用户名: 密码: 验证码:
古斯—效应的激发结构及光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层膜微结构可应用于集成光学、电光开关、传感器等,在制造光电检测器件方面有重要应用前景。包含金属、液晶和左手材料膜层的多层膜微结构的光学特性吸引了众多研究者的关注,目前在精密测量、超棱镜和调制器方面都取得了一定的进展。多层膜微结构的古斯-汉欣(GH)效应成为当前传感器和光电检测领域的研究热点。本文主要研究不同多层膜结构对GH位移的增强作用和外加电场对GH位移的调制作用。采用静态相位法研究由不同材料组成的多层膜光学微结构的古斯-汉欣位移特性,利用高斯光束法分析窄光束入射对反射场分布的影响,进一步验证静态相位法计算结果的有效性。
     表面等离子共振现象已经被广泛研究,结合晶体的线性电光效应,研究了通过外加电场调节古斯-汉欣位移的可能性。对所研究的结构,分析了表面等离子波的色散关系和传播常数,给出了系统的本征损耗和辐射损耗,发现只有本征损耗大于辐射损耗时, GH位移才能是负的。推导了系统反射光的反射率、相位、GH位移随入射角和外加电压的变化,计算结果表明电压调制和角度调制的结果相同,在试验中电压调制可取代角度调制。
     通过对左、右手材料组成的三层膜结构的研究,分析了左、右手材料组成的界面的部分反射和全反射,给出了振幅反射率的统一描述公式,由此计算了三层结构的振幅反射率。在此基础上利用静态相位公式计算了GH位移,发现这种结构GH位移的正负仅取决于前两层介质的手性参数,手性参数相同则GH位移为正,手性相反则GH位移为负。
     推导了含弱吸收介质的三层介质结构的反射公式,分析了系统的本征损耗和辐射损耗,给出了泄漏导波共振条件附近的反射率表达式,发现共振时,若本征损耗等于辐射损耗,则系统的反射率为零,说明入射光的能量全部被耦合到弱吸收介质层中。在此基础上,利用静态相位公式给出了共振条件附近的GH位移表达式。进而计算了反射光的反射率、相位、GH位移随入射角度、损耗参数及弱吸收膜层厚度的关系。发现反射率在共振条件形成吸收峰, GH位移可正可负,并可被增强到1500个波长。用高斯光束法计算了束腰宽度有限时反射场分布,在宽光束入射时计算结果与静态相位法的结果相一致,同时也发现共振时反射光场形成双峰分布,因此工作点只能选在共振条件附近。
     利用旋转矩阵法,给出了液晶中指向矢与坐标轴有夹角时的介电常数和磁
     导率张量。在此基础上确定了横磁波在液晶中的色散关系。并利用Maxwell方程组和边界条件,求出了含液晶多层膜结构的振幅反射率。利用时间平均的坡印亭矢量,给出了在晶体和介质界面发生负折射的条件,与晶体物理学中的分析结果一致。结合静态相位公式,计算了双棱镜包夹液晶层结构的GH位移,发现调节入射角度和调节外加电压都可以实现对GH位移的调制,并且GH位移可正可负。设计了双面金属包覆液晶的结构,利用自由空间耦合技术和双面金属波导,实现了对GH位移的增强。计算了系统反射光的反射率、相位和GH位移随入射角度及外加电压的变化。分析了入射光束腰宽度对GH位移的影响,验证了静态相位法计算结果的有效性。
Multi-layer micro-structure can be applied to integrated optics, electro-opticalswitches, sensors and so on, in the manufacture of photoelectric detection device has animportantapplicationprospect. Theopticalpropertiesofmulti-layermicro-structure(con-tainingmetals,liquidcrystal,orleft-handedmaterials)haveattractedtheconcernsofmanyresearchers, who have made some progress in precision measurement, super-prism, andmodulators. The Goos-H¨anchen (GH) effect of multi-layer micro-structure is one of se-lected areas in the field of sensors and photoelectric detection researches. In this thesis,we study the different multi-layer structures to enhance the amplitude of the GH shift andtake use of the applied electric field for modulation of the GH shift. For multi-layer opti-calmicro-structurecomposedofvariousmaterials, thecharacteristicsoftheGHshifthavebeen investigated by the stationary-phase method. The reflected field distribution of anincident narrow beam has been calculated by the Gaussian-beam method, furthermore thevalidity of results is verified.
     SPR phenomenon has been extensively studied, combined with the linear electro-optic effect of crystal, the possibility of tuning GH shift by external electric field has beeninvestigated. For the studied structure, we analyze the dispersion relation of the surfaceplasma wave and propagation constant, give the internal damping and radiation damping.It is found that only when the internal damping is larger than radiation damping, GH shiftcan be negative. The dependences of reflectivity, phase, and GH shift on the angle ofincidence and the applied voltage are derived; the calculated results show that results ofthe voltage modulation and angle modulation are the same, in the experiments the anglemodulation can be replaced by voltage modulation.
     Through the research of three-layer structure composed of the left and right-handedmaterial, we analyze partial reflection and total reflection at the interface of the left andright-handed material, give a unified description of the amplitude reflectivity formula,then calculate the amplitude reflectivity of the three-layer structure. On this basis, the GHshift is calculated by the stationary-phase method and it is found that for this structure thesign of the GH shift depends only on the hand-parameters of the first two medium, whichare the same and the GH shift is positive, otherwise the GH shift is negative.
