.
    [124]A. Alu, and N. Engheta, "Plasmonic materials in transparency and cloaking problems:mechanism, robustness, and physical insights," Optics Express 2007,15:3318-3332.
    [125]W. Yan, M. Yan, Z. Ruan, and M. Qiu, "Coordinate transformations make perfect invisibility cloaks with arbitrary shape," New Journal of Physics 2008,10:043040.
    [126]H. S. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters 2007,99:063903.
    [127]A. Alu, and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Physical Review Letters 2008,100:113901.
    [128]L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss," Physical Review B 2004,70: 73102.
    [129]C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, "The science of negative index materials," Journal of Physics-Condensed Matter 2008,20:304217.
    [130]J. J. Zhang, H. S. Chen, L. X. Ran, Y. Luo, B. I. Wu, and J. A. Kong, "Experimental characterization and cell interactions of a two-dimensional isotropic left-handed metamaterial," Applied Physics Letters 2008,92:084108.
    [131]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 2000,84: 4184-4187.
    [132]J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns," Applied Physics Letters 2004,84:1537-1539.
    [133]F. L. Zhang, G Houzet, E. Lheurette, D. Lippens, M. Chaubet, and X. P. Zhao, "Negative-zero-positive metamaterial with omega-type metal inclusions," Journal of Applied Physics 2008,103:084312.
    [134]J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Optics Letters 2006,31:3620-3622.
    [135]D. H. Kwon, and D. H. Werner, "Near-infrared metamaterials with dual-band negative-index characteristics," Optics Express 2007,15:1647-1652.
    [136]Y. G. Ma, X. C. Wang, and C. K. Ong, "Negative refractive index of metallic cross-I-shaped pairs: Origin and evolution with pair gap width," Physical Review E 2008,78:016605.
    [137]C. Garcia-Meca, R. Ortuno, R. Salvador, A. Martinez, and J. Marti, "Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths," Optics Express 2007,15: 9320-9325.
    [138]C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 2007,315:47-49.
    [139]L. Peng, L. X. Ran, H. S. Chen, H. F. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Physical Review Letters 2007,98:157403.
    [140]A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Materials 2007,6:946-950.
    [141]A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Optics Express 2007,15:1115-1127.
    [142]R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Physical Review Letters 2008,100:023903.
    [143]T. Hand, J. Gollub, S. Sajuyigbe, D. Smith, and S. Cummer, "Characterization of complementary electric field coupled resonant surfaces," Applied Physics Letters 2008,93:212504.
    [144]Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. Hand, W. Padilla, N. Jokerst, and S. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," Applied Physics Letters 2008,93:191110.
    [145]Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Optics Express 2008,16:9746-9752.
    [146]T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Kall, "Magnetic-field enhancement in gold nanosandwiches," Optics Express 2006,14:8240-8246.
    [147]N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys Rev Lett 2008,100:207402.
    [148]J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters 2007, 99:063908
    [149]C. G Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Physical Review Letters 2003,90:107401.
    [150]B. I. Popa, and S. A. Cummer, "Direct measurement of evanescent wave enhancement inside passive metamaterials," Physical Review E 2006,73:016617
    [151]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 2008,455: 376-379
    [152]S. Enoch, G Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters 2002,89:213902.
    [153]N. Engheta, "Thin absorbing screens using metamaterial surfaces," IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313) 2002,2:392-395.
    [154]A. Alu, F. Bilotti, N. Engheta, and L. Vegni, "Theory and Simulations of a Conformal Omni-Directional Subwavelength Metamaterial Leaky-Wave Antenna," IEEE Transactions on Antennas and Propagation 2007,55:1698.
    [155]D. M. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Applied Physics Letters 2003,83:201-203.
    [156]I. S. Nefedov, and S. A. Tretyakov, "On potential applications of metamaterials for the design of broadband phase shifters," Microwave and optical technology letters(Print) 2005,45:98-102.
    [157]K. W. Eccleston, "Application of left-handed media in distributed amplifiers," Microwave and Optical Technology Letters 2005,44:527-530.
    [158]J. M. Zhao, Y. Chen, and Y. J. Feng, "Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure," Applied Physics Letters 2008, 92:071114.
