用户名: 密码: 验证码:
以洛伐他汀为典型药物研究巴马香猪和人代谢的异同
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型猪的心脏与循环系统与人类相似,易患心血管疾病,因此在作为人类心血管系统动物模型方面独具优势。应用小型猪复制的人类心血管系统疾病动物模型与人类疾病高度相似,利用其研究心血管药物的药动学参数,可以很好指导药物的临床应用。此外,小型猪是CYP 3A4代谢药物无需诱导的良好动物模型。研究发现小型猪肝微粒体中存在与人CYP 3A家族相似的酶,序列分析显示小型猪CYP 3A与人的CYP 3A4有60%的序列同源性,说明小型猪作为药物研究,尤其是人CYP 3A4代谢的心血管药物安全性评价实验动物具有良好前景。但迄今为止,还没有比较系统的研究资料。
     我国具有丰富的小型猪资源,其中巴马香猪近交程度高、被毛呈白色、耐近交、遗传稳定、个体表型一致,并积累了丰富的解剖、生理生化及基础生物学特性背景资料。但国内小型猪很少应用于药物评价研究,其原因在于我国的基础研究薄弱,进行药物安全性评价方面的应用基础研究缺乏,尤其受到药物代谢研究资料不足的限制,使我国丰富的小型猪资源优势得不到充分发挥。
     因此,我们选用一种临床上用于治疗动脉粥样硬化并可被细胞色素P450 3A4代谢的药物——洛伐他汀作为典型药物,以我国独特的小型猪资源——巴马香猪作为实验动物,从常规的药物体内过程(分布和排泄)及长期毒性,微粒体亚细胞水平(代谢活性的比较和代谢产物的分析)到单一代谢酶(细胞色素P450 3A)逐层深入研究,希望形成一套完整的CYP 3A4代谢的心血管药物的资料,填补国内小型猪药物代谢研究不足的空白,积累小型猪作为人CYP 3A4代谢的心血管药物安全性评价实验动物的基础研究数据和实验依据;并与人和其他实验动物进行比较研究,突出小型猪在人CYP 3A4代谢的心血管药物中的优势,为巴马香猪在药物安全性评价中的应用提供理论支持,以此推进小型猪在新药安全评价中的应用。
     研究内容和结果:
     逐层对洛伐他汀在巴马香猪体内的代谢进行研究,并与人和其他实验动物各方面的实验数据和文献报道资料进行比较,获得比较全面的巴马香猪在人CYP 3A4代谢的心血管药物中研究的实验数据。
     (1)洛伐他汀在巴马香猪体内的分布排泄研究
     以抗动脉粥样硬化药物洛伐他汀为模型药,选择健康6月龄雄性巴马香猪为实验对象,经灌胃途径给药(45 mg/kg或2.4 mg/kg),采用RP-HPLC方法测定各组织及体液中的药物浓度,并对其组织分布和排泄过程进行研究;通过透析法测定血浆蛋白结合率;对LV和HA在血浆中转化率进行测定;所有结果与不同种属实验动物进行比较分析。给药后,洛伐他汀快速分布到贲门、胃、小肠、肝、大肠、胰、前列腺、肺、肾、心、肌肉、睾丸、肾上腺、膀胱、脑和脾。以胃、肠、肝组织中药物浓度较高,说明药物在小型猪体内具有明显的胃吸收和肝脏大量摄取的过程;药物在小型猪体内能通过大脑屏障;低剂量下的重复给药没有在小型猪体内形成蓄积;96 h尿中累积排泄量为给药量的7.4%,原形药经胆汁及粪排泄量达到80%以上;小型猪和人血浆的LV与HA转化极其相似,血浆蛋白结合率为95%以上。
     (2)洛伐他汀在巴马香猪体内的长期毒性研究
     以抗动脉粥样硬化药物洛伐他汀为模型药,选择健康6月龄雄性巴马香猪为实验对象,经灌胃途径给药(12 mg·kg-1和135 mg·kg-1),对巴马香猪进行为期6周的长期毒性实验,观察给药后的临床表现、血液学、血生化、脏器系数和组织病理学等指标进行药效和毒性的评价。
     主要毒性反应在135 mg·kg-1组,给药后巴马香猪出现了竖毛、腹泻等症状,总采食量下降,体重减轻;血液血检查显示白细胞总数有所增加,红细胞总数、血红蛋白含量和血小板计数明显下降;血液生化检查显示ALT、AST、ALP和CK升高2-10倍,肌酐和尿素有所升高;总胆固醇、低密度脂蛋白、总胆固醇/高密度脂蛋白和低密度脂蛋白/高密度脂蛋白的比率明显降低,血浆甘油三脂适度降低;组织病理学切片显示巴马香猪出现了与人相似的肝肾病理改变。
     (3)洛伐他汀在巴马香猪中的体外代谢和主要代谢产物研究
     选择人体CYP 3A4代谢的典型底物硝苯地平为阳性对照,制备巴马香猪、人和大鼠的肝微粒体,进行洛伐他汀在巴马香猪肝微粒体中的酶动力学研究,并与人体和大鼠肝微粒体比较;配合体内外代谢产物研究,以人肝微粒体P450酶3A亚型的选择性抑制剂酮康唑(KCZ)和三乙酰竹桃霉素(TAO)和诱导剂利福平,对小型猪CYP 3A亚型的探针反应的抑制和诱导效果进行了评价;利用UV、HPLC和MS的检测手段对洛伐他汀在巴马香猪体内外的代谢产物进行了分析检测;并与人和常用实验动物大鼠相应结果进行了比较,从巴马香猪体内外代谢水平进行综合评估。巴马香猪肝微粒体代谢洛伐他汀的酶动力学变化与人体更相似;人体CYP 3A特异性抑制剂均可以显著抑制三者的代谢,但是巴马香猪代谢速率下降程度与人体接近;利福平可以诱导巴马香猪中类似人体CYP 3A4酶的产生,使猪体内CYP 3A4底物的代谢活性得到增加;巴马香猪在洛伐他汀体内外的代谢产物与人相当接近,在体外微粒体中分别生成主要代谢产物6′-β-羟基-LV(遇酸变构为3′-羟基-异-Δ4′,5′-LV)和6′-挂亚甲基LV,在体内胆汁中,pH5.0温和水解下生成其羟酸形式;在巴马香猪CYP 3A底物代谢反应活性测定、选择性抑制剂和诱导剂抑制诱导反应效果、代谢产物的确定三个层面,与人和其他实验动物进行比较,综合评定使研究结果得到多重验证。
     (4)巴马香猪中CYP 3A29代谢酶的异源表达和活性鉴定