     For the three-layer structure containing a weakly absorbing medium, by the analysisof the system’s internal damping and radiation damping, the reflectivity expression of theleaky waveguide is given in the vicinity of the resonant conditions. It is found that atresonance, if the internal damping is equal to the radiation damping, the reflectivity of thesystemiszero, indicatingthatalltheenergyoftheincidentlightiscoupledintotheweaklyabsorbing layer. The GH shift expressions are given by a stationary-phase formula. Thenthe dependences of the reflectivity, phase, GH shift of the reflected light, on the incidentangle, the loss parameter and thickness are calculated. It is found that an absorption peakof reflectivity is formed at resonance, GH shift can be positive or negative, and evencan be enhanced to 1500 wavelengths. The reflected field distribution is calculated byGaussian-beam method, the results are consistent with the results by the stationary-phasemethod when the incident beam is wide, but the operating point can only be chosen nearthe resonance condition due to the formation of null reflection at resonance.
     The dispersion relation of TM wave is determined in the liquid crystal. For multi-layer structure with a nematic liquid crystal (NLC) film, the amplitude reflectivity is ob-tained by Maxwell equations and boundary conditions. The time-averaged Poynting vec-tor gives the conditions for negative refraction that occurs at the interface, which are con-sistent with the analysis in crystal physics. Combinating a stationary-phase formula, theGH shift is calculated for the double-prism structure with a liquid crystal layer, it is foundthat the GH shift can be modulated by both the applied voltage and incident angle, andthe GH shift can be positive or negative. A structure of a symmetric metal-cladding liquidcrystal, by use of the free-space coupling technique and metal-cladding waveguide tech-nique, GH shift can be enhanced. The dependences of the reflectivity, phase and GH shiftof the system on the applied voltage and the incident angle are calculated. The influenceof the waist width of incident light on the GH shift is analyzed, and the validity of thestationary-phase method is verified.
引文
1 I. Newton. Optiks. New York: Dover Publications Inc.1952.
    2 F. Goos, H. H¨anchen. Ein Neuer Und Fundamentaler Versuch Zur Totalreflexion.Ann. Phys., 1947, 436(7-8):333–346.
    3 F. Goos, H. H¨anchen. Neumessung Des Strahlversetzungseffektes Bei Totalreflex-ion. Ann. Phys., 1949, 440(3-5):251–252.
    4 F. I. Fedorov. Theory of all Reflection. Dokl. Akad. Nauk. SSR., 1955,105:465–468.
    5 C. Imbert. Calculation and Experimental Proof of the Transverse Shift Induced byTotal Internal Reflection of a Circularly Polarized Light Beam. Phys. Rev. D, 1972,5(4):787–796.
    6 K. Artmann. Berechnung Der Seitenversetzung Des Totalreflektierten Strahles.Ann. Phys., 1948, 437(1-2):87–102.
    7 R. H. Renard. Total Reflection: A New Evaluation of the Goos-H¨anchen Shift. J.Opt. Soc. Am., 1964, 54:1190–1197.
    8 M. McGuirk, C. K. Carniglia. An Angular Spectrum Representation Approach tothe Goos-H¨anchen Shift. J. Opt. Soc. Am., 1977, 67(1):103–107.
    9 B. R. Horowitz, T. Tamir. Lateral Displacement of a Light Beam at a DielectricInterface. J. Opt. Soc. Am., 1971, 61(5):586–594.
    10 C. W. Hsue, T. Tamir. Lateral Displacement and Distortion of Beams Incident upona Transmitting-layer Configuration. J. Opt. Soc. Am. A, 1985, 2(6):978–987.
    11 V. Shah, T. Tamir. Absorption and Lateral Shift of Beams Incident upon LossyMultilayered Media. J. Opt. Soc. Am., 1983, 73(1):37–44.
    12 T. Tamir. Nonspecular Phenomena in Beam Fields Reflected by Multilayered Me-dia. J. Opt. Soc. Am. A, 1986, 3(4):558–565.
    13 T. Tamir, H. L. Bertoni. Lateral Displacement of Optical Beams at Multilayeredand Periodic Structures. J. Opt. Soc. Am., 1971, 61(10):1397–1413.
    14 M.玻恩, E.沃尔夫.光学原理.电子工业出版社2006.
    15 C. F. Li. Negative Lateral Shift of a Light Beam Transmitted Through a DielectricSlab and Interaction of Boundary Effects. Phys. Rev. Letters, 2003, 91(13):133903.
    16 I. V. Shadrivov, R. W. Ziolkowski, A. A. Zharov, et al. Excitation of Guided Wavesin Layered Structures with Negative Refraction. Opt. Express, 2005, 13:481–492.
    17 I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar. Giant Goos-H¨anchen Effectat the Reflection from Left-handed Metamaterials. Appl. Phys. Lett., 2003,83(13):2713–2715.
    18 R. Briers, O. Leroy, G. Shkerdin. Bounded Beam Interaction with Thin Inclusions.Characterization by Phase Differences at Rayleigh Angle Incidence. J.Acoust. Soc.Am., 2000, 108(4):1622–1630.
