用户名: 密码: 验证码:
微通道内电渗流有限元数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片在疾病诊断、药物筛选和环境监测等许多方面有着广泛运用,微流控芯片的迅速发展对微流体及其控制的研究提出了更高的要求。微流控芯片具有体积小、可调控参数多、调控精确度高、自动化程度高、可以集成和大批量生产、能实现快速分析和降低硬件费用等独特的优点。但是,微观尺度下的流体运动与宏观流动的规律不同,宏观状态下常常被忽略的一些影响因素,在微观尺度下对流体运动却起着主要的作用,成为影响微流控芯片性能的关键因素之一,引起研究者的极大关注。
     本文分析了电渗流形成的基本理论,推导了电场和流场多场耦合的控制方程,并运用多物理场分析软件对圆形微通道内壁面粗糙度对电渗流的影响,以及zeta电势和微通道截面形状对微混合的影响进行详细地研究。
     本文的主要研究成果和创新在于:
     构建了壁面粗糙度单元为三角形的几何模型,采用有限元方法研究了壁面粗糙度单元参数对圆形截面微通道内电渗流的影响,分析了微通道两端存在阻碍压力作用下的情况。结果表明,壁面粗糙度单元宽度和间隔增加时微通道中截面流速先减小后增加。截面流速随着相对粗糙度的增加非线性减小,但减小趋势变缓。相对粗糙度增加时压力与截面流速线的斜率减小,截面流速不易受压力变化的影响。结论对电渗流驱动微流体的精确操控具有技术参考意义。
     模拟了二维电渗流驱动下的微混合,研究了极性相同的壁面zeta电势和极性相反的壁面zeta电势对应微通道内的混合速度,获得了壁面带有极性相反的zeta电势时截面形状与混合速度的相关关系。结果表明,壁面所带极性相同的电势的截面内的混合效率小于极性相反的壁面电动势的截面混合速度;微通道截面为等面积矩形时,高宽比的增加混合速度快速增加然后缓慢下降;对于截面为等腰梯形的微通道,混合速度随高度值递增变化首先迅速递增然后缓慢递减,在高宽比为1/6左右混合速度最高。研究为微混合器的设计提出了一种设计新思路。
The application of microfiuidic devices has been grown rapidly in many fields including disease diagnoses, medicine screening and environmental monitoring. As a result higher request of research about microfluidic arises. Microfluidic devices can offer many advantages such as small volume, multi-parameter of high tunable accuracy, reduced reagent consumption, shorter analysis time, and lower hardware cost. Some important affects on movement of microfluidic which are paid close attention to are ignored in macro scale.
     This article has discussed the elementary theory of the electroosmotic flow forming, induced the electric field and the flow field coupling field governing equation, and studied the influence of triangle surface roughness to the electroosmotic flow in circular cross-section micro channels, and the influence of the zeta electric potential and the micro channel section shape to the micro mixing influence using the multi-physical field analysis software.
     The main research results and the innovation in the article lie in:
     The influence mechanism of triangle surface roughness on electroosmotic flow in microchannels with circular cross-section is studied by the finite element simulation. The geometries of the surface roughness unit is modeled by triangular and the effects are analyzed when the microchannels both sides existence hindrance pressure. The results show that the section speed of flow reduces first and increases then when wall surface roughness width and gap increase in the micro channel. Section speed of flow reduces along with the relative roughness increase non-linearity and the tendency to change reduces. The line slope of pressure to the section speed reduces which means section speed of flow is not easily influenced by the pressure as relative roughness increases. This provides the instruction for precise control of the micro fluidic caused by electroosmotic flow.
     Two-dimensional micro mix driven by electroosmotic flow was studied by finite element simulation and mixes speed of microchannels with unified zeta potential of the wall surface and the polar opposite one was contrasted. Relation between the section shape of the microchannel and the speed of mixing is cleared when the wall surface has the polar opposite zeta potential. The results show that section mixing speed of microchannel whose wall surface with unified zeta potential is more high than the one with polar opposite wall surface zeta potential. Mixing speed of microchannel with homolographic rectangle section fast increases and then drops andante when the ratio of height and width increases. In microchannel of isosceles trapezoid section the speed of mixing first ascends rapidly along with the increment of height and then decreases slowly, arrived highest value when ratio of height and width is 1/6. It offers one kind of new way for the micro mixer design.
引文
[1]仲武,陈云飞.毛细管电渗流微泵的流体动力学的数值模拟[J].机械工程学报,2004.40(2):73-77.
    [2]方肇伦.微流控分析芯片的制作及应用[M].北京:化学工业出版社,2005.
    [3]武东健.基于粘度修正理论的微流体阻尼特性分析[D].西安:西安电子科技大学,2005.
    [4]Manz A,Graber N,Widmer H M.Miniaturized total chemical analysis systems:A novel concept for chemical sensing[J].Sens Actuators B,1990,1:244-248.
    [5]Manz A,Harrison D J,Verpoorte E M J,et al.Planar chips technology for miniaturization and integration of separation techniques into monitoring systems[J].J.Chromatogr.,1992,593:253-258
    [6]Jacobson S C,Hergenroeder R,Koutny L B,et al.Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices[J].Anal Chem,1994,66:1107-1113.
    [7]Woolley A T,Mathies R A.Ultra-high-speed DNA sequencing using capillary electrophoresis[J].Anal Chem,1995,67:3676-3680.
    [8]Woolley A T,Hadley D,Landre P,et al.Functional intergration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device[J].Anal Chem,1996,68:4081-4086.
    [9]http://www.instrument.com.cn.
    [10]David Sinton,Dongqing Li.Electroosmotic Velocity Profile in Microchannels[J].Colloids and Surfaces A:Physicochem.Eng.Aspects.2003,(222):273-283.
    [11]David Sinton,Carlos Escobedo-Canseco,Liqing Ren and Dongqing Li.Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels[J].Journal of Colloid and Interface Science,2002,(254):184-189.
    [12]J.Gaudioso,H.G.Craighead.Characterizing Electroosmotic Flow in Microfluidic Devices[J].Journal of Chromatography A,2002,971:249-253.
    [13]Sarah Arulanandam,Dongqing Li.Liquid.Transport in Rectangular Microchannels by Electro-osmotic Pumping[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,161:89-102.
    [14]Manoel Ferreira Borges,Sergio Luys Lopes Verardi and Jose Marcio.Machado.Electroosmotic Pumping in Rectangular Microchannels:a Numerical Treatment by the Finite Element Method[J].Applied Mathematics E-Notes,2002,2:10-15.
    [15]Fuzhi Tian,Baoming Li,and Daniel Y.Kwok.Simulation of Electroosmotic Flow in Micro-and Nanochannels Using a Lattice Boltzmann Model[J].Journal of Computational and Theoretical Nanoscience,2004,1:417-423.
    [16]杨大勇,刘莹.疏水表面微通道电渗流的数值模拟[J].中国科学,2009,39(2):293-298.
    [17]XuZheng,Li Yongqian,Liu Chong,Chen Guoqiang,Wang Liding.Numerical study of the protuberance effects on capillary electrophoresis separation in the micro-channel[J].Chinese Journal of Computational Mechanics,2007,24(1):25- 29.
    [18]Hu Y,Xuan X,Werner C,Li D.Electroosmotic flow in microchannels with prismatic elements[J].Microf luidics and Nauofluidics,2007,(3):151-160.
    [19]G.Y.Tang,C.Yang,J.C.Chai,H.Q.Gong.Joule Heating Effects on Electroosmotic Flow and Mass Species Transport in a Microcapillary[J].International Journal of Heat and Mass Transfer,2004,47:215-227.
    [20]Xiangchun Xuan,David Sinton,Dongqing Li.Thermal End Effects on Electroosmotic Flow in a Capillary[J].International Journal of Heat and MassTransfe,2004,47:3145-3157.
    [21]Qiao R,Effects of molecular level surface roughness on electroosmotic flow[J].Microfluidics and Nauofluidics,2007,(3):33-38.
    [22]Jinku Wang,Moran Wang,Zhixin Li.Lattice Poisson-Boltzmann Simulations of Electro-osmotic Flows in Microchannels[J].Journal of Colloidand Interface Science,2006,296:729-736.
    [23]Dzmitry Hlushkou,Drona Kandhai and Ulrich Tallarek.Coupled lattice-Boltzmann and Finite-difference Simulation of Electroosmosis in Microfluidic Channels[J].Int.J.Numer.Meth.Fluids,2004,46:507-532.
    [24]傅卫平,方崇德.微系统动力学中的若干非线性问题[J].力学进展,2002,32(1):17-25.
    [25]王立文,高殿荣.微流动系统的研究现状与趋势[J].液压与气动,2005,(10):1-4.
    [26]张鑫杰,倪中华.纳米粒子介电泳的分子动力学模拟[J].东南大学学报(自然科学版).2008,38(5):384-388.
    [27]张武生,杨燕华,徐济.格子波尔兹曼方法及其应用[J].现代机械,2003,(4):4-6.
    [28]邹会旭.基于有限元法的电渗流仿真研究[D].长春:吉林大学,2007.
    [29]凌智勇,丁建宁,杨继昌等.微流动的研究现状及影响因素[J].江苏大学学报,2002,23(6).1-5.
    [30]Dayong Yang,Ying Liu.Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,328(1-3):28-33.
    [31]Pashley M D,Pethica J B,Tabor D.Adhesion and micromechanical properties of metal surface[J].J.Wear,1984,100:7-31.
    [32]Peng,X.F.,Wang,B.X.,Proc.10~(th) International Heat Transfer Conference[J].Brighton,UK,Aug.1994:159-177.
    [33]Holmes,D.B.,Vermeulen,J.R.,Chem[J].Engng.Sci.,1968,23:717-722.
    [34]Migoun.N.,Kapilarna wiskozymetria dla mikroobjemow zydkostjej,Sankt Petersburg,Russia.1996.
    [35]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5),575-577.
    [36]李战华,周兴贝,朱善农.非极性小分子有机液体在微管道中的流量特性[J].力学学报,2002,35(3),433-438.
    [37]刘静.微纳米尺度传热学[M].北京:科学出版社.2001.
    [38]Papautsky L,Ameel T.A review of laminar single-phase flow in microchannels[J].ASME International Mechanical Engineering Congress and Exposition,2001,1-9.
    [39]Papautsky,L.Metallic microinstrumentation for biomedical fluid applications,Ph.D.thesis,University of Utah,Salt Lake City,UT.1999.
    [40]Pfahler,J.Harley,J.Bau,Zemel,J.N.Gas and liquid flow in small channels[J],ASME Micromechanical Sensors,Actuators and Systems,1991,DSC-32,49-60.
    [41]庄志文.压力驱动微管道液体流动数值模拟与实验研究[D],镇江:江苏大学,2007.
    [42]朱梦义.介电润湿驱动的数字微流体仿真研究[D].长春:吉林大学,2007.
    [43]刘长春,崔大付.基于MEMS技术的PDMS的电泳为芯片的研制[J].微精细加工,2004,3(1):58-60.
    [44]刘广玉,樊尚春.微机械电子系统及其应用[M].北京:北京航空航天大学出版社,2003.
    [45]An effective passive microfluidic mixer utilizing chaotic advection[J].Sensors and Actuators B:Chemical,2008,132(1):172-181.
    [46]Volker hessel,Holger Lowe,Friendhelm Schonfeld,Micromixers-a review on passive and active mixing principles[J],Chemical Engineering Science,2005,60:2479-2501
    [47]J S Hu,Christopher Y H Chao.Numerical study of electroosmotic(EO) flow in microfabricated EO pump with overlapped electrical double layer(EDL)[J].International Journal of Refrigeration,2007,30(2):290-298.
    [48]张维冰.毛细管电色谱理论基础[M].北京:科学技术出版社,2005.
    [49]陈义.毛细管电泳技术及应用(第二版)[M].北京:化学工业出版,2006.
    [50]林金木.有限单元法变分原理与应用[M].长沙:湖南大学出版社,2003.
    [51]O.C.Zienkiewicz,K.Morgan.有限元与近似法[M].北京:人民交通出版社,1989.
    [52]杨慧敏.微管道流动中壁面粗糙度的影响机理[D].杭州:浙江大学,2006.
    [53]李志印,熊晓辉,吴家鸣.计算流体力学常用数值方法简介[J].广东造船,2004,3:5-8.
    [54]Yan Ji,Kun Yuan,J N Chung.Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel[J].International Journal of Heat and Mass Transfer,2006,49(7-8):1329-1339.
    [55]Moran Wang,Jinku Wang,Shiyi Chen.Roughness and cavitations effects on electroosmotic flows in rough microchannels using the lattice Poisson-Boltzmann method[J].Journal of Computational Physics,2007,226(1):836-851.
    [56]G H Tang,Zhuo Li,Y L He,W Q Tao.Experimental study of compressibility,roughness and rarefaction influences on microchannel flow[J].International Journal of Heat and Mass Transfer,2007,50(11-12):2282-2295.
    [57]Bing-YangCao,MinChen,Zeng-YuanGuo.Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J]. International Journal of Engineering Science, 2006,44(13-14): 927-937.
    [58] T.N.T. Nguyen, M.C. Kim, J.S. Park, N.-E. Lee. An effective passive microfluidic mixer utilizing chaotic advection[J]. Sensors and Actuators B: Chemical, 2008, 132(1): 172-181.
    [59] Marcos, K.T. Ooi, C. Yang, J.C. Chai and T.N. Wong. Developing electro-osmotic flow in closed-end micro-channels[J]. International Journal of Engineering Science, 2005, 43(17-18): 1349-1362.
    [60] H. Y. Wu and C.H. Liu. A novel electrokinetic micromixer[J]. Sensors and Actuators A, 2005: 107-115.
    [61] S. H. Huang, S. K. Wang, Hwa Seng Khoo and Fan-Gang. AC electroosmotic generated in-plane microvortices for stationary or continuous fluid mixing[J]. Sensors and Actuators B, 2007,125(1): 326-336.
    [62] D. Wang, J. L. Summers and P. H. Gaskell. Modelling of electrokinetically driven mixing flow in microchannels with patterned blocks[J]. Computers and Mathematics with Applications, 2008, 55 (7): 1601-1610.
    [63] H. Song, X. Z. Yin and D.J. Bennett. Optimization analysis of the staggered herringbone Micromixer based on the slip-driven method[J].Chemical Engineering Research and Design, 2008, 86(8): 883-891.
    [64] V. Hessel, H. Lowe and F. Schonfeld, Micromixers-a review on passive and active mixing principles[J].Chemical Engineering Science, 2005, 60(8-9): 2479-2501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700