     选择巴马香猪体内与人体CYP 3A4可能具有相同代谢特征的细胞色素P450 3A29,进行大肠杆菌的异源表达,通过电泳、免疫印记及相关的活性测定,进一步提供巴马香猪类似代谢酶的代谢特点和与人CYP 3A4相似的理论资料,比较人体CYP 3A4和巴马香猪细胞色素P450 3A29的活性和相关代谢反应。
     通过去除N端疏水膜定位信号序列设计引物,分别利用pGEM-T载体、pET28b表达载体和DH5α、DE3菌株对CYP 3A29基因进行扩增、克隆及表达,通过SDS-PAGE和Western blot验证,获得CYP 3A29的大肠杆菌重组子;优化了蛋白表达条件,在除N端疏水序列/TB/10μM IPTG/25℃的条件下,获得的可溶性蛋白最多,活性最高;重组子具有人CYP 3A4硝苯地平活性,与亚细胞微粒体水平的体外代谢模型结果相互验证。
     结论:
     1.巴马香猪是较理想的用于洛伐他汀类心血管药物药代动力学研究的实验动物。洛伐他汀在巴马香猪体内的过程与人类似。
     2.巴马香猪可以用作洛伐他汀类心血管药物毒性研究的实验动物。洛伐他汀给药后,巴马香猪能敏感的反映洛伐他汀的大部分潜在毒性。
     3.巴马香猪肝微粒体适用于作为研究人CYP 3A4药物代谢途径和特征的体外实验动物模型。在巴马香猪CYP 3A底物代谢反应活性测定、选择性抑制剂和诱导剂的作用效果、代谢产物的确定三个层面,与人基本一致。
     4.巴马香猪适用于作为人CYP 3A酶代谢的相关药物研究的良好动物模型:通过大肠杆菌异源表达出巴马香猪CYP 3A29蛋白,并具有人CYP 3A4硝苯地平活性。
     本论文的完成将形成了以洛伐他汀作为典型药物,以巴马香猪作为实验动物的一套完整药物代谢数据;形成巴马香猪与人及其他实验动物比较的研究资料;从代谢和毒性方面说明小型猪是人CYP 3A4代谢的心血管药物安全性评价的较好模型动物。
Research objective and background:
     Minipig was a good animal model for research on the cardiovascular deseases of human, because its heart and cardiovascular system were very similar to human. Minipig models of cardiovascular system diseases are closely resemble those of human. Thus, clinical application of cardiovascular drugs could be well guided using minipigs model to study pharmacokenetic. Additionally, minipig was also considered as a good model of human CYP 3A4 without induction. It has been reported there were similar enzymes as human CYP 3A4/5 in liver microsomes of minipigs. Sequences analysis indicated the CYP 3A of minipig had 60% homologous with human CYP 3A4. These studies suggested minipigs have a predicted prospect as experimental animals for evaluting drugs which were metabolized by human CYP 3A4. However, no systematic research was carried out.
     China has copious resource of minpigs. Bama miniature pigs were found in China with many advantages, such as high extent of inbreeding, white hair, bearing inbreeding, stable heredity and a consistent phenotype, and were proved to be a superior animal models. Additionally, there are much background information about anatomy, physiology, biochemistry and basic biological characteristics. In China, however, they have never been used in drug safety evaluation due to the scanty application research background on pharmacology and toxicology evaluation.