    19 G. Chen, Z. Q. Cao, J. H. Gu, et al. Oscillating Wave Sensors Based on Ultrahigh-orderModesinSymmetricMetal-cladOpticalWaveguides. Appl.Phys.Lett.,2006,89(8):081120.
    20 V. K. Ignatovich. Neutron Reflection from Condensed Matter, the Goos-H¨anchenEffect and Coherence. Phys. Lett. A, 2004, 322(1-2):36–46.
    21 N. S. Bukhman. Depolarization of a Beam of Electromagnetic Waves During Re-flection from a Smooth One-dimensionally Inhomogeneous Layer of Collision-less Plasma. the Complex Goos-H¨anchen Effect. Sov. Phys.-Tech. Phys., 1992,37(6):694–697.
    22 O. Emile, T. Galstyan, A. Le Floch, et al. Measurement of the NonlinearGoos-H¨anchen Effect for Gaussian Optical Beams. Phys. Rev. Lett., 1995,75(8):1511–1513.
    23 B. M. Jost, A. A. R. Al-Rashed, B. E. A. Saleh. Observation of the Goos-H¨anchenEffect in a Phase-conjugate Mirror. Phys. Rev. Lett., 1998, 81(11):2233–2235.
    24 H.K.V.Lotsch. BeamDisplacementatTotalReflection: TheGoos-H¨anchenEffect.II. Optik, 1970, 32(3):189–204.
    25 H.K.V.Lotsch. BeamDisplacementatTotalReflection: TheGoos-H¨anchenEffect,I. Optik, 1970, 32(2):116–137.
    26 H.K.V.Lotsch. BeamDisplacementatTotalReflection: TheGoos-H¨anchenEffect.III. Optik, 1971, 32(4):299–319.
    27 H.K.V.Lotsch. BeamDisplacementatTotalReflection: TheGoos-H¨anchenEffectIV. Optik, 1971, 32(6):553–569.
    28 J. J. Cowan, B. Anicin. Longitudinal and Transverse Displacements of aBounded Microwave Beam at Total Internal-reflection. J. Opt. Soc. Am., 1977,67(10):1307–1314.
    29 S. S. Gupta, N. C. Srivastava. Physics of Microwave Reflection at a Dielectric-ferrite Interface. Phys. Rev. B, 1979, 19(10):5403–5412.
    30 A. Madrazo, M. NietoVesperinas. Detection of Subwavelength Goos-H¨anchenShifts from Near-field Intensities: A Numerical Simulation. Opt. Lett., 1995,20(24):2445–2447.
    31 R. Gruschinski, G. Nimtz, A. A. Stahlhofen. Resonance-like Goos-H¨anchen ShiftInduced by Nano-metal Films. Ann. Phys., 2008, 17(12):917–921.
    32 A. Matthews, Y. Kivshar. Experimental Studies of the Internal Goos-H¨anchen ShiftforSelf-collimatedBeamsinTwo-dimensionalMicrowavePhotonicCrystals. Appl.Phys. Lett., 2008, 93(13):131901.
    33 J. L. Garcia-Pomar, J. N. Gollub, J. J. Mock, et al. Experimental Two-dimensionalField Mapping of Total Internal Reflection Lateral Beam Shift in a Self-collimatedPhotonic Crystal. Appl. Phys. Lett., 2009, 94(6):061121.
    34 F. Bretenaker, A. Le Floch, L. Dutriaux. Direct Measurement of the Optical Goos-H¨anchen Effect in Lasers. Phys. Rev. Lett., 1992, 68(7):931–933.
    35 W. J. Wild, C. L. Giles. Goos-h¨anchen Shifts from Absorbing Media. Phys. Rev.A, 1982, 25(4):2099-2101.
    36 H. M. Lai, S. W. Chan. Large and Negative Goos-H¨anchen Shift Near the BrewsterDip on Reflection from Weakly Absorbing Media. Opt. Lett., 2002, 27(9):680–682.
    37 H. M. Lai, S. W. Chan, W. H. Wong. Nonspecular Effects on Reflection fromAbsorbing Media at and Around Brewster’s Dip. J. Opt. Soc. Am. A, 2006,23(12):3208-3216.
    38 P. R. Berman. Goos-H¨anchen Shift in Negatively Refractive Media. Phys. Rev. E,2002, 66(6):067603.
    39 D. K. Qing, G. Chen. Goos-H¨anchen Shifts at the Interfaces between Left- andRight-handed Media. Opt. Lett., 2004, 29(8):872–874.
    40 X. L. Hu, Y. D. Huang, W. Zhang, et al. Opposite Goos-h¨anchen Shifts forTransverse-electric and Transverse-magnetic Beams at the Interface Associatedwith Single-negative Materials. Opt. Lett., 2005, 30(8):899-901.
    41 P.T.Leung,C.W.Chen,H.P.Chiang. LargeNegativeGoos-H¨anchenShiftatMetalSurfaces. Opt. Commun., 2007, 276(2):206–208.
    42 M. Merano, A. Aiello, G. W. t Hooft, et al. Observation of Goos-H¨anchen Shifts inMetallic Reflection. Opt. Express, 2007, 15(24):15928–15934.
