用户名: 密码: 验证码:
1型糖尿病胰岛自身抗体与HLA-DQ基因型的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分 中国汉族正常人群胰岛自身抗体与HLA-DQ基因型频率分布
     目的:探讨中国汉族正常人群谷氨酸脱羧酶抗体(GADA)、蛋白酪氨酸磷酸酶抗体(IA-2A)及胰岛素自身抗体(IAA)的检出率及HLA-DQ基因型频率分布。
     方法:采用放射配体法检测376例中国汉族正常人群GADA、IA-2A与300例正常人群IAA,其中278例采用PCR-直接测序法确定HLA-DQ基因型。
     结果:①376例正常人群GADA、IA-2A与IAA阳性率分别为1.06%、0.53%与1.00%,与美国LaGasse等、日本、韩国、中国香港、台湾地区报道的结果差异无显著性(P>0.05),GADA检出率仅低于德国Strebelow等报道的2.97%(P<0.05),IA-2A检出率仅低于Bingley等报道的2.52%(P<0.05)。②我国正常人群高危基因型DQB1*0201/0302、中危基因型DQB1*0302/X(X为*0302或非*0301、*0602的其他基因)与保护性基因型DQB1*0602/X(X为*0602或非0302的其他基因)频率均低于高加索人(分别为0.8%vs2.7%~3.3%、5.2%vs8.8%~10.8%与37.9%vs46.7%~64.2%)(P<0.05),低危基因型频率(19.0%vs19.8%~24.9%)差异无显著性。高加索人高危、中危、保护性基因型频率分别是我国的3~4倍、2倍与1.5倍。③我国正常人群单体型以DQA1*03-DQB1*0303频率最高(15.3%),高危单体型DQA1*03-DQB1*0302与保护单体型DQA1*0102-DQB1*0602频率低于高加索人(3.8%vs7.4%~19.3%、5.3%vs12.0%~19.2%,P<0.05~0.01),而与日本、韩国及中国台湾人群比较无统计学差异(P>0.05)。④5例已进行HLA-DQ基因分型的抗体阳性者80%携带1个易感单体型。
     结论:①中国汉族正常人群HLA-DQB1高危与中危基因型频率低于高加索人,可能是我国T1DM发病率低的主要原因。②携带易感单体型的正常人群自身抗体阳性率增加,需随访观察。
Part 1 Relationship between Islet Autoantibodies and HLA-DQ Genotypes in Healthy Controls
    Objective: To investigate the frequencies of GADA, IA-2A, IAA and HLA-DQ genotypes in Chinese Han population.
    Methods: 376 healthy Han controls were recruited and measured for GADA and IA-2A, 300 ones were measured for IAA. Among them, 278 ones were typed for the polymorphisms of HLA-DQ genotypes with PCR sequencing-based typing method.
    Results: ①The positivity frequencies of GADA, IA-2A and IAA in 376 controls were 1.06%, 0.53% and 1.00%, respectively, which were nearly close to those of American ( reported by LaGasse),Japan, Korea,Taiwan and Hongkong, but GADA positivity was lower than that of Germany (2.97%,reported by Strebelow) and IA-2A positivity was lower than that of England (2.52%,reported by Bingley) (P<0.05).②The frequencies of high risk DQB1~*0201/0302 genotype,moderate risk DQBl~*0302/X(X indicates~*0302 or a nondefined allele) ones and DQBl~*0602/X(X indicates ~*0602 or a nondefined allele) decreased ones in Chinese Han controls were all lower than those of Caucasian (0.8%vs2.7%~3.3%, 5.2%vs 8.8% -10.8% and 37.9%vs46.7%~64.2%, respectively, P<0.05 ), and the difference was not significant for low risk genotypes (19.0% vs 19.8%~ 24.9%) . The frequencies of high, moderate and decreased risk genotypes in Caucasian were 3-4, 2 and 1.5 times higher than those in Chinese controls. ③The frequency of HLA-DQA1 ~*03-DQB1~*0303 haplotype was highest in Chinese controls, but the frequencies of highest risk DQAl*0301-DQBl*0302 haplotype and decreased risk DQAl~*0102-DQB1~*0602 haplotype were lower than those of Caucasian (3.8%vs7.4%~19.3% and 5.3%vs 12.0% -19.2%, respectively,P<0.05 ) .However, the difference was not significant in Japanese, Korean, Taiwanese and Hongkong. ④Among five healthy controls with autoantibody positivity, four carry one kind of susceptible haplotype.
引文
[1] Bonifacio E, Genovese S, Braghi Set al. Islet autoantibody markers in IDDM: Risk assessment strategies yielding high sensitivity. Diabetologia, 1995, 38:816-822.
    [2] Nepom GT, Kwok WW. Molecular basis for HLA-DQ associations with IDDM. Diabetes, 1998, 47:1177-1184.
    [3] Sabbah E, Savola K, Ebeling T, et al.Genetic, autoimmune, and clinical characteristics of childhood and adult-onset type 1 diabetes. Diabetes Care, 2000,23:1326-1332.
    [4] 李玉钟,卢纹凯,高颖,等.HLA-DR-DQ连锁基因单倍体与成人缓慢进展型和速发型1型糖尿病的相关性研究.中华内分泌代谢杂志,1998,14:302-304.
    [5] Verge CF, Gianani R, Kawasaki E, et al. Prediction of type 1 diabetes in first-degree relatives using a combination of insulin, GAD and ICA512bdc/IA-2 autoantibodies.Diabetes, 1996, 45: 926-933.
    [6] Undlien DE, Kockum I, Ronningen KS, et al.HLA associations in type 1 diabetes among patients not carrying high-risk DR3-DQ2 or DR4-DQ8 haplotupes. Tissue Antigens, 1999, 54(6):543-551.
    [7] Pocoot F, MeDermott MF. Genetics of type 1 diabetes mellitus. Genes Immunol, 2002, 3(5):235-249.
    [8] Komulainen J, Kulmala P, Savola K, et al. Clinical, autoimmune and genetic characteristic of very young children with type 1 diabetes. Diabetes Care, 1999, 22:1950-1955.
    [9] Sabbah E, Savola K, Ebeling T, et al. Genetic, autoimmune, and clinical characteristics of childhood-and adult-onset type Ⅰ diabetes. Diabetes Care, 2000, 23: 1326-1332.
    [10] Todd JA, Bell J1, Medevitt HO. HLA-DQβ gene contributes to susceptibity and resistance to insulin-dependent diabetes mellitus. Nature, 1987, 329(6140): 599-604.
    [11] Khalil I, Iucd A, Marcelle G; et al. A combination of HLA-DQβ-Asp-57-negetive and HLA-DQα-52-Arg confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest, 1990, 85: 1315.
    [12] Murao S, Makino H, Kaino Y, et al. Differences in the contribution of HLA-DR and DQ haplotypes to susceptibility to adult- and childhood-onset type 1 diabetes in Japanese patients. Diabetes, 2004, 53(10):2684-2690.
    [13] Yu J, Shin CH, Yang SW, et al. Analysis of children with type 1 diabetes in Korea: high prevalence of specific anti- islet autoantibodies immunogenetic similarities to western populations with "unique" haplotypes, and lack of discrimination by aspartic acid at position 57 of DQB. Clinical Immunol, 2004, 113(3):318-325.
    [14] 王妲,何瑞娟.HLA-DQA1、-DQB1等位基因在TIDM易感性中的作用.中华内分泌代谢杂志,1993,9:202-204.
    [15] 张莹,程桦,傅祖植,等.华南地区TIDM易感性与HLA-DQA1第52位精氨酸相关性探讨.中华内分泌代谢杂志,1996,12:74-77.
    [16] 薛复忠,王洁贞,胡平,等.中国人群1型糖尿病HLA-DQ基因多态性的Meta分析.中华内分泌代谢杂志,2005,21(1):39-42.
    [17] 林健.自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙,中南大学,2005.
    [18] Hermarm R, Gombos Z, Gyurus E, et al. Prevalence and predictive value of GAD65 autoantibodies and their correlation with DR-DQ genotypes in children with type 1 diabetes. Orv Hetil, 2003, 144(8):152-155.
    [19] Vanhewalle CL, Falomi A, Lemamrk A, et al. Association of GAD65- and IA-2- autoantibodies with genetic risk markers in new-onset IDDM patients and their siblings. Diabetes Care, 1997, 20(10):1547-1551.
    [20] Kulaeva TL, Titovich EV, Zillberman LI, et al. Genetic and immunologic aspects of type 1 diabetes mellitus. Usp Fiziol Nauk, 2003, 34:45-62.
    [21] 刘昌丽,余叶蓉,刘洪,等.人自细胞抗原DQB1基因与1型糖尿病相关性研究.中华遗传学杂志,2004,21(4):368-371.
    [22] 邢万佳,张胜兰,克丙申,等.1型糖尿病HLA-DPB1、DQB1基因与其自身抗体相关性研究.中华内分泌代谢杂志,2001,17:338-340.
    [23] Pugliese A. Unraveling the genetics of insulin-dependent type 1A diabetes: the search must go on. Diabetes Rev, 1999, 7(1): 39-54.
    [24] Libman IM, Dorman JS, Pietropaolo M, et al. Islet cell autoimmunity in white and black children and adolescents with 1DDM. Diabetes Care, 1998,21(11): 1824-1827.
    [25] Maclaren N, Lan M, Coutant R, et al. Only multiple autoantibodies to islet cell (ICA), insulin, GAD65, IA-2 and IA-2 13 predict immune-mediated type 1 diabetes in relatives. J Autoimmun, 1999, 12: 279-287.
    [26] Verge CF, Gianani R, Kawasaki E, et al. Number of autoantibodies (against insulin and or IA-2) rather than particular autoantibody specificities determine risk of type 1 diabetes. J Autoimmun, 1996, 9: 379-383.
    [27] Keskinen P, Korhonen S, Kupila A, et al. First-phase insulin response in young healthy children at genetic and immunological risk for type 1 diabetes. Diabetologia, 2002, 45(12): 1639-1648.
    [28] Clink O, Kolouskova S, Pechova M, et al. Prediction of insulin-dependent diabetes mellitus in children of first-degree relatives of diabetic patients.Cas Lek Cesk,2001,140(16) :492-496.
    [29] Bingley P, Bonifacio E, Williams AJK, et al. Predication of IDDM in the general population, strategies based on combinations of autoantibodies markers. Diabetes, 1997, 46(11): 1701-1710.
    [30] 杨琳.成人隐匿性自身免疫性糖尿病的诊断和胰岛β细胞功能的研究.[中南大学博士学位论文].2003,8-57.
    [31] 邓志明.LADA和2型糖尿病—级亲属胰岛β细胞功能变化与胰岛自身抗体筛查.[中南大学博士学位论文].2005.
    [1] Bonifacio E, Genovese S, Braghi S, et al. Islet autoantibody markers in IDDM: Risk assessment strategies yielding high sensitivity.Diabetologia, 1995, 38:816-822.
    [2] Hagopian WA, Sanjeevi CB, Kockum I, et al. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest, 1995, 95:1505-1511.
    [3] Bingley PJ, Bonifacio E, Alistair JK et al. Prediction of IDDM in the general population: Strategies based on combinations of autoantibody markers. Diabetes, 1997, 46:1701-1710.
    [4] Strebelow M, Schlosser M, Ziegler B, et al. Karlsburg type 1 diabetes risk study of a general population: frequencies and interactions of the four major type 1 diabetes-associated autoantibodies studied in 9419 schoolchildren. Diabetologia, 1999, 42:661-670.