     In our previous study, lovastatin, a basic drug widely used in curing AS, was chosed as model drug to investigate its metabolism in Bama miniature pigs completely. In this study, we further used this drug to investigate the disposition (distribution and excretion) and long-term toxicity in vivo, metabolism of microsome (comparing activity and analysising metabolites) and main metabolic enzyme (cytochrome P450 3A) in miniature pigs. All data were compared with human and other animals.
     Contents and results of the research:
     (1) Distribution and excretion of lovastatin in Bama miniature pigs.
     6-month male Bama minipigs were intragastric administrated (45 mg/kg or 2.4 mg/kg). The concentration of lovastatin in tissues and body-fluid in 6-month old male Bama minipigs after oral administration were detected by RP-HPLC. The distribution-excretion process and transformation efficiency of LV-HA were investigated. Protein binding was determined by dialysis method. All results were compared with different experimental animals.
     Lovastatin was showed to be widely distributed in many tissues after i.g. dose of 45 mg/kg. The higher level of lovastatin was found in the stomach, intestine and liver. The concentrations in stomach, small intestine, liver, heart, adrenal and bladder at 1 h were higher than those of 4 h. The drug was found in blood-brain barrier of Bama miniature pig. 7.4% of the given dose was excreted in unchanged form in urine within 96 h. More than 80% was excreted in bile and feces within 96 h. The plasma protein binding ratio was higher than 95% and transformation efficiency of LV-HA was very similar between human and pig plasma.
     (2) Long-term toxicity test of lovastatin in Bama miniature pigs.
     6-month male Bama minipigs were randomly divided into two dose groups(12 mg·kg-1 and 135 mg·kg-1)and a blank group. The drug was given once a day for 42 successive days. Manifestation and behaviors, hematology, blood chemistry and histopathology were detected.
     The results revealed that 135 mg·kg-1 dose caused serious toxicity. The main toxic manifestations were piloerection and diarrhea, body weight loss and declined foraging quantity. Compared to control, total white cell count increased, however red blood count and hemoglobin and blood platelets count declined. ALT、AST、ALP and CK were increased 2-10 fold. Lovastatin has been shown to be highly effective in reducing plasma total-C, LDL, total-C/HDL ratio and LDL/HDL ratio. In addition, lovastatin modestly decreased plasma TG.