    43 M. C. Simon, L. I. Perez. Goos-h¨anchen Effect of an Ordinary Refracted Beam. J.Mod. Optic., 2005, 52(4):515-528.
    44 H. Huang, Y. Fan, B. I. Wu, et al. Positively and Negatively Large Goos-H¨anchenLateral Displacements from a Symmetric Gyrotropic Slab. Appl. Phys. A, 2009,94(4):917–922.
    45 M. Cheng, Y. W. Zhou, Y. L. Li, et al. Large Positive and Negative General-ized Goos-H¨anchen Shifts from a Double Negative Metamaterial Slab Backed by aMetal. J. Opt. Soc. Am. B, 2008, 25(5):773–776.
    46 M. Cheng, R. Chen, S. Feng. Lateral Shifts of an Optical Beam in an AnisotropicMetamaterial Slab. Eur. Phys. J. D, 2008, 50(1):81–85.
    47 Y. Yan, X. Chen, C. F. Li. Large and Negative Lateral Displacement in an ActiveDielectric Slab Configuration. Phys. Lett. A, 2007, 361(1-2):178–181.
    48 L. Chen, Z. Q. Cao, F. Ou, et al. Observation of Large Positive and Negative LateralShifts of a Reflected Beam from Symmetrical Metal-cladding Waveguides. Opt.Lett., 2007, 32(11):1432–1434.
    49 N. H. Shen, J. Chen, Q. Y. Wu, et al. Large Lateral Shift Near Pseudo-brewsterAngle on Reflection from a Weakly Absorbing Double Negative Medium. Opt.Express, 2006, 14(22):10574–10579.
    50 X. B. Liu, Z. Q. Cao, P. F. Zhu, et al. Large Positive and Negative LateralOptical Beam Shift in Prism-waveguide Coupling System. Phys. Rev. E, 2006,73(5):056617.
    51 L.G.Wang, S.Y.Zhu. LargeNegative Lateral Shiftsfrom the Kretschmann-raetherConfiguration with Left-handed Materials. Appl. Phys. Lett., 2005, 87(22):221102.
    52 C. C. Chan, T. Tamir. Beam Phenomena at and Near Critical Incidence upon aDielectric Interface. J. Opt. Soc. Am. A, 1987, 4(4):655–663.
    53 C.C.Chan,T.Tamir. AngularShiftofaGaussianBeamReflectedNeartheBrewsterAngle. Opt. Lett., 1985, 10(8):378–380.
    54 C. W. Hsue, T. Tamir. Lateral Beam Displacements in Transmitting Layered Struc-tures. Opt. Commun., 1984, 49(6):383–387.
    55 X.B.Yin,L.Hesselink,Z.W.Liu,etal. LargePositiveandNegativeLateralOpticalBeam Displacements Due to Surface Plasmon Resonance. Appl. Phys. Lett., 2004,85(3):372–374.
    56 C. W. Chen, W. C. Lin, L. S. Liao, et al. Optical Temperature Sensing Based on theGoos-H¨anchen Effect. Appl. Opt., 2007, 46(22):5347–5351.
    57 X. B. Yin, L. Hesselink. Goos-H¨anchen Shift Surface Plasmon Resonance Sensor.Appl. Phys. Lett., 2006, 89(26):261108.
    58 G. Abbate, P. Maddalena, E. Santamato, et al. Observation of Lateral Displacementof an Optical Beam Enhanced by Surface Plasmon Excitation. J. Mod. Opt., 1988,35(7):1257–1262.
    59 S. L. Chuang. Lateral Shift of an Optical Beam Due to Leaky Surface-plasmonExcitations. J. Opt. Soc. Am. A, 1986, 3(5):593–599.
    60 P. Mazur, B. Djafarirouhani. Effect of Surface-polaritons on the Lateral Dis-placement of a Light-beam at a Dielectric Interface. Phys. Rev. B, 1984,30(11):6759–6762.
    61 J. Jose, F. B. Segerink, J. P. Korterik, et al. Near-field Observation of SpatialPhase Shifts Associated with Goos-H¨anchen and Surface Plasmon Resonance Ef-fects. Opt. Express, 2008, 16(3):1958–1964.
    62 R. A. Shelby, D. R. Smith, S. Schultz. Experimental Verification of a NegativeIndex of Refraction. Science, 2001, 292(5514):77–79.
    63 A. Namdar, I. V. Shadrivov, Y. S. Kivshar. Excitation of Backward Tamm States atan Interface between a Periodic Photonic Crystal and a Left-handed Metamaterial.Phys. Rev. A, 2007, 75(5):114104.
    64 F. F. Ren, J. Chen, Q. G. Du, et al. Electromagnetic Transmission ThroughOne-dimensional Gratings with Left-handed Materials. Phys. Rev. B, 2007,75(4):045127.
    65 Y.Zhong,L.X.Ran,X.X.Cheng. LateralDisplacementofaGaussianBeamTrans-mitted Through a One-dimensional Left-handed Meta-material Slab. Opt. Express,2006, 14(3):1161–1166.
    66 A. V. Novitsky, V. M. Galynsky, A. N. Furs, et al. Fedorov Lateral Shift at theInterface between Left-handed and Right-handed Media. Opt. Spectrosc., 2005,99(5).
    67 L.G.Wang,H.Chen,S.Y.Zhu. LargeNegativeGoos-H¨anchenShiftfromaWeaklyAbsorbing Dielectric Slab. Opt. Lett., 2005, 30(21):2936–2938.