    [5] LaGasse J,Brantley M,Leech NJ,et al.Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies .Diabetes Care, 2002,25:505-511.
    [6] Nepom GT, Kwok WW. Molecular basis for HLA-DQ associations with IDDM. Diabetes, 1998, 47:1177-1184.
    [7] Verge CF, Gianani R, Kawasaki E, et al. Prediction of type 1 diabetes in first-degree relatives using a combination of insulin, GAD and ICA512bdc/IA-2 autoantibodies.Diabetes, 1996, 45: 926-933.
    [8] Sabbah E, Savola K, Ebeling T, et al. Genetic, autoimmune, and clinical characteristics of childhood-and adult-onset type 1 diabetes. Diabetes Care, 2000, 23: 1326-1332.
    [9] Pocoot F, MeDermott ME Genetics of type 1 diabetes mellitus. Genes Immun, 2002, 3(5):235-249.
    [10] Komulainen J, Kulmala P, Savola K, et al. Clinical, autoimmune and genetic characteristic of very young children with type 1 diabetes. Diabetes Care, 1999, 22:1950-1955.
    [11] 刘昌丽,余叶蓉,刘洪,等.人白细胞抗原DQB1基因与1型糖尿病相关性研究.中华遗传学杂志,2004,21(4):368-371.
    [12] 邢万佳,张胜兰,克丙申,等.1型糖尿病HLA-DPB1、DQB-基因与其自身抗体相关性研究.中华内分泌代谢杂志,2001,17:338-340.
    [13] 王建民,周智广,文建新,等.谷氨酸脱羧酶(GAD65)自身抗体的放射配体法.中国糖尿病杂志,1997,5(2):85-88.
    [14] 黄干,周智广,王建平,等.蛋白酪氨酸磷酸酶自身抗体放射配体法的建立与临床应用.中华糖尿病杂志,2004,12(1):18-20.
    [15] 黄干,周智广,彭健,等.~(35)S标记重组人GAD_(65)抗原检测糖尿病患者GAD-Ab指数.中华核医学杂志,2003,23(2):82-86.
    [16] 王建平,周智广,黄干,等.IA-2A与GADA检测对1型糖尿病的诊断价值.中华内分泌代谢杂志,2004,12(6):494-499.
    [17] 林健.自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙,中南大学,2005.
    [18] Boyce-Jacino MT, Santamaria P, Lindstrom AL, et al.HLA typing by direct sequencing analysis. In HLA 1991 (Volumel). Tsuji K, AiZawa M, Sasazuki T, Eds.Oxford,U.K.,Oxford University Presss,1992,504-507.
    [19] 陈南海译.DNA的凝胶电泳.见:萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南(金冬雁译).第二版,北京:科学出版社,1992,10,304-342.
    [20] Marsh SG, Bodmer JG HLA class Ⅱ nucleotide sequences,1992,In: Tsuji K, AiZawa M, Sasazuki T, Eds. HLA 1991 (Volumel).Oxford,U.K.,Oxford University Presss, 1992,33-62.
    [21] Takeda H, Kawasaki E, Shimizu L, et al. Clinical, autoimmune and genetic characterisitics of adult-onset diabetic patients with GAD autoantibodies in Japan(Ehime Study). Diabetes Care, 2002, 25:995-1001.
    [22] Yu J, Shin CH, Yang SW, et al. Analysis of children with type 1 diabetes in Korea: high prevalence of specific anti-islet autoantibodies, immunogenetic similarities to Western populations with "unique" haplotypes, and lack of discrimination by aspartic acid at position 57 of DQB.Clinical Imrnunology,2004,113(3):318-325.
    [23] Chang YH, Shian MY, Tsal ST, et al. Autoantibodies against IA-2; GAD and topoisomerase Ⅱ in type 1 diabetes patients. Bioche Biophs Res Commun, 2004, 320(1):802-809.
    [24] Ng WY, Lee YS, Todd AL, et al. Tyrosine phosphatase protein (IA-2) and glutamic acid decarboxlase (GAD65) autoantibodies: a study of Chinese patients with diabetes mellitus. Autoimmunity, 2002, 35(2): 119-124.
    [25] Petrone A, Bugawan TL, Mesmrino CA, et al. The distribution of HLA-class Ⅱ susceptible/ protective haplotypes could partially explain the low incidence of type 1 diabetes in continental Italy(Lazio region). Tissue Antigens, 2001,58 (6):385-394.
    [26] Petrone A, Battelino T, Krzisnik C, et al. Similar incidence of type 1 diabetes in two ethnically different populations(Italy and Slovenia) is sustained by similar HLA susceptible/protective haplotype frequencies. Tissue Antigens, 2002, 60(3):244-253.
    [27] Kwon OJ, Brautbar C, Weintrob N, et al. Immunogenetics of HLA class Ⅱ in Israeli Ashkenazi Jewish, Israeli Non-Ashkenazi Jewish and in Israeli Arab IDDM patients. Hum Immunol, 2001, 62(1):85-91.
    [28] IkegamiH, Kawaguchi Y, Yamato E, et al. Analysis by the polymerase chain reaction of histocompatibility leukocyte antigen-DR9-1inked susceptibility to insulin-dependent diabetes mellitus.J Clin Endocrinol Metab, 1992,75:1381-1385.
    [29] Chen BH, ChiangCH, Lin SR, et al. The influence of age at onset and gender on the HLA-DQA1, DQB1 association in chinese children with insulin dependent diabetes mellitus.Human Immunol, 1999, 60:1131-1137.
    [30] Chang YW, Lam KSL, Hawkins BR, et al. Strong association between DQA1/DQB1 gebotype and early-onset IDDM in Chinese: the association in with elleles rather than specific residues. European J Immunogenet, 1998, 25:273-280.
    [31] 张慧颖,王滨有,孙俭宏,等.儿童期1型糖尿病与HLA-DQB1等位基因的关联研究.中华糖尿病杂志,2001,9(5):263-265.
    [32] 萧建中,杨文英,刘娟,等.人类白细胞相关抗原HLA-DQB1基因与TIDM的关联.中华内分泌代谢杂志,1997,13:7-10.
    [33] 张胜兰,邢万佳,克丙申,等用核酸序列测定1型糖尿病HLA-DPB1和DQB1基因第2外显子.中华医学遗传学杂志,2001,18(5):362-365.
    [34] 王妲,何瑞娟.HLA-DQA1、.DQB1等位基因在TIDM易感性中的作用.中华内分泌代谢杂志,1993,9:202-204.
    [35] 单忠艳,陈雷,袁敏,等.PCR-ASO技术分析东北地区1型糖尿病HLA-DQ位点基因.中国医科大学学报,2004,33(4):348-349.
    [36] Van der Auwera BJ, Schuit FC, Weets I, et al. Relative and absolute HLA-DQA1 -DQB1 linked risk for developing type Ⅰ diabetes before 40 years of age in the Belgian population: implications for future prevention studies. Hum Immunol, 2002, 63(1):40-50.
    [37] Kelly MA, Chant JW, Heward J, et al. HLA typing and immunological characterization of young-onset diabetes mellitus in a Hongkong Chinese population. Diabet Med, 2001, 18 (1):22-28.
    [38]Park Y, She JX, Wang CY, et al.Common susceptibility and transmission pattern of human leukocyte antigen DRB1-DQB1 haplotypes to Korean and Caucasian patients with type 1 diabetes. J Clin Endocrinol Metab,2000,85(12):4528-4542.
    [39]Nejentsev S, Koskinnen S, Sjoroos M, et al. Distribution of insulin-dependent diabetes mellitus(DDDM)-related HLA alleles correlates with the difference in IDDM incidence in four populations of the Eastern Baltic region. Tissue Antigens, 1998, 52:473-477.
    [40]Murao S, Makino H, Kaino Y, et al. Differences in the contribution of HLA-DR and -DQ haplotypes to susceptibility to adult- and childhood-onset type 1 diabetes in Japanese patients.Diabetes, 2004, 53(10):2684-2690.
    [41]Nejentsev S, Sjoroos M, Soukka T, et al. Population-based genetic screening for the estimation of type 1 diabetes mellitus risk in Finland: selective genotyping of markers in the HLA-DQB1, HLA-DQA1 and HLA-DRB1 loci. Diabet Med, 1999, 16:985-992.
    [42]Kukko M,Virtanen S,Korhonen S, et al. Geographical variation in risk HLA- DQB1 genotypes for type 1 diabetes and signs of beta-cell autoimmunity in a high-incidence country. Diabetes Care, 2004, 27:676-681.
    [43]Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasians, multiplex families.Am J Hum Genet, 1996,59:1134-1148.
    [44]Park YS, Wang CY, Ko KW, et al. Combinations of HLA DR and DQ molecules determine the susceptibility to insulin-dependent diabetes mellitus in Koreans. Hum Immunol,1998,59:794-801.
    [45]DERI Group. Geographic patterns of childhood insulin-dependent diabetes mellitus. Diabetes, 1988, 37:1113-1119.
    [46]Vandewalle CL, Falorni AF, Lernmark A, et al. Associations of GAD65- and IA-2-autoantibodies with genetic risk markers in new-onset IDDM patients and their sibling. Diabetes Care, 1997,20:1547-1552.
    [47]Kretowski A, Kowalska I, Peczynska J, et al. IA-2A and anti-GAD-antibodies in patients with newly diagnosed type 1 diabetes and their first degree. Przegl Lek, 2000,57(3): 143-146.
    [48]Kawabata Y, Ikegami H, Kawaguchi Y, et al. Asia-specific HLA haplotypes reveal heterogeneity of the contribuation of HLA-DR and DQ haplotypes to susceptibility to type 1 diabetes. Diabetes, 2002, 51:545-551.
    [49] She JX. Susceptibility to type 1 diabetes: HLA-DQ and DR revisited. Immunol Today, 1996,17:323-329.
    [50] Penny MA, Jenkins D, Mijovic CH, et al. Susceptibility to IDDM in a Chinese population. Role of HLA class Ⅱ alleles. Diabetes, 1992, 41: 914-919.
    [51] Yasunaga S, Kimura A, Hamaguchi K, et al. Different contribution of HLA-DR and -DQ genes in susceptibility and resistance to insulin- dependent diabetes mellitus (IDDM). Tissue Antigens, 1996,47:37-48.
    [52] Hermann R, Mijovic CH, Rayner M, et al. HLA Alleles and IDDM in Children in Hungary: A Comparison with Finland. Human Immunology,2001,62, 391-398.
    [53] 薛复忠,王洁贞,胡平,等.中国人群1型糖尿病HLA-DQ基因多态性的Meta分析.中华内分泌代谢杂志,2005,21(1):39-42.
    [54] Undlien DE, Kockum I, Ronningen KS, et al. HLA associations in type 1 diabetes among patients not carrying high-risk DR3-DQ2 or DR4-DQ8 haplotypes. Tissue Antigens,1999, 54:543.