     The pathological histology analysis result showed that there were some morphological abnormalities and characteristic pathological change in the major target organ, liver and kidney.
     (3) Lovastatin metabolism of liver microsomes and essential metabolites in Bama miniature pigs
     To evaluate the feasibility of Bama miniature pigs to be used as a model on pharmacokenetic properties of CYP 3A4, we compared the enzymatic kinetics of lovastatin and nifedipine in liver microsomes of Bama miniature pigs with that of human and rats. We evaluated the biotransformation activity in the minipig liver microsomes and compare with those of human and rat. The inhibitory and induction effects were determined by using chemical inhibitor and inductor specific to the CYP 3A in human. Metabolites of lovastatin were detected by UV, HPLC and MS.
     The enzymatic kinetics of minipig liver microsomes was more close to human than rats. The metabolism of lovastatin in three various genera was significantly inhibited by ketoconazole but the descendent rate of metabolism in pigs was similar to human. The average activity levels of nifedipine of Bama miniature pigs increased remarkablely when treated with rifampicin. Otherwise, the metabolites of lovastatin in vitro and in vivo of pigs were also close to that of human.
     (4) Expression of CYP 3A29 in Escherichia coli
     A P450 gene (3A29) from Bama miniature pigs, which was homologous to human CYP 3A4 gene, was successfully expressed in Escherichia coli. The expressed CYP 3A29 was confirmed by SDS-PAGE and western blot analysis. We investigated the effects of culture broth, temperature, IPTG concentration and additives on the expression level of CYP 3A29. The metabolism characteristics of CYP 3A29 expressed in E. coli were compared with those from human.
     Through constructed the truncated CYP 3A29 gene without 28 N-terminal amino acids (membrane-anchor signal peptide), we obtained active CYP 3A29 protein in cytoplasmic fraction of E. coli cells. We found the optimal conditions to produce active CYP 3A29 were to induce E. coli cells contained pET28b-3A29 with 10mM IPTG in TB broth for 10h at 25℃. 3A29 produced in E. coli has the oxidation activity of Nifedipine (NOD), which was the same as that in liver microsomes of pigs.
     Conclusions:
     (1) Our results showed the distribution-excretion, plasma protein binding ratio and transformation efficiency of LV-HA of lovastatin in the Bama minipigs were similar to those in humans. Thus, it could be concluded that Bama miniature pigs should be an ideal experimental animal of pharmacokinetics for cardiovascular drugs similar to lovastatin.
     (2) Bama miniature pigs could sensitively show toxic reactions which were observed in clinical therapy of lovastatin.
     (3) Compared with rats, Bama miniature pigs were more close to humans in the biotransformation activity of CYP 3A and the inhibitory and induction effects by chemical inhibitor and inductor specific to the CYP 3A. Therefore, Bama miniature pigs are suitable for the pharmacological studies relating to human CYP 3A.
     (4) The CYP 3A29 enzyme of Bama miniature pigs expressed in E. coli showed the oxidation activity of Nifedipine as human CYP 3A4. This indicated Bama minipig was a suitable animal model for human drugs which was metabolized by CYP 3A.
     Combined these results, we can collecte a complete data about metabolism of lovastatin in Bama miniature pigs. We evaluate the feasibility of Bama miniature pig to be used as a good model on safety evaluation of cardiovascular drugs which was metabolismed by human CYP 3A4.
引文
[1]化学药物刺激性、过敏性和溶血性研究技术指导原则.国家食品药品监督监督管理局.2005.
    [2]化学药物非临床药代动力学研究技术指导原则.国家食品药品监督监督管理局.2005.
    [3]中药、天然药物刺激性、过敏性和溶血性研究技术指导原则.国家食品药品监督监督管理局.2005.
    [4] Hong W, Yang-zhi Z, Ai-de W, et al. Researches on Chinese laboratory miniature pigs, China-EU Animal Biotechnology Conference Proceedings, October 11-13, 2000 Shenzhen.
    [5]朱星红,炳银,应大君.版纳微型猪近交系的解剖组织学[M].高等教育出版社.2004(第1版).