    68 N. F. Declercq, J. Degrieck, R. Briers, et al. Theoretical Verification of the Back-ward Displacement of Waves Reflected from an Interface Having SuperimposedPeriodicity. Appl. Phys. Lett., 2003, 82(15):2533–2534.
    69 J. L. Birman, D. N. Pattanayak, A. Puri. Prediction of a Resonance-enhanced Laser-beamDisplacementatTotalInternalReflectioninSemiconductors. Phys.Rev.Lett.,1983, 50(21):1664.
    70 F. Schreier, M. Schmitz, O. Bryngdahl. Beam Displacement at Diffractive Struc-tures under Resonance Conditions. Opt. Lett., 1998, 23(8):576–578.
    71 C. F. Li, Q. Wang. Prediction of Simultaneously Large and Opposite GeneralizedGoos-H¨anchen Shifts for Te and Tm Light Beams in an Asymmetric Double-prismConfiguration. Phys. Rev. E, 2004, 69(5):055601.
    72 T. Y. Yu, H. G. Li, Z. Q. Cao, et al. Oscillating Wave Displacement Sensor Us-ing the Enhanced Goos-H¨anchen Effect in a Symmetrical Metal-cladding OpticalWaveguide. Opt. Lett., 2008, 33(9):1001–1003.
    73 W. Yi, L. Honggen, C. Zhuangqi, et al. Oscillating Wave Sensor Based on theGoos-H¨anchen Effect. Appl. Phys. Lett., 2008, 92(6):061117.
    74 Y. Wang, Z. Q. Cao, T. Y. Yu, et al. Enhancement of the Superprism EffectBased on the Strong Dispersion Effect of Ultrahigh-order Modes. Opt. Lett., 2008,33(11):1276–1278.
    75 Y. Wang, Z. Q. Cao, H. G. Li, et al. Electric Control of Spatial Beam Position Basedon the Goos-H¨anchen Effect. Appl. Phys. Lett., 2008, 93(9):091103.
    76 H. Gilles, S. Girard, J. Hamel. Simple Technique for Measuring the Goos-H¨anchenEffect with Polarization Modulation and a Position-sensitive Detector. Opt. Lett.,2002, 27(16):1421–1423.
    77 X. B. Yin, L. Hesselink. Highly Sensitive Surface Plasmon Resonance ChemicalSensor Based on Goos-H¨anchen Effects. SPIE - The International Society for Op-tical Engineering, 2006, 6324:63240B.
    78 Z. W. Liu, N. Fang, T. J. Yen, et al. Rapid Growth of Evanescent Wave by a SilverSuperlens. Appl. Phys. Lett., 2003, 83(25):5184–5186.
    79 T. Hashimoto, T. Yoshino. Optical Heterodyne Sensor Using the Goos-H¨anchenShift. Opt. Lett., 1989, 14(17):913–915.
    80 L. Zhenyue, L. Xu, S. Weidong, et al. Large Positive and Negative Lateral BeamDisplacement in a Guided-mode Resonant Filter. J. Opt. A, 2008, 10(11):115008.
    81 L. Xu, S. Xuezheng, G. Peifu. Enhanced Superprism Effect Based on Posi-tive/negative Lateral Shift of Reflective Beam in a Fabry-perot Filter. Opt. Lett.,2007, 32(16):2321–2323.
    82 M. Y. Li, X. Liu, X. Ma, et al. Negative Goos-H¨anchen Effect in Thin-film Fabry-perot Filter. Chinese Phys. Lett., 2007, 24:2091–2093.
    83 R. E. Klinger, C. A. Hulse, C. K. Carniglia, et al. Beam Displacement andDistortion Effects in Narrowband Optical Thin-film Filters. Appl. Opt., 2006,45(14):3237–3242.
    84 X. X. Deng, P. P. Xiao, X. Zheng, et al. An Electro-optic Polymer Modulator Basedon the Free-space Coupling Technique. J. Opt. A, 2008, 10(1):015305.
    85 J. H. Zhou, Z. Q. Cao, X. X. Deng, et al. An Attenuated Total Internally ReflectedLight Modulator Utilizing Quadratic Electro-optic Polymer Film. J. Opt. A, 2006,8(11):996–998.
    86 S. A. Sukhotin, V. V. Golubev. Influence of the Goos-H¨anchen Shift on the Loss inElectroabsorption Waveguide Modulators. Sov. Phys., 1987, 32(9):1062–1065.
    87 R. P. deMelo, D. V. Petrov, E. F. daSilva, et al. Effect of the Induced Asymmetryof the Refractive Index in a Linbo3 Electro-optical Modulator Channel Waveguide.Opt. Commun., 1997, 139(4-6):209–211.
    88 O. Solgaard, F. Ho, J. I. Thackara, et al. High-frequency Attenuated Total Internal-reflection Light-modulator. Appl. Phys. Lett., 1992, 61(21):2500–2502.
    89 Z. Ma, P. Wang, Y. Cao, et al. Linear Polarizer Made of Indefinite Media. Appl.Phys. B, 2006, 84(1-2):261–264.
    90 P.柯林斯.液晶-自然界中奇妙的物相.上海科技教育出版社2002.
    91陶世荃.光全息存储.北京工业大学出版社1998.