    [1] Karvonen M, Viik-Kajander M, Moltchanova E, et al. Incidence of childhood type 1 diabetes worldwide. Diabetes care, 2000, 23 (10): 1516-1525.
    [2] Gale EA. Spring harvest? Reflections on the rise of type 1 diabetes. Diabetologia, 2005, 48(12):2445-2450.
    [3] Dahlquist G. Can we slow the rising incidence of childhood-onset autoimmune diabetes? The overload hypothesis.Diabetologia, 2006, 49(1):20-24.
    [4] Tuomiletehto J, Lcarvonen M, Pitkanioni J, et al. Record-high incidence of type diabetes mellitus in Finnish Children. Diabetologia, 1999,42:655-660.
    [5] Cucca F, Muntoni F, Lampis R. et al. Combinations of specific DRB1, DQA1, DQB 1 haplotypes are associated with insulin-dependent diabetes mellitus in Sardinia. Hum Immunol,1993, 37:85.
    [6] 王克安,李天麟,李新华,等.中国儿童1型糖尿病发病率的研究.中华内分泌代谢杂志,1999,15:3-7.
    [7] Deschamps I, Khalil I. The role of DQα β heterodimersin genetic susceptibility to insulin dependent diabetes.Diabetes Metab Rev, 1993, 9:71-92.
    [8] Guillausseau PJ, Tielmans D, Virally Monod M, et al.Diabetes:from phenotypes to genotypes.Diabetes Metab, 1997,23(Suppl 2): 14-21.
    [9] Davies JL, Kawaguchi Y, Bennett ST, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 1994, 371 (6493): 130-136.
    [10] Todd JA, Acha-Orbea H, Bell JI, et al. A molecular basis for for MHC class Ⅱ -associated autoimmunity. Science, 1988, 240(4855): 1003-1009.
    [11] 王姮,何瑞娟.HLA-DQA1-DQB1等位基因在TIDM易感性中的作用.中华内分泌代谢杂志,1993,9:202-204.
    [12] 张莹,程桦,傅祖植,等.华南地区TIDM易感性与HLA-DQA1第52位精氨酸相关性探讨.中华内分泌代谢杂志,1996,12:74-77.
    [13] 邢万佳,张胜兰,克丙申,等.1型糖尿病HLA-DPB1、DQB1基因与其自身抗 体相关性研究.中华内分泌代谢杂志,2001,17:338-340.
    [14] 刘昌丽,余叶蓉,刘洪,等.人白细胞抗原DQB1基因与1型糖尿病相关性研究.中华遗传学杂志,2004,21(4):368-371.
    [15] Verge CF, Gianani R, Kawasaki E, et al. Prediction of type 1 diabetes in first-degree relatives using a combination of insulin, GAD and ICA512bdc/IA-2 autoantibodies.Diabetes, 1996, 45: 926-933.
    [16] Sabbah E, Savola K, Kulmala P, et al. Disease-associated autoantibodies and HLA-DQB 1 genotypies in the children with newly diagnosed insulin-dependent diabetes mellitus. The Childhood Diabetes in Finland Study Group. Clin Exp Immunol, 1999, 116: 78-83.
    [17] Vanhewalle CL, Falorni A, Lemamrk A, et al. Association of GAD65- and IA-2-autoantibodies with genetic risk markers in new-onset IDDM patients and their siblings. Diabetes Care, 1997, 20(10): 1547-1551.
    [18] 王建民,周智广,文建新,等.谷氨酸脱羧酶(GAD65)自身抗体的放射配体法.中国糖尿病杂志,1997,5(2):85-88.
    [19] 黄干,周智广,王建平,等.蛋白酪氨酸磷酸酶自身抗体放射配体法的建立与临床应用.中华糖尿病杂志,2004,12(1):18-20
    [20] 林健.自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙,中南大学,2005.
    [21] Onengui-Gumuscu. S, Concannon P. Mapping genes for autoimmunity in humans: type 1 diabetes as a model. Immunol Rev, 2002, 190:182-194.
    [22] She JX, Matron MP. Genetic susceptibility factors in type 1 diabetes: Linkage disequlibrium and functional analyses. Curt Opin Immunol, 1998:10:682.
    [23] Noble JA, Valdes AM, Cook M, et al. The role of HLA class Ⅱ genes in insulin-dependent diabetes mellitus:molecular analysis of 180 Caucasian multiplex families. Am J Hum Genet, 1996:59:1134-1148.
    [24] Abiru T, Kawasaki E, Matsuda A,et al.Current knowledge of Japanese type 1 diabetic syndrome.Diabetes Metab Res Rev, 2002, 18(5):357-366.
    [25] Todd JA, Bell JI, McDevitt HO. HLA-DQ β gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus.Nature, 1987,329(6140):599-604.
    [26] Khahil I, Lucd A, Marcelle G; et al. A combination of HLA-DQ β -ASP-negative and HLA-DQ α-52-Arg confers susceptibility to insulin-dependent diabetes mellitus.J Clin Invest, 1990:85:1315.
    [27] IkegamiH, Kawaguehi Y, Yamato E, et al. Analysis by the polymerase chain reaction of histocompatibility leukocyte antigen-DR9-1inked susceptibility to insulin-dependent diabetes mellitus.J Clin Endocrinol Metab, 1992,75:1381-1385.
    [28] Awata T, Kuzuya T, Matsuda A, et al.High frequency of aspartic acid at position 57 of HLA-DQ β-chain in Japanese IDDM patients and nondiabetic subjects. Diabetes, 1990, 39:266-269.
    [29] Penny MA, Jenkins D, Mijovic CH, et al. Susceptibility to IDDM in a Chinese population. Role of HLA class Ⅱ alleles. Diabetes, 1992, 41: 914-919.
    [30] Sanjeevi CB, Seshiah V, Moiler E, et al.Different genetic backgrounds for malnutrition-related diabetes and type 1 (insulin-dependent) diabetes mellitus in south Indians. Diabetologia, 1992,35:283-286.
    [31] Mijovic CH, Jenkins D, Jacobs KH, et al. HLA-DQA1 and -DQB1 alleles associated with genetic susceptibility to IDDM in a black population.Diabetes, 1991, 40(6):748-753.
    [32] Yu J, Shin CH, Yang SW, et al. Analysis of children with type 1 diabetes in Korea: high prevalence of specific anti-islet autoantibodies, immunogenetic similarities to Western populations with "unique" haplotypes, and lack of discrimination by aspartic acid at position 57 of DQB.Clinical Immunol,2004,113(3):318-325.
    [33] Hu CY, Allen M, Chuang LM, et al.Association of insulin-dependent diabetes mellitus in Taiwan with HLA class DQB 1 and DRB 1 alleles. Hum Immunol, 1993, 38:105-115.
    [34] Huang HS, Peng T, She JY, et al. HLA-encoded susceptibility to insulin- dependent diabetes mellitus is determined by DR and DQ genes as well as their linkage disequilibria in a Chinese population.Hum Immunol, 1995, 44:210.
    [35] Undlien DE, Kockum I, Ronningen KS, et al.HLA associations in type 1 diabetes among patients not carrying high-risk DR3-DQ2 or DR4-DQ8 haplotapes. Tissue Antigens, 1999, 54(6):543-551.
    [36] Thomson G, Robinson WP, Kuhner MK, et al. Genetic heterogeneity, models of inheritance, and risk estimates for a joint study of Caucasians with insulin- dependent diabetes mellitus. Am J Hum Genet, 1998, 43:799-816.
    [37] 薛复忠,王洁贞,胡平,等.中国人群1型糖尿病HLA-DQ基因多态性的Meta分析.中华内分泌代谢杂志,2005,21(1):39-42.
    [38] Khahil I, Lucd A, Marcelle G, et al. A combination of HLA-DQ β -ASP-negative and HLA-DQ α-52-Arg confers susceptibility to insulin-dependent diabetes mellitus.J Clin Invest, 1990: 85:1315.
    [39] Van der Auwera BJ,Schuit FC, Weets I, et al. Relative and absolute HLA-DQA1- DQB1 linked risk for developing type 1 diabetes before 40 years of age in the Belgian population:implications for future prevention studies. Hum Immunol, 2002, 63(1):40-50.
    [40] Van Autreve JE, Weets I, Gulbis B,et al.The rare HLA-DQA1*03-DQB1*02 haplotype confers susceptibility to type 1 diabetes in whites and is preferentially associated with early clinical disease onset in male subjects. Hum Immunol, 2004, 65: 729-736.
    [41] Park-Y, She JX, Wang CY, et al.Common susceptibility and transmission pattern of human leukocyte antigen DRB1-DQB1 haplotypes to Korean and Caucasian patients with type 1 diabetes. J Clin Endocrinol Metab,2000,85(12):4528-4542.
    [42] Nejentsev S, Sjoroos M, Soukka T, et al. Population-based genetic screening for the estimation of type 1 diabetes mellitus risk in Finland: selective genotyping of markers in the HLA-DQB1, HLA-DQA1 and HLA-DRB1 loci. Diabet Med, 1999, 16:985-992.
    [43] Hermann R, Mijovic CH, Rayner M, et al. HLA alleles and IDDM in children in Hungary: A comparison with Finland. Hum Immunol,2001,62, 391-398. Lambert, A Paul; Gillespie, Kathleen M.; Thomson, Glenys; et al.Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class Ⅱ genotype: A population-based study in the United Kingdom.J Clin Endocrinol Metab, 2004, 89(8):4037-4043.
    [44] Komulainen J, Kulmala P, Savola K, et al. Clinical, autoimmune and genetic characteristics of very young children with type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care, 1999, 22(12): 1950-1955.
    [45] Raffel LJ.The epidemiology and genetic basis of common disease. Pediatr Ann, 1997, 26: 525-534.
    [46] Sabbah E, Savola K, Ebeling T, et al. Genetic, autoimmune and clinical charactegristics of childhood- and adult-onset type 1 diabetes. Diabetes care, 2000, 23:1326-1632.
    [47] 王建平,周智广,黄干,等.IA-2A与GADA检测对1型糖尿病的诊断价值.中华内分泌代谢杂志,2004,12(6):494-499.
    [48] Gorus FK, Goubert P, Semakula C et al. IA-2 autoantibodies complement GAD65 autoantibodies in new onset IDDM patients and help predict impending diabetes in their sibling. Diabetologia, 1997, 40:95-99.
    [49] Sera Y, Kawasaki E, Abiru N, et al. Autoantibodies to multiple islet autoantigens in patients diagnosed with urinary glucose screening. J Autoimmun, 1999,13(2): 257-265.
    