    [159]T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Applied Physics Letters 2006, 88:081101
    [160]J. Y. Chin, M. Lu, and T. J. Cui, "Metamaterial polarizers by electric-field-coupled resonators," Applied Physics Letters 2008,93:251903.
    [161]H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics 2009,3:148-151.
    [162]H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photonics 2008,2:295-298.
    [163]N. H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, "Broadband blueshift tunable metamaterials and dual-band switches," Physical Review B 2009, 79:161102(R).
    [164]H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime:Design, fabrication and characterization," Optics Express 2008, 16:7181-7188.
    [165]H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber:Design, fabrication, and characterization," Physical Review B 2008,78: 241103(R).
    [166]N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Physical Review B 2009,79:125104.
    [167]X. G. Peralta, E. I. Smirnova, A. K. Azad, H. T. Chen, A. J. Taylor, I. Brener, and J. F. O'Hara, "Metamaterials for THz polarimetric devices," Optics Express 2009,17:773-783.
    [168]H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 2007,316:430-432.
    [169]J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science 2008,321:930-930.
    [170]V. Yannopapas, "Negative index of refraction in artificial chiral materials," Journal of Physics-Condensed Matter 2006,18:6883-6890.
    [171]A. Ahmadi, and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Physical Review B 2008,77:045104.
    [172]A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, and K. Samwer, "Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range," Physical Review Letters 2007,98: 197401.
    [173]F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Physical Review Letters 2007,99: 057202.
    [174]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 2003,424:824-830.
    [175]S. Maier, Plasmonics:Fundamentals and Applications Springer Verlag,2007.
    [176]顾本源,”表面等离子体亚波长光学原理和新颖效应,”物理2007,36:280-287.
    [177]J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 2004,305:847-848.
    [178]A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," (American Association for the Advancement of Science,2005), pp.670-672.
    [179]Z. C. Ruan, and M. Qiu, "Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces," Optics Express 2006,14:6172-6177.
    [180]K. L. Kelly, E. Coronado, L. L. Zhao, and G C. Schatz, "The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B 2003,107:668-677.
    [181]Y. N. Xia, and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," Mrs Bulletin 2005,30:338-344.
    [182]J. M. McLellan, Z. Y. Li, A. R. Siekkinen, and Y. N. Xia, "The SERS activity of a supported ag nanocube strongly depends on its orientation relative to laser polarization," Nano Letters 2007,7: 1013-1017.
    [183]E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, "Multipole Plasmon Resonances in Gold Nanorods," The Journal of Physical Chemistry B 2006,110:2150-2154.
    [184]S. Chen, Z. Fan, and D. L. Carroll, "Silver Nanodisks:  Synthesis, Characterization, and Self-Assembly," The Journal of Physical Chemistry B 2002,106:10777-10781.
    [185]R. Jin, Y Cao, C. A. Mirkin, K. L. Kelly, G C. Schatz, and J. G Zheng, "Photoinduced Conversion of Silver Nanospheres to Nanoprisms," Science 2001,294:1901-1903.
    [186]E. Prodan, and P. Nordlander, "Structural tunability of the plasmon resonances in metallic nanoshells," Nano Letters 2003,3:543-547.
    [187]J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G W. Bryant, and F. J. G. de Abajo, "Optical Properties of Gold Nanorings," Physical Review Letters 2003,90:057401-057404.
    [188]H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice:A hybrid plasmonic nanostructure," Nano Letters 2006,6:827-832.
    [189]C. L. Nehl, H. Liao, and J. H. Hafner, "Optical Properties of Star-Shaped Gold Nanoparticles," Nano Letters 2006,6:683-688.
    [190]Y. L. G. L. Liu, J. Kim, J. C. Doll, L. P. Lee, "Magnetic Nanocrescents as Controllable Surface-Enhanced Raman Scattering Nanoprobes for Biomolecular Imaging," Advanced Materials 2005,17:2683-2688.
    [191]S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics 2007,1:641-648.
    [192]W. Ni, X. Kou, Z. Yang, and J. Wang, "Tailoring Longitudinal Surface Plasmon Wavelengths, Scattering and Absorption Cross Sections of Gold Nanorods," Acs Nano 2008,2:677-686.
    [193]M. Moskovits, "Surface-enhanced spectroscopy," Reviews of Modern Physics 1985,57:783-826.