    [6] Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene[J].Chem Res Toxicol,1995a,3:363–371.
    [7] Guengerich FP. Human cytochrome P-450 enzymes, in Cytochrome P-450 (Ortiz de Montellano PR ed) [M]. Plenum, New York ,1995,473–535.
    [8] Maedaa K, Yasunari K, Eisuke FS, et al. Enhanced oxidative stress in neutrophils from hyperlipidemic guinea pig [J]. Atherosclerosis, 2005:1-6.
    [9] Silvia D, Budriesi R, Sudwan P, et al. Diphenylcyclohexylamine derivatives as new potent multidrug resistance (MDR) modulators [J]. Bioorganic & Medicinal Chemistry, 2005,13(4),985-998.
    [10]黄先勇,盖鲁粤,王思让,等.中国动脉粥样硬化狭窄模型的建立及其意义[J].实验动物科学与管理,1997,14(1):29-32.
    [11] Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians[J]. J Pharmacol Exp Ther, 1994, 270:414–423.
    [12] Lasker JM, Wester MR, Aramsombatdee E, et al. Characterization of CYP2C19 and CYP2C9 from human liver: Respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations[J]. Arch Biochem Biophys 1998; 353: 16-28.
    [13] Lewis DF, Ioannides C, Parke DV, et al. Quantitative structure-activity relationships in aseries of endogenous and synthetic steroids exhibiting induction of CYP 3A activity and hepatomegaly associated with increased DNA synthesis[J]. J. Steroid Biochem. Mol. Biol., 2000, 74(4): 179-185.
    [14] Smith DA, Jones BC. Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes[J]. Biochem. Pharmacol., 1992, 44: 2089-2098.
    [15] Sou?ek PI. Gut Cytochromes P-450 in rats: structures, functions, properties and relevant human forms[J]. Xenobiotica,1992(32):83–103.
    [16] Witkamp RF, Nijmeijer SM, Monshouwer M, et al. The antibiotic tiamulin is a potent inducer and inhibitor of cytochrome P450 3A via the formation of a stable metabolite intermediate complex[J]. Drug Metab Dispos. 1995; 23:542–547.
    [17] Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P-450, drug interactions and interindividual variability[J]. Drug Metab Dispos. 1995; 23:1315–1323.
    [18] Anzenbacher P, Soucek P, AnzenbacherováE, et al. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples[J]. Drug Metab. Dispos 1998, 26(1): 56 - 59.
    [19] Soucek P, Zuber R, AnzenbacherováE, et al. Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs[J]. BM C Pharmacol , 200 1,1:l1.(http://www.biomedcentra1.com/l471-2210/1/1 11).
    [20] Jian L, Yong L, Jiang WZ, et al. Characterization of drug metabolizing activities in Chinese Bama miniature pigs(Sus Scrofa Domestica): comparison with human analogs[J].Comp Med 2006,56(4): 269-273.
    [21]李健,刘勇,张江伟等.贵州小型香猪与人5种CYP酶活性的比较[J].中国比较医学杂志,2006, 16(3): 157-161.
    [22]刘中禄,魏泓,曾养志等.中国三种实验用小型猪mtDNA D-loop多态性分析[J].动物学报,2001,47(4):425-430.
    [23]王爱德,郭亚芬,李柏等.巴马小型猪血液生化指标[J].上海实验动物科学,2001,21(1):8-12.
    [24]王爱德,郭亚芬,李柏等.巴马小型猪血液生理指标[J].上海实验动物科学, 2001, 21(2): 75-78.
    [25]吴丰春,魏泓,王爱德.AFLP技术用于巴马小型猪遗传多样性的研究[J].中国实验动物学杂志,2002,12(4):207-209.
    [26]吴丰春,魏泓,王爱德.巴马小型猪群体遗传结构的随机扩增多态DNA分析[J].中国实验动物学报, 2000,8(4): 235-240.
    [27] Lin JH. Species similarities and differences in pharmacokinetics. [J]. Drug Metab. Dispos., 1995, 23(10): 1008–1021.