    92 V. G. Veselago. The Electrodynamics of Substances with Simultaneously NegativeValues of Permittivity and Permeability. Sov. Phys. Usp., 1968, 10(4):509–514.
    93 J. B. Pendry, A. J.Holden, W.J. Stewart, et al. Extremely Low Frequency Plasmonsin Metallic Mesostructures. Phys. Rev. Lett., 1996, 76(25):4773–4776.
    94 J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Low Frequency Plasmons in Thin-wire Structures. J. Phys-Condens. Mat., 1998, 10(22):4785–4809.
    95 J.B.Pendry,A.J.Holden,D.J.Robbins,etal. MagnetismfromConductorsandEn-hanced Nonlinear Phenomena. IEEE T. Microw. Theory, 1999, 47(11):2075–2084.
    96 D.R.Smith,W.J.Padilla,D.C.Vier,etal. CompositeMediumwithSimultaneouslyNegative Permeability and Permittivity. Phys. Rev. Lett., 2000, 84(18):4184–4187.
    97 J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett., 2000,85(18):3966–3969.
    98 T. M. Grzegorczyk, X. Chen, J. Pacheco, et al. Reflection Coefficients and Goos-H¨anchen Shifts in Anisotropic and Bianisotropic Left-handed Metamaterials. Prog.Electromagn. Res., 2005, 51:83–113.
    99 L. G. Wang, H. Chen, N. H. Liu, et al. Negative and Positive Lateral Shift of a LightBeam Reflected from a Grounded Slab. Opt. Lett., 2006, 31(8):1124-1126.
    100 X. Chen, M. Shen, Z. F. Zhang, et al. Tunable Lateral Shift and Polarization BeamSplitting of the Transmitted Light Beam Through Electro-optic Crystals. J. Appl.Phys., 2008, 104(12):123101.
    101 W. Li-Gang, M. Ikram, M. Suhail Zubairy. Control of the Goos-hanchen Shift of aLight Beam via a Coherent Driving Field. Phys. Rev. A, 2008:023811.
    102 A. Matthews, Y. Kivshar. Tunable Goos-H¨anchen Shift for Self-collimated Beamsin Two-dimensional Photonic Crystals. Phys. Lett. A, 2008, 372(17):3098-3101.
    103 A. Matthews, Y. Kivshar. Experimental Studies of the Internal Goos-H¨anchen ShiftforSelf-collimatedBeamsinTwo-dimensionalMicrowavePhotonicCrystals. Appl.Phys. Lett., 2008, 93(13):131901.
    104 C. Bohren, D. Huffman. Absorption and Scattering of Light by Small Particles.Wiley1983.
    105 H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings.1988.
    106 K. Tiefenthaler, W. Lukosz. Integrated Optical Switches and Gas Sensors. Opt.Lett., 1984, 9(4):137-139.
    107 M. J. Jory, P. S. Vukusic, J. R. Sambles. Development of a Prototype Gas SensorUsing Surface Plasmon Resonance on Gratings. Sensor. Actuator. B Chem., 1994,17(3):203-209.
    108 C. R. Lawrence, N. J. Geddes, D. N. Furlong, et al. Surface Plasmon ResonanceStudies of Immunoreactions Utilizing Disposable Diffraction Gratings. Biosens.Bioelectron., 1996, 11(4):389-400.
    109 R. C. Jorgenson, S. S. Yee. A Fiberoptic Chemical Sensor-based on Surface-plasmon Resonance. Sensor. Actuator. B Chem., 1993, 12(3):213-220.
    110 A. Otto. Excitation of Nonradiative Surface Plasma Waves in Silver by the Methodof Frustrated Total Reflection. Z. Physik, 1968, 216:398-410.
    111 E. Kretschmann. Die Bestimmung Optischer Konstanten Von Metallen Durch An-regung Von Oberflachen Plasma Schwingungen. Z. Physik, 1971, 241:313-324.
    112 D. Sarid. Long-range Surface-plasma Waves on Very Thin Metal-films. Phys. Rev.Lett., 1981, 47(26):1927-1930.
    113 R. T. Deck, D. Sarid. Enhancement of 2nd-harmonic Generation by Coupling toLong-range Surface-plasmons. J. Opt. Soc. Am., 1982, 72(12):1613-1617.
    114 C. Luo, M. Ibanescu, S. G. Johnson, et al. Cerenkov Radiation in Photonic Crystals.Science, 2003, 299(5605):368–371.
    115 D. R. Smith, D. Schurig, M. Rosenbluth, et al. Limitations on Subdiffrac-tion Imaging with a Negative Refractive Index Slab. Appl. Phys. Lett., 2003,82(10):1506–1508.
    116 D. Schurig, D. R. Smith. Spatial Filtering Using Media with Indefinite Permittivityand Permeability Tensors. Appl. Phys. Lett., 2003, 82(14):2215–2217.
    117 J. Li, L. Zhou, C. T. Chan, et al. Photonic Band Gap from a Stack of Positive andNegative Index Materials. Phys. Rev. Letters, 2003, 90(8):083901.
    118 I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar. Beam Shaping by a PeriodicStructure with Negative Refraction. Appl. Phys. Lett., 2003, 82(22):3820–3822.