    [50]Achenbach P, Ziegler AG. Diabetes-related antibodies in euglycemic subjects. Clin Endocrinol Metab, 2005, 19(1)101-117.
    
    [51]Hagapian WA, Sanjeevi CB, Kockum I, et al. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA-typing to decet diabetes in a general population- based study of Swedish children. J Clin Invest, 1995,95:1505-1511.
    
    [52]Sabbah E, Savola K, Kulmala P, et al. Disease-associated autoantibodies and HLA-DQB1 genotypies in the children with newly diagnosed insulin-dependent diabetes mellitus. The Childhood Diabetes in Finland Study Group. Clin Exp Immunol, 1999, 116: 78-83.
    
    [53]Vavrinec J, Cinek O, Sumnik Z, et al. Prediction of type 1 diabetes mellitus in first-degree Czech relatives of diabetic patients, Vnitr Lek, 2002, 48(6):483-489.
    
    [54]Kulmala P, Savola K, Reijonen H, et al. Genetic markers, humoral autoantimmunity and prediction of type 1 diabetes sibling of affected children. Diabetes, 2000, 49: 48-58.
    
    [55]Kimpimaki T, Kupila A, Hamalainen AM, et al. The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children form the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab, 2001, 86(10): 4282-4288.
    
    [56]Hermann R, Soltesz G. Prevalence and HLA association of GAD65 antibodies in Hungarian schoolchildren.Hum Immunol, 2003,64(1):152-155.
    
    [57]Nepom GT. An unified hypothesis for the complex genetic of HLA associations with IDDM. Diabetes, 1990, 39:1153-1157.
    
    [58]Chuang LM, Lin CY, Wu HP, et al. Anti-GAD65 autoantibody in Taiwanese patients with insulin-dependent diabetes mellitus: effect of HLA on anti-GAD65 positivity and clinical characteristics. Clin Endocrinol, 1997,47: 455-461.
    
    [59]Chang L, Tsai S, Juang J, et al. Genetic epidemiology of type 1 diabetes mellitus in Taiwan. Diabetes Res Clin Pract, 2000, 50(Suppl 2):S41-47.
    
    [60]Pugliese A, Gianani R, Moromisato R, et al. HLA-DQB 1~*0602 is associated with dominant protection from diabetes even among islet antibody-positive first-degree relatives of patients with IDDM. Diabetes, 1995,44:608-613.
    
    [61]Kukko M, Kimpimaki T, Kupila A, et al.Signs of beta-cell autoimmunity and HLA-defmed diabetes susceptibility in the Finnish population: the sib cohort from the Type 1 Diabetes Prediction and Prevention Study. Diabetologia, 2003, 46:65-70.
    [1] Cucca F, Muntoni F, Lampis R, et al. Combinations of specific DRB1, DQA1, DQB1 haplotypes are associated with insulin-dependent diabetes mellitus in Sardinia. Hum Immunol 1993, 37:85.
    [2] Rφnningen KS, Spurkland A, Iwe T, et al. Distribution of HLA-DRB1-, -DQA1 and -DQB1 alleles and DQA1-DQB1 genotypes among Norwegian patients with insulin-dependent diabetes mellitus. Tissue Antigens, 1991, 37:105.
    [3] Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med, 1994, 31:1428-1435.
    [4] Zavattari, Lampis R, Mulargia A, et al. Confirmation of the DRB1-DQB1 loci as the major component of IDDM1 in the isolated founder population of Sardinia. Hum Mol Genet, 2000, 9: 2967.
    [5] Verge CF, Gianani R, Kawasaki E, et al. Prediction of type 1 diabetes in first- degree relatives using a combination of insulin, GAD and IA-2 autoantibodies. Diabetes, 1996, 45: 926-933.
    [6] Kulmala P, Savola K, Reijonen H, et al. Genetic markers, humoral autoimmunity and prediction of type 1 diabetes sibling of affected children. Diabetes, 2000, 49: 48-58.
    [7] 朱禧星主编.现代糖尿病学.上海,上海医科大学出版社,2000:239.
    [8] Seissler J,Morgenthaler NG, Achenbach P, et al. Combined screening for autoantibodies to IA-2 and antibodies to glutamic acid decarboxylase in first- degree relatives of patients with IDDM. Diabetologia, 1996, 39:1351-1356.
    [9] Gorus FK, Goubert PP, Semakula C, et al. IA-2 autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings. Diabetologia, 1997, 40: 95-99.
    [10] 王建平,周智广,黄干,等.1型糖尿病一级亲属GADA、IA-2A与IAA联合检测的价值.中华糖尿病杂志,2005,13(2):121-126.
    [11] Schatz D, Winter W. Recent advances in the immunopathogenesis of insulindependent diabetes mellitus. Curr Opinion Pediatr, 1996, 7:459-465.
    [12] Winter WE, Chihara T, Schatz D, et al. The genetics of autoimmune diabetes: Approaching a solution to the problem. Am J Dis Child, 1993, 147:1282-1290.
    [13]Neptom GT: Genetic marker in IDDM: the MHC. In prediction, prevention, and genetic counseling in IDDM. Palmer JP, ED. Chichester, U.K., Wiley, 1996,19-26.
    [14]Verge CF, Gianani R, Kawasaki E, et al. Number of autoantibodies (against insulin, and or ICA512/IA-2) rather than particular autoantibody specificities determines risk of type 1 diabetes. J Autoimmunity, 1996,9: 379-383.
    [15]Thivolet C, Beaufrere B, Geburher L, et al. Autoantibodies and genetic factors associated with the development of type 1 (insulin-dependent) diabetes mellitus in first-degree relatives of diabetic patients. Diabetologia, 1991, 34:186-191.
    [16]Vanderwalle CL, Falorni AF, Lernmark A, et al.Association of GAD65- and IA-2- autoantibodies with genetic risk markers in new-onset IDDM patients and their sibings. Diabetes Care, 1997,20(10):1547-1551.
    [17]Raffel LJ. The epidemiology and genetic basis of common disease. Pediatr Ann, 1997, 26: 525-534.
    [18]Douek IF, Gillespie KM, Bingley PJ, et al. Diabetes in the parents of children with type 1 diabetes. Diabetologia, 2002, 45:495-501.
    [19]Gale EAM. Intervention before the onset of type 1 diabetes: baseline data from the Europen Nicotinamide Diabetes Intervention Trial (ENDIT). The Europen Nicotinamide Diabetes Intervention Trial (ENDIT) Group. Diabetologia, 2003, 46: 339-346.
    [20]Dittler J, Seidel D, Schenker M, et al. GADIA2-combi determination as first-line screening for improved prediction of type 1 diabetes in relatives. Diabetes, 1998, 47:592-597.
    [21]Krischer JP, Cuthbertson DD, Yu L, et al. Screening strategies for the identification of multiple antibody-positive relatives of individuals with type 1 diabetes.J Clin Endocrinol Metab, 2003, 88:103-108.
    [22]Maclaren N, Lan M, Coutant R, et al. Only multiple autoantibodies to islet cell (ICA), insulin, GAD65, IA-2 and IA-2 β predict immune-mediated type 1 diabetes in relatives. J Autoimmun, 1999,12: 279-287.
    [23]Thivolet C, Nicolino M, Monbeig S, et al. Combination of autoantibodies markers and risk for development of type 1 diabetes: results from large French cohort of farmily members. Diabetes Metab, 2002, 28(4): 279-285.
    [24]Bingley PI, Williams AJ, Gale EA, et al. Optimized autoantibody-based risk assessment in family members.Implications for future intervention trial. Diabetes Care, 1999,22:1796-1801.
    [25] Vanderwalle CL, Falorni AF, Lernmark A, et al.Association of GAD65- and IA-2- autoantibodies with genetic risk markers in new-onset IDDM patients and their sibings. Diabetes Care, 1997, 20(10): 1547-1551.
    [26] DE Block CE, DE Leeuw IH, Decochez K, et al. The presence ofthyrogastric antibodies in first-degree relatives of type 1 diabetic patients is associated with age and proband antibody status. J Clin Endocrinol Metab, 2001, 86 (9):4358-4363.
    [27] Thorsby E, Ronningen KS. Particular HLA-DQ molecular play a dominant role in determining susceptibility or resitistance to type 1 diabetes mellitus. Diabetologia, 1993, 36: 371-377.
    [1] Bingley PJ, Christie MR, Bonifacio E, et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes, 1994, 43:1304-1310.
    [2] Verge CF, Gianani R, Kawasaki E, et al. Number of autoantibodies (against insulin, and or ICA512/IA-2) rather than particular autoantibody specificities determines risk of type 1 diabetes. J Autoimmunity, 1996, 9: 379-383.
    [3] Maclaren N, Lan M, Coutant R, et al. Only multiple autoantibodies to islet cell (ICA), insulin, GAD65, IA-2 and IA-2 β predict immune-mediated type 1 diabetes in relatives. J Autoimmun, 1999, 12: 279-287.
    [4] Kulmala P, Savola K, Reijotmen H, et al. Genetic markers, humoral autoimmunity and prediction of type Ⅰ diabetes sibling of affected children. Diabetes, 2000, 8(6): 342-344.
    [5] Keskinen P, Korhonen S, Kupila A, et al. First-phase insulin response in young healthy children at genetic and immunological risk for type 1 diabetes. Diabetologia, 2002:45(12): 1639-1648.
    [6] Bingley PJ, Colman PG, Eisenbarth GS, et al. Standardization of IVGTT to predict IDDM. Diabetes Care, 1992, 15(10):1313-1316.
    [7] Bingley PJ. Interactions of age, islet cell antibodies, insulin autoantibodies, and first-phase insulin response in predicting risk of progression to IDDM in ICA~+ relatives. Diabetes, 1996, 45:1720-1728.
    [8] Colman PG, McNair P, Margetts H, et al. The melhoume pre-diabetes study: prediction of type 1 diabetes mellitus using antibody and metabolic testing. Med J Aust, 1998, 169(2): 81-84.
    [9] 洪洁,宁光,王笑薇,等.减少样本数的Bergman最小模型技术在胰岛素抵抗综合征中的应用.中华内分泌代谢杂志,2000,16:358-362.
    [10] 杨琳.成人隐匿性自身免疫性糖尿病的诊断和胰岛β细胞功能的研究.[中南大学博士学位论文].2003,8-57.
    [11] 邓志明.LADA和2型糖尿病一级亲属胰岛β细胞功能变化与胰岛自身抗筛查.[中南大学博士学位论文].2005.
    [12] Vauhkonen I, Niskanen L, K.nip M, et al. Impaired insulin secretion in nondiabetic offspring of probands with latent autoimmune diabetes mellitus in adults. Diabetologia, 2000, 43:69-78.
    [13] 黄干,周智广,彭健,等.~(35)S标记重组人GAD_(65)抗原检测糖尿病患者GAD-Ab指数.中华核医学杂志,2003,23(2):82-86.
    [14] 王建平,周智广,黄干,等.IA-2A与GADA检测对1型糖尿病的诊断价值.中华内分泌代谢杂志,2004,12(6):494-499.
    [15] 黄干,周智广,王建平,等.蛋白酪氨酸磷酸酶自身抗体放射配体法的建立与临床应用.中华糖尿病杂志,2004,12(1):18-20.
    [16] Kulmala P. Prediabetes in children: Natural history, diagnosis and preventive strategies. Paediatr Drugs, 2003, 5(4):211-221.
    [17] Greenbaum CJ, Sears KL, Kahn SE, et al. Relationship of beta-cell function and autoantibodies to progression and non progressionof subclinical type 1 diabetes: follow-up of the Seattle Family Study. Diabetes, 1999, 48 (1): 170-175.
    [18] Cinek O, Kolouskova S, Pechova M, et al. Prediction of insulin-dependent diabetes mellitus in children of first-degree relatives of diabetic patients. Cas Lek Cesk, 2001, 140(16):492-496.
    [19] Bingley PJ, Bonifacio E, Williams AJ, et al. Prediction of IDDM in the general population: strategies based on combinations of autoantibody markers. Diabetes, 1997, 46(11):1701-1710.
    [20] Harrison LC. Risk assessment, prediction and prevention of type 1 diabetes. Pediatr Diabetes, 2001, 2:71-82.
    [21] Bingley PJ, Bonifacio E, Ziegler AG, et al. Proposed guidelines on screening for risk of type 1 diabetes. Diabetes Care, 2001, 24:398.
    [22] Lebovitz HE. Effects of oral antihyperglycemic agents in modifying macrovasular risk factors in type 2 diabetes. Diabetes Care, 1999, 22(Suppl 3): C41-C44.
    [23] Gale EAM. Intervention before the onset of type 1 diabetes: baseline data from the Europen Nicotinamide Diabetes Intervention Trial (ENDIT). The Europen Nicotinamide Diabetes Intervention Trial (ENDIT) Group. Diabetologia, 2003, 46: 339-346.
    [24]Chase HP, Cuthbertson DD, Dolan LM, et al. First-phase insulin release during the intravenous glucose tolerance test as a risk factor for type 1 diabetes. J Pediatr, 2001, 138:244-249.
    [25]Kulmala P, Rahko J, Savola K, et al. Stability of autoantibodies and their relation to genetic and metabolic markers of type 1 diabetes in intially unaffected schoolchildren. Diabetologia, 2000, 43:457-464..
    [26]Eizirik DL, Pavlovic D. Is there a role for nitric oxide in beta cell dyfunction and damage in IDDM? Diabet Metab Rev, 1997,13:293-307.
    