    [28] Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985) [J]. Br. J. Clin. Pharmacol, 1988, 25: 387-396.
    [29] Singh SS, Preclinical pharmacokinetics: an approach towards safer and efficacious drugs [J]. Curr Drug Metab. 2006 Feb;7(2):165-182.
    [30]秦伯益.新药评价概论[M].人民卫生出版社,1987.
    [31] Anzenbacherova E, Anzenbacher P, Svoboda Z. Minipig as a model for drug metabolism in man:Comparison of in vitro and in vivo metabolism of propafenone[J]. Biomed Papers, 2003, 147(2): 155-159.
    [32] Hsu FS, Du SJ. The pig model for biomedical research[M]. Pig Research Institute, Taiwan: ROC on Press, 1982, I:134-143.
    [33] Kvetina J, Svoboda Z, Nobilis M,et al. Experimental G?ttingen minipig and Beagle dog as two species used in bioequivalence studies for clinical pharmacology (5-aminosalicylic acid and atenolol as model drugs)[J].Gen. Physiol. Biophys ,1999, 18:80-85.
    [34] Maedaa K, Yasunari K, Sato EF, et al. Enhanced oxidative stress in neutrophils from hyperlipidemic guinea pig [J]. Atherosclerosis. 2005, 181(1):87-92.
    [35] EU Sixth Framework Programme, Contract PL 018776. [Internet].Minipigs as models for the toxicity testingof new medicines and chemicals: impact assessment. Presented at the Society of Toxicology’s 47th Annual Meeting Wednesday March 19th, 5-7PM at the Sheraton Seattle Hotel, 1400 Sixth Avenue, Seattle, WA Available at http://www.rethink-eu.dk/one/Minipig%20poster. pdf.
    [36] Bronner S, Murbach V, Peter .JD. Ex Vivo Pharmacodynamics of Amoxicillin- Clavulanate against Lactamase-Producing Escherichia coli in a Yucatan miniature pig modle that minics human pharmacokinetics[J].American. Society for Microbiology.1998, 46 (12): 3728-3798.
    [37] Svoboda Z, Perlik F, Ketina J, et al. Sulpiride: the pharmacokintics in man and minipigs,organ distribution in minipigs[J].Pharm Res,1994,11(5):698.
    [38] Nobilis M, Kopecky J, Kvetina J, et al. Comparative biotransformation and disposition studies of nabumetone in humans and minipigs using high-performance liquid chromatography with ultrviolet, fluorscence and mass spectrometric detection[J].Jouralof Pharmaceutical and Biomedical Analysis. 2003 32:641-656.
    [39] Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism[J]. J Cell Mol Med, 2002, 6(2): 189-198.
    [40] Aoyagi N, Ogata H, Kaniwa N, et al. Bioavailability of griseofulvin from plain tablets in G?ttingen minipigs and the correlation with bioavailability in humans[J].J Pharmacobiodyn, Jan 1984; 7(1): 7-14.
    [41] Anfossi P, Zaghini A, Grassigli G, et al. Relative oral bioavailability of microgranulated amoxicillin in pigs[J].J Vet Pharmacol Ther, Oct 2002; 25(5): 329-334.
    [42] Nielsen P, Gyrd-Hansen N. Bioavailability of oxytetracycline, tetracycline and chlortetracycline after oral administration to fed and fasted pigs[J].J Vet Pharmacol Ther, Aug 1996; 19(4): 305-311.
    [43] Agerso H , Friis C. Bioavailability of amoxycillin in pigs[J].J Vet Pharmacol Ther, Feb 1998; 21(1): 41-46.
    [44] Oberle RL, Das H, Wong SL, et al..Pharmacokinetics and metabolism of diclofenac sodium in Yucatan miniature pigs[J].Pharm Res, May 1994: 11(5): 698-703.
    [45]王爱德,甘世祥,冯书堂等.丹麦Gottingen小型猪科学考察报告[J].中国实验动物学杂志,2002,12(1):47-48.
    [46] Qing-Feng X, Senshang L, Chien YW. Transdermal testosterone delivery in castrated Yucatan minipigs: pharmacokinetics and metabolism[J]. Journal of Controlled Release, 1998,52(3): 89-98.