    [194]A. Haes, C. Haynes, A. McFarland, G. Schatz, R. Van Duyne, and S. Zou, "Plasmonic materials for surface-enhanced sensing and spectroscopy," MRS Bull 2005,30:368-375.
    [195]E. Hao, and G. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," The Journal of chemical physics 2004,120:357-366.
    [196]S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, "Tailoring plasmonic substrates for surface enhanced spectroscopies," Chemical Society Reviews 2008,37:898-911.
    [197]H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, "Symmetry breaking in individual plasmonic nanoparticles," Proceedings of the National Academy of Sciences of the United States of America 2006,103:10856-10860.
    [198]M. Knight, and N. Halas, "Nanoshells to nanoeggs to nanocups:optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit," New Journal of Physics 2008,10: 105006.
    [199]Y. Lu, G. Liu, J. Kim, Y. Mejia, and L. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Letters 2005,5:119-124.
    [200]R. J. C. Brown, and M. J. T. Milton, "Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS)," Journal of Raman Spectroscopy 2008,39: 1313-1326.
    [201]Hyunhyub Ko, Srikanth Singamaneni, and Vladimir V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 2008,4:1576-1599.
    [202]A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, "Nanophotonic split-ring resonators as dichroics for molecular spectroscopy," Applied Physics Letters 2008,93:023121.
    [203]K. Li, L. Clime, B. Cui, and T. Veres, "Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays," Nanotechnology 2008,19:145305-145600.
    [204]Markus Retsch, Matthias Tamm, Noelia Bocchio, Natalie Horn, Renate Forch, Ulrich Jonas, and Maximilian Kreiter, "Parallel Preparation of Densely Packed Arrays of 150-nm Gold-Nanocrescent Resonators in Three Dimensions," Small 2009,9999:NA.
    [205]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 1998,391:667-669.
    [206]M. Alkaisi, R. Blaikie, S. McNab, R. Cheung, and D. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Applied Physics Letters 1999,75: 3560.
    [207]X. Luo, and T. Ishihara, "Sub-100-nm Photolithography Based on Plasmon Resonance," Japanese Journal of Applied Physics 2004,43:4017-4021.
    [208]C. Liu, V. Kamaev, and Z. Vardeny, "Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array," Applied Physics Letters 2005,86: 143501.
    [209]S. Collin, F. Pardo, and J. L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Applied Physics Letters 2003,83:1521-1523.
    [210]C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 2007,445:39-46.
    [211]E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Physical Review B 2000,62:16100-16108.
    [212]L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Physical Review Letters 2001,86:1114-1117.
    [213]W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Physical Review Letters 2004,92:107401.
    [214]H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Physical Review B 1998,58:6779-6782.
    [215]Q. Cao, and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Physical Review Letters 2002,88:057403.
    [216]K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes:Experiment and theory," Physical Review B 2005,72:45421.
    [217]H. Cao, and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Optics Express 2004,12:3664-3672.
    [218]K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Physical Review Letters 2004,92:183901.
    [219]Z. Ruan, and M. Qiu, "Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Physical Review Letters 2006,96:233901.
    [220]F. Garcia-Vidal, S. Rodrigo, and L. Martin-Moreno, "Foundations of the composite diffracted evanescent wave model," Nature Physics 2006,2:790.
    [221]T. Visser, "Plasmonics:Surface plasmons at work?," Nature Physics 2006,2:509-510.
    [222]H. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Optics Express 2004,12:3629-3651.
    [223]G. Gay, O. Alloschery, B. de Lesegno, C. O'Dwyer, J. Weiner, and H. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2006,2:262-267.
    [224]P. Lalanne, and J. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Physics 2006,2:551-556.
    [225]H. T. Liu, and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 2008,452:728-731.
    [226]R. Harrington, Field Computation by Moment Methods Krieger Publishing Co., Inc. Melbourne, FL, USA,1982;王尔杰译,计算电磁场的矩量法.北京:国防工业出版社,1981.
    [227]K. Yee, "Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media," Antennas and Propagation, IEEE Transactions on [legacy, pre-1988] 1966,14: 302-307.
    [228]J. Jin, The finite element method in electromagnetics Wiley New York,1993;王建国译.电磁场有限元方法.西安:西安电子科技大学出版社,1998.