    119 B. I. Wu, T. M. Grzegorczyk, Y. Zhang, et al. Guided Modes with Imaginary,Transverse Wave Number in a Slab Waveguide with Negative Permittivity and Per-meability. J. Appl. Phys., 2003, 93(11):9386–9388.
    120 A. Lakhtakia. On Planewave Remittances and Goos-H¨anchen Shifts of PlanarSlabs with Negative Real Permittivity and Permeability. Electromagnetics, 2003,23(1):71–75.
    121 R. A. Depine, N. E. Bonomo. Goos-H¨anchen Lateral Shift for Gaussian BeamsReflected at Achiral-chiral Interfaces. Optik, 1996, 103(1):37–41.
    122 N. E. Bonomo, R. A. Depine. Nonspecular Reflection of Left and Right CircularlyPolarized Beams at Chiral-achiral Interfaces. Optik, 1998, 108(4):174–180.
    123 S. A. Darmanyan, M. Neviere, A. A. Zakhidov. Surface Modes at the Interface ofConventional and Left-handed Media. Opt. Commun., 2003, 225(4-6):233–240.
    124 L. Yang, P. Gu, B. Huang, et al. Transmission Characters of Optical Waves at theInterface between Lhm and Rhm. Acta Photon. Sin., 2003, 32(10):1225–1227.
    125 A. Lakhtakia. Positive and Negative Goos-H¨anchen Shifts and Negative Phase-velocity Mediums. Aeu-Int. J. Electron. C., 2004, 58(3):229–231.
    126 L. X. Ran, J. Huangfu, H. S. Chen, et al. Beam Shifting Experiment for the Char-acterization of Left-handed Properties. J. Appl. Phys., 2004, 95(5):2238–2241.
    127 J. J. Chen, T. M. Grzegorczyk, B. I. Wu, et al. Role of Evanescent Waves in thePositive and Negative Goos-H¨anchen Shifts with Left-handed Material Slabs. J.Appl. Phys., 2005, 98(9):94905.
    128 H. F. Zhang, Q. Wang, N. H. Shen, et al. Surface Plasmon Polaritons at Inter-faces Associated with Artificial Composite Materials. J. Opt. Soc. Am. B, 2005,22(12):2686–2696.
    129 Y. Y. Jiang, Y. Q. Zhang, H. Y. Shi, et al. The Goos-H¨anchen Shift on theSurface of Uniaxially Anisotropic Left-handed Materials. Acta Phys. Sin., 2007,56(2):798–804.
    130 Y. A. You. Lossy Effects on the Lateral Shifts in Negative-phase-velocity Medium.Physica B, 2009, 404(2):243–247.
    131 H.Cory, A.Barger. Surface-wavePropagationAlongaMetamaterialSlab. Microw.Opt. Techn. Let., 2003, 38(5):392–395.
    132 Z. Ye. Optical Transmission and Reflection of Perfect Lenses by Left Handed Ma-terials. Phys. Rev. B, 2003, 67(19):193106.
    133 X. Chen, C. F. Li. Lateral Shift of the Transmitted Light Beam Through a Left-handed Slab. Phys. Rev. E, 2004, 69(6):066617.
    134 Y. He, Z. Q. Cao, Q. S. Shen. Guided Optical Modes in Asymmetric Left-handedWaveguides. Opt. Commun., 2005, 245(1-6):125–135.
    135 L. G. Wang, S. Y. Zhu. Large Positive and Negative Goos-H¨anchen Shifts from aWeakly Absorbing Left-handed Slab. J. Appl. Phys., 2005, 98(4):43522.
    136 I. O. Mirza, S. Y. Shi, Z. L. Lu, et al. Calculation of the Negative Refractive Indexof a Lhm Slab by the Free-space Mapping of the Laterally Shifted Refracted Beam.Microw. Opt. Techn. Let., 2006, 48(3):593–596.
    137 A. Moreau, D. Felbacq. Leaky Modes of a Left-handed Slab. J. Eur. Opt. Soc.,2008, 3:08032–5.
    138 M. Cheng, Y. W. Zhou, Y. L. Li, et al. Large Positive and Negative General-ized Goos-H¨anchen Shifts from a Double Negative Metamaterial Slab Backed by aMetal. J. Opt. Soc. Am. B, 2008, 25(5):773–776.
    139 F. M. Kong, B. I. Wu, H. Huang, et al. Lateral Displacement of an ElectromagneticBeam Reflected from a Grounded Indefinite Uniaxial Slab. Prog. Electromagn.Res., 2008, 82:351–366.
    140 M. Y. Wang, J. Xu, J. Wu, et al. Fdtd Study on Wave Propagation in LayeredStructures with Biaxial Anisotropic Metamaterials. Prog. Electromagn. Res., 2008,81:253–265.
    141 Z. P. Wang, C. Wang, Z. H. Zhang. Goos-H¨anchen Shift of the UniaxiallyAnisotropic Left-handed Material Film with an Arbitrary Angle between the Op-tical Axis and the Interface. Opt. Commun., 2008, 281(11):3019–3024.
    142 Y. J. Zhang. Giant Positive and Negative Lateral Shifts from the Kretschmann-raether Configuration with a Weakly Absorbing Left-handed Slab. Phys. Lett. A,2008, 372(29):4962–4964.
    143 M.Cheng, R.Chen. LargePositiveandNegativeLateralShiftsfromanAnisotropicMetamaterial Slab Backed by a Metal. Chinese Phys. Lett., 2009, 26(1):014101.
    144 I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, et al. Nonlinear Surface Wavesin Left-handed Materials. Phys. Rev. E, 2004, 69(1):016617.
    145 R. R. Wei, X. Chen, J. W. Tao, et al. Giant and Negative Bistable Shifts for One-dimensional Photonic Crystal Containing a Nonlinear Metamaterial Defect. Phys.Lett. A, 2008, 372(45):6797–6800.
    146 L.J.Zhang, L.Chen, C.H.Liang. Goos-H¨anchenShiftattheInterfaceofNonlinearLeft-handed Metamaterials. Journal of Electromagnetic Waves and Applications,2008, 22(7):1031–1041.
    147 K. Guven, K. Aydin, K. B. Alici, et al. Spectral Negative Refraction and FocusingAnalysis of a Two-dimensional Left-handed Photonic Crystal Lens. Phys. Rev. B,2004, 70(20):205125–5.
    148 J. Hu, C. R. Menyuk. Understanding Leaky Modes: Slab Waveguide Revisited.Adv. Opt. Photon., 2009, 1(1):58–106.
    149 T. Okamoto, M. Yamamoto, I. Yamaguchi. Optical Waveguide Absorption SensorUsing a Single Coupling Prism. J. Opt. Soc. Am. A, 2000, 17(10):1880–1886.
    150 T. Okamoto, I. Yamaguchi. Absorption Measurement Using a Leaky WaveguideMode. Opt. Rev., 1997, 4(3):354–357.
    151 H. W. Ren, Y. H. Fan, S. Gauza, et al. Tunable-focus Flat Liquid Crystal SphericalLens. Appl. Phys. Lett., 2004, 84(23):4789–4791.
    152 C. Y. Chen, T. R. Tsai, C. L. Pan, et al. Room Temperature Terahertz Phase ShifterBased on Magnetically Controlled Birefringence in Liquid Crystals. Appl. Phys.Lett., 2003, 83(22):4497–4499.
    153 Y. H. Fan, H. Ren, S. T. Wu. Normal-mode Anisotropic Liquid-crystal Gels. Appl.Phys. Lett., 2003, 82(18):2945–2947.
    154 P. Yeh. Electromagnetic Propagation in Birefringent Layered Media. J. Opt. Soc.Am., 1979, 69(5):742–756.
    155 Y. Wang, K. Yu, X. J. Zha, et al. Reflection and Transmission of Gaussian Beamfrom a Uniaxial Crystal Slab. EuroPhys. Lett., 2006, 75(4):569–575.
    156 M. Born, E. Wolf. Principles of Optics:electromagnetic Theory of Propagation,Interference and Diffraction of Light. Seventh edition ed., Cambridge UniversityPress2005.
    157 Q. Zhao, L. Kang, B. Li, et al. Tunable Negative Refraction in Nematic LiquidCrystals. Appl. Phys. Lett., 2006, 89(22):221918–3.
    158 L. Kang, Q. A. Zhao, B. Li, et al. Experimental Verification of a Tunable Op-tical Negative Refraction in Nematic Liquid Crystals. Appl. Phys. Lett., 2007,90(18):181931.
    159陈纲,廖理几,郝伟.晶体物理学基础.科学出版社2007.
    160 W. M. Gibbons, P. J. Shannon, S. T. Sun, et al. Surface-mediated Alignment of Ne-matic Liquid-crystals with Polarized Laser-light. Nature, 1991, 351(6321):49–50.
    161 L. M. Blinov, V. G. Chigrivov. Electrooptic Effects in Liquid Crystal Materials.New York: Springer1994.
    162 R. Ulrich. Theory of the Prism-film Coupler by Plane-wave Analysis. J. Opt. Soc.Am., 1970, 60(10):1337–1350.
    163 T. Tamir, S. T. Peng. Analysis and Design of Grating Couplers. Appl. Phys., 1977,14(3):235–254.
    164 L. G. Schulz. The Optical Constants of Silver, Gold, Copper, and Aluminum. I. theAbsorption Coefficient K. J. Opt. Soc. Am., 1954, 44(5):357–362.
    165 L. G. Schulz, F. R. Tangherlini. Optical Constants of Silver, Gold, Copper, andAluminum. Ii. the Index of Refraction N. J. Opt. Soc. Am., 1954, 44(5):362–367.
    166 W. P. Chen, J. M. Chen. Use of Surface Plasma Waves for Determination of theThickness and Optical Constants of Thin Metallic Films. J. Opt. Soc. Am., 1981,71(2):189–191.
    167 H. G. Li, Z. Q. Cao, H. F. Lu, et al. Free-space Coupling of a Light BeamInto a Symmetrical Metal-cladding Optical Waveguide. Appl. Phys. Lett., 2003,83(14):2757–2759.
    168 H.F.Lu,Z.Q.Cao,H.G.Li,etal. StudyofUltrahigh-orderModesinaSymmetricalMetal-cladding Optical Waveguide. Appl. Phys. Lett., 2004, 85(20):4579–4581.
    169 E. D. Palik. Handbook of Optical Constants of Solids. Academic Press Inc. (Lon-don) Ltd.1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700