    [47] Vana G, Meingassner JG. Morphologic and Immunohistochemical Features of Experimentally Induced Allergic Contact Dermatitis in G?ttingen Minipigs[J]. Vet Pathol 2000, 37: 565-580.
    [48] Koch W, Windt H, Walles M, Borlak J, Clausing P. 2001. Inhalation studies with the G?ttingen minipig[J]. Inhalation Toxicol. 13:249-259.
    [49] Pufe T, Scholz-Ahrens KE, Franke ATM, et al. The role of vascular endothelial growth factor in glucocorticoid-induced bone loss: evaluation in a minipig model. [J].Bone. 2003, 33(11)869-876.
    [50]屈正,李书闻,等.中国实验小型猪慢性心肌缺血模型的制备与研究[J].中华实验外科杂志.2001,18(3):281-281.
    [51]魏泓.我国小型猪的研究现状[J].中国实验动物学杂志, 1997, 7(4): 252.
    [52]陈丙波,王广传,周建华等.广西巴马小型猪和贵州小型香猪的DNA指纹分析[J].第三军医大学学报,2003,25(7): 620-622.
    [53]牛荣,甘世祥等.贵州小型香猪和广西巴马小型猪微卫星位点的遗传学分析[J].四川动物,2002, 21(4): 227-229.
    [54]牛荣,王爱德等.广西巴马小型猪21个微卫星座位的DNA多态性分析[J].中国兽医科技,2002, 32(8): 11-13.
    [55]吴丰春,魏泓.巴马小型猪与贵州小型香猪遗传多样性的RAPD分析[J].实验生物学报, 2001,34(2): 115-119.
    [56] Baranova J, Anzenbacherova E, Anzenbacher P, et al. Minipig cytochrome P450 2E1: comparison with human enzyme. Drug Metab Dispos, 2005, 33(6): 862-865.
    [57] Donato MT,Castel1 JV,Gumez Lechon MJ,et al.Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models[J]. J Hepato1, 1999,31:542-549.
    [58] Monshouwer M, van't Klooster GAE, Nijmeijer S.M., et al. Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes[J]. Toxicol. In Vitro., 1998, 12:715-723.
    [59] Myers, MJ, Farrell DE, Howard KD, et al. Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine[J]. Drug Metab. Dispos., 2001, 29: 908-915.
    [60] Herman EH, Ferrans VJ, Young RS, et al.A comparative study of minoxidil-induced myocardial lesions in beagle dogs and miniature swine [J]. Toxicol Pathol, 1989, 1:182-192.
    [61] Heusch G, Post H, Michel MC, et al. Endogenous Nitric Oxide and Myocardial Adaptation to Ischemia[J].Circ. Res. 2000,87(8): 146-152.
    [62] Pentikainen PJ, Saraheimo M, Schwartz JI, et al. Comparative pharmacokinetics of lovastatin, simvatatin and pravastatin in humans[J]. J Clin pharmacol 1992,32:136-140.
    [63] Horsmans Y, DeSager JP, Harveng TC.Biochemical charges and morphological alterations of the liver in guinea pigs after administration of simvastatin HMG-CoA reductase-inhibitor. [J].Pharmacol Toxicol 1990; 67(8): 336-339.
    [64] Stubbs RJ, Schwartz MS, Gerson RJ, et al.Comparison of profile of lovastatin (mevinolin), simvastatin(epistatin) and pravastatin(eptastatin) in the dog[J]. Drug investigation 2(suppl.2), 1990, 18-28.
    [65] Pan HY, DeVault AR, Wang-Iverson D, et al. Comparative pharmacokinetics and pharmacodynamics of pravastatin and lovastatin[J]. J Clin Pharmacol. 1990, 30: 1128-1135.
    [66] Merck & Co., Inc. [Internet]. Mevacor@ (Lovastatin) Tablets: 2007 update [Issued December 2007]. Available at http://www.merck.com/product/usa/pi_ circulars/m /mevacor/mevacor_pi. pdf.
    [67] Reyderman1 L, Kosoglou T, