用户名: 密码: 验证码:
数字微流控生物芯片的布局及调度问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对数字微流控生物芯片系统的布局问题、调度问题和液滴寻址问题进行了研究。分析了多元体液检测与蛋白质分析实验的操作特性,构建了序列图模型和数学模型。提出了一种解决数字微流控生物芯片调度问题的项目调度遗传算法;设计了一种用于动态资源分配的启发式规则;提出了一种拟人免疫遗传算法,解决了数字微流控生物芯片几何级布局问题;提出了数字微流控生物芯片故障系数的估计方法,分析了芯片发生故障的原因,给出了故障重构算法;提出了一种基于网络流的液滴寻址算法;分析了液滴寻址的流体约束和时间约束,构建了液滴寻址的约束模型,实现了液滴寻址的自动控制和智能控制;设计并开发了数字微流控生物芯片的计算机辅助设计系统,实现了从生化检测实验下达,到芯片设计优化的过程。
     本文的研究结果可以指导数字微流控芯片的设计和制造;所提出的优化算法和开发的计算机辅助设计系统具有普遍应用意义,为数字微流控生物芯片的设计理论打下了基础。
Digital microfluidis-based biochips manipulate liquids as discrete droplets, which have the promise of a wide range of applications in biochemical analysis, clinical diagnostics, biomanufactuing, environmental monitoring and military affairs fields. As the use of digital microfluidic biochips increases, their complexity is expected to become significant due to the need for multiple and concurrent assays on the chip, as well as more sophisticated control for resource management. Time-to-market and fault tolerance are also expected to emerge as design considerations. However, current design methodologies for microfluidic biochips are typically full-custom and bottom up in nature. These full-custom methodologies will not scale well for larger designs because of higher complexity and the need for quantifiable performance metrics that can be optimized. There is a pressing need to deliver the intelligent algorithm and the same level of computer-aided design (CAD) support to the biochip designer to relieve biochip users from the burden of manually optimizing a set of assays for increased throughout.
     Genetic algorithm for project scheduling, Personification Immune Genetic Algorithm and min-cost max-flow are proposed in this paper to solve the problems of placement, scheduling, and droplet routing respectively. The detailed work includes the following parts.
     1. Study on scheduling problem of digital microfluidics-based biochips
     The minimization of the assay completion time is essential for environmental monitoring applications, which is also necessary for surgery and neonatal clinical diagnostics. The goal of architectural -level scheduling for microfluidic biochips is to select a design that minimizes a certain cost function under resource constraints, so as to maximize parallelism, thereby decreasing response time, scheduling assay functions and binding them to a given number of resources. In this paper, the basic operation of biochemical assay is given; sequencing graph module and mathematic module are constructed as well based on the progress and optimal scheduling strategy of scheduling of microfluidic biochips. Moreover, precedence constraint and complicated resource constraint are analyzed to discover the effect factor of optimal scheduling for digital microfluidic biochips.
     An optimal genetic algorithm for project scheduling (GAPS) is developed, encoding of the solution and the operations such as crossover, mutation and evaluation are given as well. The example of a real-life biochemical procedure (Multiplexed in-vitro Diagnostics on Human Physiological Fluids) and protein assay are used to evaluate the proposed methodology under Visual C++ simulation environment. The comparison of schedule finish times obtained using our GAPS, GA, and M-LS are shown. Experiments show that for a biomedical assay of large size, the results obtained from GAPS can give standard the optimal scheduling sequences subject to the precedence constraints and the resource constraints for the droplets of digital microfluidics-based biochips and outperforms other scheduling algorithm.
     Study on resources binding problem of digital microfluidic biochips. A heuristic rule is developed into modified genetic algorithm for project scheduling to solve the dynamic resource binding.
     2. Study on the placement problem of digital microfluidics-based biochips
     The placement problem of digital microfluidics-based biochips creates a physical representation at the geometrical level, that is, the finally out of the biochip consisting of the configuration of the microfluidic array, locations of reservoirs and dispensing ports, and other geometric details. The personification heuristic algorithm is used in this paper to study microfluidic module physical placement, described the method of personification. This personification heuristic algorithm is inspired by the strategy of building wall in the daily life. The point-finding way and the rules of horizontal and vertical reference line are developed to control the packing process.
     Immune genetic algorithm is designed in this paper, which is used to multi-objective optimize the placement results. The antibody encoding, fitness function, population search strategy, the affinity of antibodies and concentration, immune selection operator and the spread of antibodies are described in detail. The process of microfluidic module physical placement in multiplexed in-vitro diagnostics on human physiological fluids is simulated, and the comparative analysis with the parallel simulated annealing algorithm is shown in the third chapter. The experiment results show that personification immune genetic algorithm can achieve not only the smallest biochip area, but also the shortest of completion time of all operations.
     The failure reasons of digital microfluidics-based biochips are analyzed in this paper, and the principle of partial reconfiguration is described as well. Based on this reconfiguration technique, a simple numerical measure termed the fault-tolerance index is defined to estimate the fault-tolerance capability of the biochip. We further extend the definition of this index to handle multiple faults. We also present an efficient algorithm to determine the fault-tolerance index of a biochip configuration based on the notion of maximal-empty rectangles, and simulate the fault tolerance process of multiplexed in-vitro diagnostics on human physiological fluids placement.
     3. Study on the droplet routing of digital microfluidics-based biochips
     The droplet routing problem is to find droplet routes with minimum lengths, where route length is measured by the number of cells in the path from the starting point to the destination. The microfluidic array consists of primary cells that are used in assay operations, and spare cells that can replace faulty primary cells for fault tolerance. Thus, for a microfluidic array of fixed size, minimum-length droplet routes lead to the minimization of the total number of cells used in droplet routing, thus freeing up more spare cells for fault tolerance. This is especially important for safety-critical systems, an important application area for digital microfluidic biochips.
     The droplet routing problem of digital microfluidics-based biochips is analyzed in this paper, and droplet routing process and the optimal objective is given as well. Moreover, the modeling of routing constraints is constructed based on the analysis of fluidic constraints and time constraints.
     In this paper, we propose the first network-flow based routing algorithm for the droplet routing problem on digital microfluidic biochips. We adopt a two-stage technique of global routing followed by detailed routing. In global routing, we first identify a set of non-interfering nets and then adopt the network flow approach to generate optimal global-routing paths for the identified nets. In detailed routing, we present the routing tree for simultaneous routing and scheduling with a negotiation based routing scheme based on the global-routing paths. Our algorithm was simulated for the in-vitro diagnostic and the protein assay respectively. We also implemented the two-stage routing algorithm and the prioritized A*-search algorithm. Our algorithm can successfully route all benchmarks while previous works cannot. Moreover, our algorithm can achieve better solution quality with less CPU time than previous works. Experimental results demonstrate the robustness and efficiency of network-flow based routing algorithm.
     4. The computer aid design system of digital microfluidics-based biochips
     We design and development of the intelligent design platform of digital microfluidics-based biochips for the first time. This intelligent design platform can implement the chip design optimization and intelligent control of biochemical assay operations based on the input of biochemical assay.
     The research results can provide the technical support for the intelligent design and biomanufactuing of digital microfluidics-based biochips. Moreover, the intelligent design algorithm and platform can improve the development of theory of digital microfluidics-based biochips mechanical design.
引文
[1] BURN M A, BRIAN N J, SUNDARESH N, et al. An integrated nanoliter DNA analysis device [J]. Science, 1998, 282(5388):484 - 487.
    