    [27]Verge CF, Gianani R, Kawasaki E, et al. Prediction of type 1 diabetes in first- degree relatives using a combination of insulin, GAD and ICA512bdc/IA-2 autoantibodies.Diabetes, 1996, 45: 926-933.
    [28]Pietropaolo M, Becker DJB, LaPorte RE, et al. Progression to insulin-requiring diabetes in serongative prediabetic subjects: the role of two HLA-DQ high-risk haplotype. Diabetologia, 2002, 45:66-76.
    
    [29]Halas CJ. Nateglinide. Am J Health Syst Pharm, 2001, 24:1200-1205.
    [30]Kahn SE, Montgomery B, Howell W, et al. Impotance of early phase insulin secretion to intravenous glucose tolerance in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab, 2001, 86:5824-5829.
    [31]Kosaka K, Kuzuya T, Hagura R, et al. Insulin response to oral glucose load is consistently decreased in established non-insulin-dependent diabetes mellitus:the usefulness of decreased early insulin response as a predictor of non-insulindependent diabetes mellitus. Diabet Med,1996,13:S109-119.
    [32]Sabbah E, Savola K, Kulmala P, et al. Diabetes-associated autoantibodies in relation to clinical characteristics and natural course in children with newly diagnosed type 1 diabetes. J Clin Endocrinol Metab, 1999, 84:1534-1539.
    [33]Decochez K, Keymeulen B, Somers G, et al. Use of an islet cell antibody assay to identify type 1 diabeteic patients with rapid decrease in C-peptide levels after clinical onset. Diabetes Care, 2000,23(8): 1072-1078.
    [34]Gradner SG, Gale EAM, Williams AJK, et al. Progression to diabetes in relatives with islet autoantibodies: is it inevitable. Diabetes Care, 1999, 22,2049-2054.
    [35]Greenbaum CJ, Sears KL, Kahn SE, et al. Relationship of beta-cell function and autoantibodies to progression and nonprogression of subclinical type 1 diabetes: follow-up of the Seattle Family Study. Diabetea, 1999, 48(1):170-175.
    [1]Gale EA. Spring harvest? Reflections on the rise of type 1 diabetes. Diabetologia, 2005, 48 (12):2445-2450.
    [2]DahIquist G Can we slow the rising incidence of childhood-onset autoimmune diabetes? The overload hypothesis.Diabetologia, 2006,49(1):20-24.
    [3]Karvonen M, Viil-Kajander M, Moltchanova E, et al. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiate (DiaMond) project Group. Diabetes Care, 2000, 23(10): 1516-1526.
    [4]Eisenbarth GS. Type 1 diabetes. A chronic autoimmune disease. N Engl J Med, 1986, 314: 1701-1710.
    [5]Kulmala P. Prediabetes in children. Natural history, diagnosis and preventive strategies. Paediatr Drugs, 2003, 5(4):211-221.
    
    [6]Redondo MJ, Yu L, Hawa M, et al. Heterogeneity of type 1 diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia, 2001, 44(3):354-362.
    [7]Pugliese A. Unraveling the genetics of insulin-dependent type 1A diabetes: the search must go on. Diabetes Rev, 1999, 7(1): 39-54.
    
    [8]Thomson G, Robinson WP, Kuhner MK. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulindependent diabetes mellitus. Am J Genet, 1988,43(6):799-816.
    [9]Onengui-Gumuscu S, Concannon P. Mapping genes for autoimmunity in humans: type 1 diabetes as a model. Immunol Rev, 2002, 190:182-194.
    [10]Davies JL, Kawaguchi Y, Bennett ST, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 1994, 371(6493):130-136.
    [11]She JX, Marron MP. Genetic susceptibility factors in type 1 diabetes: Linkage disequlibrium and functional analyses. Curr Opin Immunol, 1998:10:682.
    [12]Noble JA, Valdes AM, Cook M, et al. The role of HLA class II gees in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian multiplex families. Am J Hum Genet, 1996:59:1134-1148.
    