    [229]张克潜,and李德杰,”微波与光电子学中的电磁理论(第二版),”(电子工业出版社,北京,2001).
    [230]D. Pozar, "Microwave Engineering," (NJ:John Wiley and Sons,2005;张肇仪等译.微波工程(第三版).北京:电子工业出版社,2006.).
    [231]王长清,现代计算电磁学基础北京:北京大学出版社,2005.
    [232]T. Weiland, "A discretization model for the solution of Maxwell's equations for six-component fields," Archiv fuer Elektronik und Uebertragungstechnik 1977,31:116-120.
    [233]CST Studio Suite TM 2006, Advanced Topics,2006. CST工作室套装TM 2006,高级概念CST中国,2006.
    [234]葛德彪,and闫玉波,电磁波时域有限差分方法西安:西安电子科技大学出版,2005.
    [235]A. Taflove, and S. Hagness, Computational electrodynamics:the finite-difference time-domain method Artech House,2000.
    [236]D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B 2002,65:195104.
    [237]M. Beruete, M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays," Optics Express 2006,14:5445-5455.
    [238]P. Kolinko, and D. R. Smith, "Numerical study of electromagnetic waves interacting with negative index materials," Optics Express 2003,11:640-648.
    [239]B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Optics Express 2006,14:8694-8705.
    [240]Z. G Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, "Numerical simulations of negative-index refraction in wedge-shaped metamaterials," Physical Review E 2005,72:016607.
    [241]D. R. Smith, P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," Journal of the Optical Society of America B-Optical Physics 2004,21:1032-1043.
    [242]P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Physical Review E 2003,67:025602.
    [243]T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters 2004,93:107402.
    [244]N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, "Left-and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials," Physical Review B 2004,70:201101.
    [245]M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander Jr, and C. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt 1983,22:1099-1119.
    [246]G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Optics Express 2007,15:11536-11541.
    [247]W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Physical Review Letters 2006,96: 107401.
    [248]W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials:theoretical and experimental investigations," Physical Review B 2007,75:41102.
    [249]N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, "Fabrication of a novel micron scale Y-structure-based chiral metamaterial:Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes," Microscopy Research and Technique 2007,70:497-505.
    [250]M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials:detailed numerical studies of the transmission properties," Journal of Optics a-Pure and Applied Optics 2005,7:S12-S22.
    [251]J. Kim, and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Physical Review B 2007,76:115126.
    [252]X. Lin, T. Cui, J. Chin, X. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Applied Physics Letters 2008,92:131904.
    [253]B. Popa, and S. Cummer, "Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials," Physical Review Letters 2008,100:207401.
    [254]F. M. Wang, H. Liu, T. Li, Z. G. Dong, S. N. Zhu, and X. Zhang, "Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime," Physical Review E 2007,75:016604.
    [255]Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, "Negative refraction with magnetic resonance in a metallic double-ring metamaterial," Applied Physics Letters 2008,92:064101.
    [256]Z.-G Dong, S.-Y. Lei, M.-X. Xu, H. Liu, T. Li, F.-M. Wang, and S.-N. Zhu, "Negative index of refraction in metallic metamaterial comprising split-ring resonators," Physical Review E 2008,77: 056609.
    [257]Z. G. Dong, M. X. Xu, S. Y. Lei, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, "Negative refraction with magnetic resonance in a metallic double-ring metamaterial," Applied Physics Letters 2008, 92:064101.
    [258]J. Strube, and F. Arndt, "Rigorous Hybrid-Mode Analysis of the Transition from Rectangular Waveguide to Shielded Dielectric Image Guide," Microwave Theory and Techniques, IEEE Transactions on 1985,33:391-401.
    [259]V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 2007,1:41-48.
    [260]G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Optics Letters 2007,32:551-553.
    [261]H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices," Optics Letters 2007,32:1620-1622.
    [262]H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 2006,444:597-600.
    [263]T. Driscoll, G O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, "Tuned permeability in terahertz split-ring resonators for devices and sensors," Applied Physics Letters 2007,91:062511.
    [264]T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 2004,303:1494-1496.
    [265]B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, "Time-resolved broadband analysis of split ring resonators in terahertz region," Applied Physics Letters 2006,89:041101
    [266]T. Driscoll, G.O. Andreev, D. N. Basov, S. Palit, T. Ren, J. Mock, S. Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Applied Physics Letters 2007,90:92508.
    [267]N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials:Analysis and experiment," Progress in Electromagnetics Research-Pier 2006,64:205-218.
    [268]H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, "Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial," Physical Review Letters 2005,94: 063901.
    [269]K. B. Alici, and E. Ozbay, "A planar metamaterial:Polarization independent fishnet structure," Photonics and Nanostructures-Fundamentals and Applications 2008,6:102-107.
    [270]K. B. Alici, and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," Journal of Physics D-Applied Physics 2008,41:135011.
    [271]M. Beruete, I. Campillo, M. Navarro-Cia, F. Falcone, and M. S. Ayza, "Molding left-or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Transactions on Antennas and Propagation 2007,55:1514-1521.
    [272]Y. Kornyushin, "Semiclassical approach to the description of the basic properties of nanoobjects," Low Temperature Physics 2008,34:838-845.
    [273]J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Size dependence and convergence of the retrieval parameters of metamaterials," Photonics and Nanostructures-Fundamentals and Applications 2008,6:96-101.
    [274]T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E 2003,68:065602.
    [275]T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B 2005,71:245105.
    [276]J. F. Zhou, T. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express 2008,16:11147-11152.
    [277]A. Mary, S. G Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Physical Review Letters 2008, 101:103902.
    [278]A. G Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Letters 2004,4:2015-2018.
    [279]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 2002,297:820-822.
    [280]Y. Wang, H. Chen, S. Dong, and E. Wang, "Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass," The Journal of Chemical Physics 2006,124:074709.
    [281]X. Hu, T. Wang, L. Wang, and S. Dong, "Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence:Off-surface plasmon resonance condition," J Phys Chem C 2007,111:6962-6969.
    [282]C. Orendorff, A. Gole, T. Sau, and C. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers:sandwich architecture and nanoparticle shape dependence," Anal. Chem 2005,77:3261-3266.
    [283]E. Prodan, C. Radloff, N. Halas, and P. Nordlander, "A Hybridization Model for the Plasmon Response of Complex Nanostructures," (American Association for the Advancement of Science, 2003), pp.419-422.
    [284]N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Advanced Materials 2007,19:3628-+.
    [285]F. Garcia-Vidal, and J. Pendry, "Collective Theory for Surface Enhanced Raman Scattering," Physical Review Letters 1996,77:1163-1166.
    [286]P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 2005,308:1607-1609.
    [287]K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Physical Review Letters 2003,91:227402.
    [288]L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Physical Review B 2005, 71:235408.
    [289]M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, "Nanostructured Plasmonic Sensors," Chemical Reviews 2008,108:494-521.
    [290]M. J. T. M. Richard J. C. Brown, "Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS)," Journal of Raman Spectroscopy 2008,39: 1313-1326.
    [291]S. S. Hyunhyub Ko, Vladimir V. Tsukruk,, "Nanostructured Surfaces and Assemblies as SERS Media," Small 2008,4:1576-1599.
    [292]F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry Breaking in Plasmonic Nanocavities:Subradiant LSPR Sensing and a Tunable Fano Resonance," Nano Letters 2008,8:3983-3988.
    [293]E. M. Larsson, F. Hao, L. Eurenius, E. Olsson, P. Nordlander, and D. S. Sutherland, "Plasmon Hybridization in Stacked Double Gold Nanorings with Reduced Symmetry," Small 2008,4: 1630-1634.
    [294]T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Physical Review Letters 2005, 95:116802.
    [295]V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. Funston, C. Novo, P. Mulvaney, L. Liz-Marzan, and F. Abajo, "Modelling the optical response of gold nanoparticles," Chemical Society Reviews 2008,37:1792-1805.
    [296]P. Johnson, and R. Christy, "Optical constants of the noble metals," Physical Review B 1972,6: 4370-4379.
    [297]U. Kreibig and M. Vollmer, "Optical Properties of Metal Clusters," Springer 1995.
    [298]P. K. Jain, H. Wenyu, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs:a plasmon ruler equation," Nano Letters 2007,2060-2068.
    [299]H. Rochholz, N. Bocchio, and M. Kreiter, "Tuning resonances on crescent-shaped noble-metal nanoparticles," New Journal of Physics 2007,9:53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700