    [2] ZHANG T, CHAKRABARTY K, FAIR R B. Microelectrofluidic Systems: Modeling and Simulation [M]. Boca Raton, FL: CRC Press, 2002.
    [3] THORSEN T, MAERKL S, QUAKE S. Microfluidic large-scale integration [J].Science, 2002. 298(5593):580 - 584.
    [4] VERPOORTE E, DE ROOIJ N F . Microfluidics meets MEMS [C]. Proc. IEEE.2003. 91(6):930 - 953.
    [5] LION N, ROHNE T C, DAYON L, et al. Microfluidic systems in proteomics [J].Electrophoresis, 2003,24(21):3533-3562.
    [6] GRAYSON A C R, SHAWGO R S, JOHNSON A M, et al. A BioMEMS review: MEMS technology for physiologically integrated devices [C]. Proceedings of the IEEE, 2004, 92(1):6-21.
    [7] HULL H. Smallpox and bioterrorism: Public-health responses [J]. Journal of Laboratory and Clinical Medicine, 2003, 142(4):221 - 228.
    [8] SCHULTE T H, BARDELL R L, WEIGL B H. Microfluidic technologies in clinical diagnostics [J]. Clin. Chim. Acta, 2002, 321(1):1 - 10.
    [9] SRINIVASAN V, PAMULA V K, FAIR R B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids [J].Lab Chip, 2004, 4(4):310 - 315.
    [10] POLLACK M G, FAIR R B, SHENDEROV A D. Electrowetting-based actuation of liquid droplets for microfluidic applications [J]. Appl. Phys. Lett.,2000, 77 (11): 1725-1726.
    
    [11] CHO S K, FAN S K, MOON H oon, et al. Toward digital microfluidic circuits:Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. in Proc. IEEE Micro Electro Mechanical Systems (MEMS) Conf., 2002 [C]. Las Vegas:NV, 2002.
    
    [12] International Technology Roadmap for Semiconductors (ITRS). [C/OL]. http://public.itrs.net/Files/2003ITRS/Home2OO3.htm.
    [13]MANZ A,GRABER N,WIDMER H M.Miniaturized total chemical analysis systems:A novel concept for chemical sensing[J].Sensor Actuators B,1990,1(1):244-248.
    [14]JACOBSON S C,HERGENRODER R,KOUTNY L B,et al.High-Speed separations on a microchip[J].Anal.Chem,1994,66(7):1114-1118.
    [15]WOOLLEY A T,MATHIES R A.Ultra-High-Speed DNA sequencing using capillary electrophoresis chips[J].Anal Chem,1995,67(20):3676-3680.
    [16]WOOLLEY A T,HADLLEY D,LANDRE P,et al.Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device[J].Anal Chem,1996,68(23):4081-4086.
    [17]AWYMETRIX GENECHIP~(?).[CP/OL].http://www.affymetrix.com.
    [18]INFINEON ELECTRONIC DNA CHIP.[CP/OL].http://www.infineon.com.
    [19]NANOGEN NANOCHIP~(?).[CP/OL].http://www.nanogen.com.
    [20]林炳承.微全分析系统中的微分离学及其在生命科学中的应用[J].现代科学仪器,2001,78(14):21-24.
    [21]高健,夏方泉,殷学锋,等,第五届全国毛细管电泳学术报告会论文集[C].上海:[出版者不祥]2002,10.
    [22]姚李英,祁恒,陈涛,等.聚合酶链式反应微流控芯片的准分子激光制备和应用研究[J].高等学校化学学报,2006,27(3):428-431.
    [23]徐溢,吕君江,范伟,等.微流控分析芯片上生化反应技术研究进展[J].化学进展,2007,19(5):820-831.
    [24]毕颖楠,张惠静.微流控分析芯片在医学领域的应用[J].生物工程学报,2006,22(1):167-171.
    [25]从辉,王惠民,王跃国.微流控芯片技术及应用展望[J].现代检验医学杂志,2005,20(1):88-89.
    [26]慕轩,胡坪,罗国安,等.微流控芯片技术在临床检测中的应用进展[J].分析测试学报,2007,26(4):587-591.
    [27]黄辉,郑小林,蒲晓允.微流控芯片技术住术在生物学中的应用[J].重庆医学, 2006,35(10):950-952.
    [28]贾宏新,吴志勇,方肇伦.微流控芯片免疫分析方法研究进展[J].分析化学,2005,33(10):1489-1593.
    [29]徐明波.微全分析系统的检测技术及其发展动态[J].湖北师范学院学报:自然科学版,2007,27(2):p.43-47.
    [30]MUTLU S,SVEC F,MASTRANGELO C H,et al.Enhanced electro-osmosis pumping with liquid bridge and field effect flow rectification[C].Proceedings of the 3rd IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis,Jersey:ACM.2004.
    [31]曾雪峰.基于介质上点润湿的液滴操作与模拟[D].北京:清华大学微电子学研究所,2005.
    [32]WANG Y,LIN Q,MUKHERJEE T.Composable behavioral models and schematic-based simulation of electrokinetic lab-on-a-chips[J].IEEE Transactions on CAD,Special Issue on Design Automation,2005:1-5.
    [33]JONES T B,GUNJI M,WASHIZU M,et al.Dielectrophoretic liquid actuation and nanodroplet formation[J].Appl.Phys.,2001,89(2):1441-1448.
    [34]GALLARDO B S,GUPTA V K,EAGERTON F D,et al.Electrochemical principles for active control of liquids on submillimeter scales[J].Science,1999,283(5398):57-60.
    [35]ICHIMURA K,OH S,NAKAGAWA M.Light-driven motion of liquids on a photoresponsive surface[J].Science,2000,288(5471):1624 - 1626.
    [36]SAMMAR T S,BURNS M A.Thermocapillary pumping of discrete droplets in microfabricated analysis devices[J].AI Che J.,1999,45(2):350-366.
    [37]WASHIZU M.Electrostatic actuation of liquid droplets for microreactor applications[J].IEEE Transactions on Industry Applications,1998,34:732 - 737.
    138]WIXFORTH A,STROBL C,GAUER C,et al.Acoustic manipulation of small droplets[J].Analytical and Bioanalytical Chemistry,2004,3?9(7):982-991.
    [39] STROBL C J, VON GUTTENBERG Z, WIXFORTH A. Nano- and pico-dispensing of fluids on planar substrates using SAW [J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control, 2004, 51(11):1432 - 1436.
    [40] WIXFORTH A. Acoustically driven planar microfluidics [J]. Superlattices and Microstructures, 2003,33(5):389 - 396.
    [41] STROBL C J, RATHGEBER A, WIXFORTH A, et al. Planar microfluidic processors [C]. Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, Germany: Munich 2002.
    [42] SOMEROGN. Proteins and temperature [J]. Annual Review of Physiology, 1995,57:43-68.
    [43] LYUKSYUTOV I F, NAUGLE D G, RATHNAYAKA K D D. On-chip manipulation of levitated femtodroplets [J]. Applied Physics Letters,2004, 5(10): 1817-1819.
    
    [44] LEHMANN U, HADJIDJ S, PARASHA V K, et al. Two dimensional magnetic manipulation of microdroplets on a chip. Solid-State Sensors, Actuators and Microsystems, Seoul, June 5-9, 2005[C]. South Korea: IEEE Transducers'05,2005.
    
    [45] CHIOU P Y, OHTA A T, WU M C. Massively parallel manipulation of single cells and microparticles using optical images [J]. Nature,2005, 436 (7049):370-372.
    
    [46] VELEV O D, PREVO B G, BHATT K H. On-chip manipulation of free droplets [J].Nature, 2003, 426(6966):515 - 516.
    
    [47] POHL H A. Dielectrophoresis. Cambridge University Press, 1978.
    
    [48] CHIOUPY, OHTAAT, WUMC. Toward all optical lab-on-a-chip system: Optical manipulation of both microfluid and microscopic particles [C]. In proceedings of SPIE-the international society for optical engineering,2004: 73-81.
    
    [49] VYKOUKAL J, SCHWARTZ J, BECKER F, et al. A programmable dielectrophoretic fluid processor for droplet-based chemistry [C]. In Proceedings of Micro Total Analysis Systems, 2001:72-74.
    
    [50] LI J, ZHANG Q, PENG N, et al. Manipulation of carbon nanotubes using AC dielectrophoresis [J]. Applied Physics Letters, 2005,86(15):1 - 3.
    
    [51] WASHIZUM, KUROSAWA O. Electrostatic manipulation of DNA in microfabricated structures [J]. IEEE Transactions on Industry Applications,1990,26:1165-1172.
    
    [52] NEDELCU S, WATSON J H P. Size separation of DNA molecules by pulsed electric field dielectrophoresis [J]. Journal of Physics D: Applied Physics,2004, 7 (15): 2197-2204.
    [53] HOLMES D, MORGAN H. Cell sorting and separation using dielectrophoresis [M]. Edinburgh, United Kingdom:CRC Press, 2004.
    [54] JONES T B, WANG K L, YAO D J. Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis [J]. Langmuir,2004, 20(7):2813-2818.
    
    [55] 曾雪锋,董良,吴建刚,等.介质上电润湿现象的研究[J].仪器仪表学报,2004, 25(z1):263-264.
    [56] POLLACK M G, Electrowetting-based microactuation of droplets for digital microfluidics [D].USA:Duke University, 2001.
    [57] POLLACK M G, SHENDEROV A D, FAIR R B. Electrowetting-based actuation of droplets for integrated microfluidics [J]. Lab on a Chip, 2002,2(22):96-101.
    [58] SRINIVASAN V, PAMULA V K, POLLACK M G, et al. A digital microfluidic biosensor for multianalyte detection. Micro Electro Mechanical Systems,2003[C]. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference,2003.
    [59] SRINIVASAN V, PAMULA V K, POLLACK M G, et al. Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems October 5-9, 2003[C], Squaw Valley, California USA, 2003.
    [60]SRINIVASAN V.A Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostic Applications[D].USA:Duke University,2005.
    [61]吴建刚,岳瑞峰,曾雪锋,等.新型开放式液滴驱动芯片[J].电子器件,2005,28(4):699-702.
    [62]岳瑞峰,曾雪锋,吴建刚,等.基于介质上电润湿的数字微流控器件的模拟[J].电子器件,2006,29(3):778-780.
    [63]吴建刚,岳瑞峰,曾雪锋,等.基于介质上电润湿原理的微液滴驱动芯片[J].清华大学学报(自然科学版),2006,46(7):1341-1344.
    [64]吴建刚,岳瑞峰,曾雪锋,等.介质上电润湿液滴驱动的研究[J].中国机械工程,2006.29(3):p.778-780.
    [65]岳瑞峰,曾雪锋,吴建刚,等.基于介质上电润湿的数字微流控器件的模拟[J].电子器件,2005,16(14):1266-1268.
    [66]王飞,何枫.微管道内两相流数值算法及在电浸润液滴控制中的应用[J].物理学报,2006,55(3):1005-1010.
    [67]吴建刚,岳瑞峰,曾雪锋,等.基于介质上电润湿的反射式显示单元的研究[J].仪器仪表学报,2004.25(s1):265-266.
    [68]岳瑞峰,曾雪锋,吴建刚,等.基于介质上电润湿的液滴产生器的研究[J].电子器件,2007,30(1):41-45.
    [69]吴建刚,岳瑞峰,曾雪锋,等.用于“芯片实验室”的静电机制微液滴控制芯片的研制[J].分析化学,2006,34(2):276-279.
    [70]曾雪锋,岳瑞峰,吴建刚,等.用于数字微流体器件的介质上电润湿(EWOD)液滴产生器[J].中国科学E辑技术科学,2006,36(1):105-112.
    [71]吴建刚,岳瑞峰,曾雪锋,等.用于微全分析系统的数字化微流控芯片的研究[J].分析化学,2006,34(7):1042-1046.
    [72]朱梦义.介电润湿驱动的数字微流体仿真研究[D].长春:吉林大学,2007.
    [73]CHAKRABARTY K,ZENG J.Automated Top-Down Design for Microfluidic Biochips [J].ACM J.Emerging Technologies in Computing Systems,2005,1(3):186-223.
    [74]SU F,OZEV S,CHAKRABARTY K.Test Planning and Test Resource Optimization for Droplet-Based Microfluidic Systems[J].J.Electronic Testing:Theory and Applications, 2006,22(2):199-210.
    [75] SU F, ZENG J. Computer-Aided Design and Test for Digital Microfluidics [J].Design & Test of computer, 2004,24(1):60-70.
    [76] SU F, CHAKRABARTY K. System-level design automation tools for digital microfluidic biochips [C]. Third IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'05), 2005.
    [77] SU F, CHAKRABARTY K, FAIR R B. Microfluidics-based biochips: technology issues,implementation platforms, and design-automation challenges[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2006,25:211-23.
    [78] SU F, CHAKRABARTY K. Architectural-Level Synthesis of Digital Microfluidics-Based Biochips [C]. Proc. Int'1 Conf. Computer-Aided Design (ICCAD 04), IEEE CS Press, 2004.
    [79] CHAKRABARTY K. Design, Testing, and Applications of Digital Microfluidics-based Biochips [C]. In: Proc. of the 18th IEEE Int'l. Conf.on VLSI Design: Power Aware Design of VLSI Systems. Kolkata: IEEE, 2005.
    [80] SU F, CHAKRABARTY K. High-Level Synthesis of Digital Microfluidic Biochips [J]. ACM Journal on Emerging Technologies in Computing Systems,2008, 3(4): 16-48.
    [81] RICKETTS A J, IRICK K, VIJAYKRISHNAN N, et al. Priority Scheduling in Digital Microfluidics-Based Biochips [C]. Design, Automation and Test in Europe, DATE '06. Proceedings, 2006.
    [82] SU F, CHAKRABARTY K. Module Placement for Fault-Tolerant Microfluidics-Based Biochips [J]. ACM Transactions on Design Automation of Electronic Systems, 2006,11(3):682-710.
    [83] SU F, CHAKRABARTY K. Unified High-Level Synthesis and Module Placement for Defect-Tolerant Microfluidic Biochips [C]. 42nd Design Automation Conference, 2005.
    [84] YUH P H, YANG C L, CHANG Y W. Placement of Digital Microfluidic Biochips Using the T-tree Formulation. 43rd Design Automation Conference, July 24-28, 2006 [C], San Francisco:ACM, 2006.
    [85] YUH P H, YANG C L, CHANG Y W. Placement of Defect-Tolerant Digital Microfluidic Biochips Using the T-tree Formulation [J]. ACM Journal on Emerging Technologies in Computing Systems, 2007,3(3):13 - 45.
    [86] KARL F, BOHRINGER. Towards Optimal Strategies for Moving Droplets in Digital Microfluidic Systems [C]. IEEE International Conference on Robotics and Automation, 2004.
    [87] KARL F, BOHRINGER. Modeling and controlling parallel tasks in dropletbased microfluidic systems [J]. Computer-Aided Design of Integrated Circuits and Systems, 2006,25(2):334 - 344.
    [88] GRIFFITH E J, AKELLA S, GOLDBERG M K. Performance characterization of a reconfigurable planar-array digital microfluidic system [J].Computer-Aided Design of Integrated Circuits and Systems,2006, 25(2):345-357.
    [89] SU F, HWANG W, CHAKRABARTY K. Droplet routing in the synthesis of digital microfluidic biochips. Design, Automation and Test in Europe, 2006. DATE apos;06 [C]. Munich: European Design and Automation Association 2006.
    [90] XU T, CHAKRABARTY K. Integrated Droplet Routing in the Synthesis of Microfluidic Biochips. Design Automation Conference, June 4-8 2007 [C].San Francisco:ACM, 2007.
    [91] FEDDER G K, JING Q. A hierarchical circuit-level design methodology for microelectromechinal system [J]. IEEE Trans. Circuits and Systems II, 1999,46 (10): 1309-1315.
    [92] DE S K, ALURU N R. Physical and reduced-order dynamic analysis of MEMS [C].Proc. IEEE/ACM Int. Conf. Computer Aided Design, 2003.
    [93] KAHNG A B, MANDOUI I, REDA S, et al. Evaluation of placement techniques for DNA probe array layout [C]. In Proceedings of IEEE/ACM International Conference on Computer Aided Design. ACM, New York, 2003.
    [94]CHATTERJEE N,ALURU N R.Combined circuit/device modeling and simulation of integrated microfluidic systems[J].Journal of Microelectromechanical Systems,2005,14(1):81-95.
    [95]SHAPIRO B,MOON H,GARRELL R,et al.Modeling of electrowetted surface tension for addressable microfluidic systems:dominant physical effects,material dependences,and limiting phenomena[C].Proc.IEEE Conf.MEMS,2003.
    [96]ZENG J,KORSMEYER F T.Principles of droplet electrohydrodynamics for lab-on-a-chip[J].Lab on a Chip,2004,4(4):265-277.
    [97]REN H,FAIR R B.Micro/nano liter droplet formation and dispensing by capacitance metering and electrowetting actuation[C].Technical Digest of IEEE-NANO,2002.
    [98]CHRISTOFIDES N,ALVARZ-Valdés R,TAMARIT J.Project scheduling with resource constraint:a branch bound approach[J].European Journal of Operational Research,1987,29(3):262-273.
    [99]DAVIS E,HEIDORN G.An algorithm for optimal project scheduling under multipule resources constraints[J].Management Science,1971,17(12):BSO3-BS16.
    [100]KWOK Y,AHMAD I.Static scheduling algorithms for allocating directed task pphs to multiprocessors[J].ACM Computing Surveys,1999,31(3):406-471.
    [101]玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.
    [102]PAIK P,PAMULA V K,FAIR R B.Rapid droplet mixers for digital microfluidic systems[J].Lab on a Chip,2003,3(4):253-259.
    [103]蓝悠,李全文,陈瓒光.微流控片片技术在蛋白质分析中的应用研究[J].化学研究与应用,2007,19(4):345-350.
    [104]FAIR R B,SRINIVASAN V,PAIK P,et al.Electrowetting-based on chip sample processing for integrated microfluidics[C].In Proceedings of the IEEE International Electronic Devices Meeting(IEDM),2003.
    [105]SRINIVASAN V,PAMULA V K,,PAIK P,et al.Protein stamping for MALDI mass spectrometry using an electrowetting-based microfluidic platform[C].In Proceedings of the SPIE,2004.
    [106]HADJICONSTANTINOU E,CHRISTOFIDES N.An exact algorithm for general,orthogonal,two-dimensional knapsack problems[J].European Journal of Operional Research,1995,83(1):39-56.
    [107]LAI K K,XUE J,ZHANG G.Layout design for a paper reelw arehouse:a tw o-stage heuristic approach[J].International Journal of Production Economics,2002,75(3):23 1-243
    [108]黄文奇,许如初,陈卫东,等.解Packing及CNF-SAT问题的拟物拟人方法[J].华中理工大学学报,1998,26(9):5-7.
    [109]王英林,吴慧中.空问布局的约束图方法[J].软件学报,1998,9(3):200-205.
    [110]CHAO K M,GUENOV M,HILLS B,et al.An expert system to generic associativity data for layout design[J].Artificial Intelligence in Engineering,1997,11(2):191-196.
    [111]SZYMAN S,CAGAN J.Constrained three-dimensional component layout using simulated annealing[J].ASM E Journal of Mechanical Design,1997,119(1):28-35.
    [112]段国林,查建中,林建平,等.模拟退火法在钟手表机芯布局中的应用[J].计算机辅助设计与图形学学报,1999,11(3):276-279.
    [113]PARK K W,GRIERSONr D E.Pareto-optimal conceptual design of the structural layout of buildings using a multi-criteria genetic algorithm[J].Computer-Aided Civil and Infrastructure Engineering,1999,14(3):163-170.
    [114]钱志勤,滕弘飞,孙治国.人机交互的遗传算法及其在约束布局优化中的应用[J].计算机学报,2001,24(5):553-559.
    [115]陈国良,王熙法,等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [116]黄文奇,许如初.支持求解圆形packing问题的两个拟人策略[J].中国科学(E辑),1999,29(4):347-35.
    [117]SRINIVAS M,PATNAIK L M.Adaptive probabilities of cross-over and mutation in genetic algorithm[J].IEEE Transaction on System Man and Cybernetics,1994,24(4):656-667.
    [118]SU F,CHAKRABARTY K.Design of fault-tolerant and dynamically-reconfigurable microfluidic biochips [C]. Design, Automation and Test in Europe Conf, 2005.
    [119]MOHRING R D. Graphs and Orders: the rosl of graphs in the theory of ordered sets and its application[M]. D. Reidel Publishing Company, 1984.
    [120]MCMURCHIE L, EBELING C. Pathfinder: a negotiation-based performance-driven router for fpgas. Proceedings of the 1995 ACM third international symposium on Field-programmable gate arrays, Feb. 1995 [C]. Monterey:ACM, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700