    [13]Dormans JS, Bunker CH. HLA-DQ locus of the human leukocyte antigen complex and type 1 diabetes mellitus: a HuGE review. Epidemiol Rev, 2000, 22(2): 218-227.
    [14]Todd JA, Bell Jl, Medevitt HO. HLA-DQp gene contributes to susceptibity and resistance to insulin-dependent diabetes mellitus. Nature, 1987, 329(6140):599-604.
    [15] Khahil I, Lucd A, Marcelle G, et al. A combination of HLA-DQ β -ASP-negative and HLA-DQ α-52-Arg confers susceptibility to insulin-dependent diabetes mellitus.J Clin Invest, 1990:85:1315.
    [16] Auwera B, Waeyenberge C, Schuit F, et al. DRB1*0403 protects against IDDM in Caucasian with the high risk heterozygous DQA1*0301-DQB1*0302/DQA1* 0501-DQB1*0201 genotype. Diabetes, 1995, 44:57.
    [17] Verge CF, Gianani R, Kawasaki E, et al. Prediction of type 1 diabetes in first-degree relatives using a combination of insulin, GAD and IA-2 auto- antibodies. Diabetes, 1996, 45: 926-933.
    [18] Lampasona V, Ferrarri J, Bonifacio E,et al. HLA-DQ screening for risk assessment of insulin-dependent diabetes in northern Italy. Act Diabetol, 1995, 32: 137-142.
    [19] Kretowski A, Kinalska I. DQA1 and DQB1 HLA genes as the markers of insulin-dependent diabetes mellitus in the Polish population. Pol Arch Med Wewn, 1999, 101: 205-211.
    [20] Pugliese A. Genetics of type 1 diabetes. Endocrinol Metab Clin N Am, 2004, 33:1-16.
    [21] Pugliese A. Genetic protection from insulin-dependent diabetes mellitus. Diabetes Nutr metab, 1997, 10:169-79.
    [22] Devendra D, Liping Yu, Eisenbarth GS. Endocrine autoantibodies. Clin Lab Med, 2004, 24:275-303.
    [23] IkegamiH, Kawaguchi Y, Yamato E, et al. Analysis by the polymerase chain reaction of histocompatibility leukocyte antigen-DR9-linked susceptibility to insulin-dependent diabetes mellitus.J Clin Endocrinol Metab, 1992,75:1381-1385.
    [24] Awata T, Kuzuya T, Matsuda A, et al.High frequency of aspartic acid at position 57 of HLA-DQ β-chain in Japanese IDDM patients and nondiabetic subjects. Diabetes, 1990, 39:266-269.
    [25] Yu J, Shin CH , Yang SW ,et al. Analysis of children with type 1 diabetes in Korea: high prevalence of-specific anti-islet autoantibodies, immunogenetic similarities to Western populations with "unique" haplotypes, and lack of discrimination by aspartic acid at position 57 of DQB.Clin Immunol, 2004,113(3):318-325.
    [26] Chen BH, Chiang CH, Lin SR, et al.The influence of age at-onset and gender on the HLA-DQA1,DQB1 association in Chinese children with insulin-dependent diabete smellitus.Hum Immunol, 1999,60:1131 1137.
    [27] Penny MA, Jenkins D, Mijovic CH, et al. Susceptibility to IDDM in a Chinese population. Role of HLA class Ⅱ alleles, Diabetes, 1992, 41: 914-919.
    [28] Chang YW, Lam KS, Hawkins BR, et al. Strong association between DQA1/DQB1 genotype and early-onset IDDM in Chinese: the association is with alleles rather than specific residues. Eur J Immunogenet, 1998, 25(4):273-80.
    [29] 薛复忠,王洁贞,胡平,等.中国人群1型糖尿病HLA-DQ基因多态性的Meta分析.中华内分泌代谢杂志,2005,21(1):39-42.
    [30] Sanjeevi CB, Seshiah V, Moiler E, et al.Different genetic backgrounds for malnutrition-related diabetes and type 1 (insulin-dependent) diabetes mellitus in south Indians, Diabetologia, 1992,35:283-286.
    [31] Mijovic CH, Jenkins D, Jacobs KH, et al. HLA-DQA1 and -DQB1 alleles associated with genetic susceptibility to IDDM in a black population, Diabetes, 1991, 40(6):748-753.
    [32] 王妲,何瑞娟.HLA-DQA1-DQB1等位基因在TIDM易感性中的作用.中华内分泌代谢杂志,1993,9:202-204.
    [33] 张莹,程桦,傅祖植,等.华南地区TIDM易感性与HLA-DQA1第52位精氨酸相关性探讨.中华内分泌代谢杂志,1996,12:74-77.
    [34] 彭辉.湖南地区汉族LADA和FPIDDM与HLA-DQ基因的关联.[博士学位论文],长沙,中南大学,1999.
    [35] 邢万佳,张胜兰,克丙申,等.1型糖尿病HLA-DPB1、DQB1基因与其自身抗体相关性研究.中华内分泌代谢杂志,2001,17:338-340.
    [36] 刘昌丽,余叶蓉,刘洪,等.人白细胞抗原DQB1基因与1型糖尿病相关性研究.中华遗传学杂志,2004,21(4):368-371.
    [37] Honen J, Reijonen H, Herva E, et al. The childhood diabetes in Finland study group: rapid HLA-DQB1 genotyping for four alleles to the assessment of risk for IDDM in the Finnish population. Diabetes Care, 1996, 19:795-800.
    [38] Mrena S, Savola K, Kulmala P, et al. Genetic modification of risk assessment based an staging of preclinical type 1 diabetes in sibling of affected children. J Clin Endocrinol Metab, 2003, 88(6):2682-2689.
    [39] Van der Auwera BJ, Schuit FC, Weets I, et al. Relative and absolute HLA-DQA1-DQB1 linked risk for developing type Ⅰ diabetes before 40 years of age in the Belgian population: implications for future prevention studies. Hum Immunol, 2002, 63(1):40-50.
    [40]Caillat-Zucman S, Garchon HJ, Timsit J, et al. Age dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus.J Clin Invest, 1992, 90(60):2242-2250.
    [41]Karjalainen J, salmela P, Ilonen J, et al. A comparison of children and adult type 1 diabetes mellitue. N Engl J Med, 1989, 320(14):881-886.
    [42]Pietropaolo M, Becker DJ, LaPorte RE, et al. Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes. Diabetologia, 2002,45(1):66-76.
    [43]Pugliese A, Gianani R, Moromisato R, et al. DQB 1~*0602 is associated with dominant protection from diabetes even among islet cell antibody positive first-relatives of patients with insulin-dependent diabetes. Diabetes, 1995, 44: 608-613.
    [44]Graham J, Kockum I, SanjeeviCb, et al. Negative association between type 1 diabetes and HLA DQB1~*0602-DQA1~*0102 is attenuated with age at onset. Swedish Children Diabetes Study Group.Eur J Immunogenet, 1999, 26:117-127.
    [45]Hahi J, Simell T, Ilonen J, et al. Costs of predicting IDDM. Diabetologia, 1998, 41(1):79-85.
    [46]Kupila A, Muona p, simell T, et al. Feasibility of genetic of genetic and immunological prediction of type 1 diabetes in a population-based birth cohort.Diabeologia, 2001,44(3): 290-297.
    [47]Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet, 1997, 15:289-292.
    [48]Mochizuki M, Amemiya S, Kobayashi K, et al. Associated of the CTLA-4 gene 49 A/G polymorphism with type 1 diabetes and autoimmune thyroid diease in Japanese children. Diabetes Care, 2003, 26:843-847.
    [49]Ongagna JC, Sapin R, Pinget M, et al. Markers for eisk of type 1 diabetes in relatives of Alsacian patients with type 1 diabetes. Int J Exp Diabetes Res, 2002, 3:1-9.
    [50]Lee YJ, Lo FS, Shu SG, et al. The promoter region of the CTLA-4 gene is associated with type 1 diabetes mellitus. J Pediatr Endocrinol Metab, 2001, 14:383-388.
    [51]Bonifacio E, Genovese S, Braghi S et al. Islet autoantibody markers in IDDM: Risk assessment strategies yielding high sensitivity. Diabetologia, 1995,3 8: 816-822.
    [52]Bottazzo GF, Florin-Christensen A, Doniach D, et al. Islet cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiency. Lancet, 1974, 2(7892):1279-1283.
    [53]Bingley PJ. Interactions of age, islet cell antibodies, insulin autoantibodies, and first-phase insulin response in predicting risk of progression to IDDM in ICA~+ relatives. Diabetes, 1996,45:1720-1728.
    
    [54]Palmer JP, Asplin CM, Clemons P et al. Insulin autoantibodies in insulindependent diabetes before insulin treatment. Science, 1982,222:1337-1338.
    [55]Hegewald MJ, Schoeufeld SL, McCulloch DK et al. Increased specificity and sensitivity of insulin antibody measurements in autoimmune thyroid disease and type I diabetes. J Immunol Meth, 1992, 154:61-68.
    [56]Roll U, Ziegler AG. Combined antibody screening for improved prediction of IDDM-modern strategies. Exp Clin Endocrinology Diabetes, 1997, 105(1):1-14.
    [57]Kulmala P, Savola K, Reijonen H, et al. Genetic markers, humoral autoantimmunity and prediction of type 1 diabetes sibling of affected children. Diabetes, 2000, 49: 48-58.
    [58]Maclaren N, Lan M, Coutant R, et al. Only multiple autoantibodies to islet cell (ICA), insulin, GAD65, IA-2 and IA-2 3 predict immune-mediated type 1 diabetes in relatives. J Autoimmun, 1999, 12: 279-287.
    [59]LaGasse J,Brantley M,Leech NJ,et al.Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies .Diabetes Care, 2002,25:505-511.
    [60]Kimpimaki T, Kulmala P, Savola K, et al. Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population. J Clin Endocrinol Metab, 2002, 87: 4572-4579.
    [61]Feeney SJ, Myers MA, Zimmet PZ, et al. Evaluation of ICA512 in combinaion with other islet cell autoantibodies at the onset of IDDM. Diabetes Care, 1997, 9: 1403-1407.
    [62]Hummel M, Bonifacio E, Schmid S, et al. Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med, 2004,140: 882-886.
    [63]Achenbach P, Koczwara K, Knopff A,et al. Mature high-affinity immune responses to (pro) insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest, 2004, 114: 589-597.
    [64]Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature, 1990, 347(6289):151-156.
    [65]Seissler J, Morgenthaler NG, Achenbach P, et al. Combined screening for autoantibodies to IA-2 and antibodies to glutamic acid decarboxylase in first-degree relatives of patients with IDDM. Diabetologia, 1996, 39: 1351-1356.
    [66]Rowley MJ, Mackay IR, Chen QY, et al. Antibodies to glutamic acid decarboxylase discriminate major types of diabetes mellitus. Diabetes, 1992, 41:548-551.
    [67]Kaufman DL, Erlander MG, Clare-Salzler M et al. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest, 1992, 89:283-292.
    [68]Strebelow M, Schlosser M, Ziegler B, et al. Karlsburg type 1 diabetes risk study of a general population: frequencies and interactions of the four major Type 1 diabetes-associated autoantibodies studied in 9419 schoolchildren. Diabetologia, 1999,42:661-670.
    [69]Bingley PJ, Bonifacio E, Alistair JK et al. Prediction of IDDM in the general population: Strategies based on combinations of autoantibody markers. Diabetes, 1997,46:1701-1710.
    [70]Christie MR, Roll U,Payton MA, et al. Validity of screening for individuals at risk for type I diabetes by combined analysis of antibodies to recombinant proteins. Diabetes Care, 1997, 20(6):965-970.
    [71]Yu L, Cuthbertson DD, Maclaren N, et al. Expression of GAD65 or ICA512 autoantibodies among cytoplasmic ICA positive relatives is associated with eligibility for DPT-1.Diabetes, 2001, 50(8): 1735-1740.
    [72]Krischer JP, Cuthbertson DD, Yu L, et al. Screening strategies for the identification of multiple antibody-positive relatives with type 1 diabetes.J Clin Endocrinol Metab, 2003,88:103-108.
    [73]Gorus FK, Goubert PP, Semakula C, et al. IA-2 autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings. Diabetologia, 1997, 40: 95-99.
    
    [74]Decochez K, De Leeuw IH, Keymeulen B, et al. IA-2 autoantibodies predict impending Type I diabetes in siblings of patients.Diabetologia, 2002, 45: 1658-1666.
    [75]Achenbach P, Warncke K, Reiter J, et al. Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes, 2004,53:384-392.
    [76]Verge CF, Gianani R, Kawasaki E, et al. Number of autoantibodies (against insulin, and or ICA512/IA-2) rather than particular autoantibody specificities determines risk of type 1 diabetes. J Autoimmunity, 1996, 9: 379-383.
    [77]Bonifacio E, Genoveses, Braghi S, et al. Islet autoantibody markers in IDDM, risk assessment strategies yielding high sensitivity. Diabetologia, 1995, 38: 816-822.
    [78]Bingley PJ, Williams AJ,Gale EA. Optimized autoantibody-based risk assessment in family members.Implications for future intervention trials. Diabetes Care, 1999, 22: 1796-1801.
    [79]Kulmala P, Savola K, Petersen JS, et al. Prediction of insulin-dependent diabetes mellitus in siblings of children with diabetes. J Clin Invest, 1998, 101: 327-336.
    [80]Bingley PJ, Colman PG, Eisentarth GS, et al. Standardization of IVGTT to predict IDDM. Diabetes Care, 1992, 15(10):1313-1316.
    
    [81]Mrena S, Savola K, Kulmala P, et al. Staging of preclinical type 1 diabetes in sibling of affected children.Childhoon Diabetes in Finland Study Group. Pediatrics, 1999, 104:925-930.
    [82]Kulmala P. Prediabetes in children: natural history, diagnosis and preventive strategies. Paediatr Drugs, 2003, 5(4):211-221.
    [83]Nepom GT, Kwok WW. Molecular basis for HLA-DQ associations with IDDM. Diabetes, 1998,47:1177-1184.
    [84]Sabbah E, Savola K, Ebeling T, et al. Genetic, autoimmune and clinical characteristics of childhood- and adult-onset type 1 diabetes. Diabetes Care, 2000, 23(9):1326-1332.
    
    [85]Schenker M, Hummel M, Ferber K, et al. Early expression and high prevalence of islet autoantibodies for DR3/4 heterozygous and DR4/4 homozygous offspring of parents with type 1 diabetes: the German BABYDIAB study. Diabetologia, 1999, 42: 671-677.
    [86]Kukko M, Kimpimaki T, Kupila A, et al. Signs of beta-cell autoimmunity and HLA-defined diabetes susceptibility in the Finnish population: the sib cohort from the Type 1 Diabetes Prediction and Prevention Study. Diabologia, 2003, 46:65-70.
    [87] Hagopian WA, Sanjeevi CB, Kockum I, et al. Glutamate decarboxylase, insulin-, and islet cell-antibodies and HLA-typing to decet diabetes in a general population-based study of Swedish children. J Clin Invest, 1995, 95:1505-1511.
    [88] Sabbah E, Savola K, Kulmala P, et al. Disease-associated autoantibodies and HLA-DQB1 genotypies in the children with newly diagnosed insulin-dependent diabetes mellitus. The childhood Diabetes in Finland study group. Clin Exp Immunol, 1999, 116: 78-83.
    [89] Graham J, Hagopian WA, Kockumet I, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes, 2002, 51: 1346-1355.
    [90] VanhewaUe CL, Falomi A, Lemamrk A, et al. Association of GAD65- and IA-2-autoantibodies with genetic risk markers in new-onset IDDM patients and their siblings. Diabetes Care, 1997, 20(10): 1547-1551.
    [91] Kulmala P, Savola K, Reijonen H, et al. Genetic markers, humoral autoantimmunity and prediction of type 1 diabetes sibling of affected children. Diabetes, 2000, 49: 48-58.
    [92] Hermann R, Soltesz G. Prevalence and HLA association of GAD65 antibodies in Hungarian schoolchildren. Hum Immunol, 2003, 64(1):152-155.
    [93] Kimpimaki T, Kupila A, Hamalainen AM, et al. The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children form the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab, 2001, 86(10): 4282-4288
    [94] Kulaeva TL, Titovich EV, Zillberman LI, et al. Genetic and immunologic aspects of type 1 diabetes mellitus. Usp Fiziol Nauk, 2003, 34:45-62.
    [95] Sanjeevi CB, Hogapian WA, Landin-Ollson M, et al. Association between autoantibody markers and subtypes of DR4 and DR4-DQ in Swedish children with insulin-dependent diabetes reveals close association of tyrosine pyrophosphatase autoimmunity with DR4 than DQ8. Tissue Antigens, 1998, 51:281-286.
    [96] Raghu P, Johnston C, Beard JC, et al. Reduced insulin sensitivity in non-diabetic, HLA-identical sibling of insulin-dependent diabetes subjects. Diabetes, 1985, 34:991-994.
    [97] Veijola R, Vahasalo P, Tumilehto-Wolf E, et al. Human leukocyte antigen identity and DQ risk alleles in autoantibody-positive sibling of children with IDDM are associated with reduced early insulin respone. Diabetes, 1995, 44:1021-1028.
    [98]Ilonen J, Reijonen H, Herva E, et al. Rapid HLA-DQB1genotyping for alleles in the assessment of risk IDDM in the Finnish population. Diabetes Care, 1996, 19:795-799.
    [99]Kulmala P, Rahko J, Savola K, et al. Stability of autoantibodies and their relation to genetic and metabolic markers of type 1 diabetes in initially unaffected schoolchildren. Diabetologia, 2000, 43:457-464.
    [100]Robert JJ, Deschamps I, Chevenne D, et al.Relationship between first-phase insulin secretion and age, HLA, islet cell antibody status and development of type 1 diabetes in 220 juvenile first-degree relatives of diabetic patients. Diabetes Care, 1991, 14:718-723.
    [101]Chase HP, Cuthbertson DD, Dolan LM,et al.First-phase insulin release during the intravenous glucose tolerance test as a risk factor for type 1 diabetes. J Pediatr, 2001,138:244-249.
    [102]Greenbaum CJ, Sears KL, Kahn SE, et al. Relationship of beta-cell function and autoantibodies to progression and nonprogression of subclinical type 1 diabetes: follow-up of the Seattle Family Study. Diabetes, 1999,48(1): 170-175.
    [103]Keskinen P, Korhonen S, Kupila R, et al. First-phase insulin response in young healthy children at genetic and immunological risk for type 1 diabetes. Diabetologia, 2002,45:1639-1648.
    [104]Knip M, Vahasalo P, Karjalainen J et al. Natural history of preclinical IDDM in high risk siblings. Diabetologia, 1994, 37:388-393.
    [105]Bingley PJ, Bonifacio E, Ziegler AG, et al. Proposed guidelines on screening for risk of type 1 diabetes. Diabetes Care, 2001, 24:398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700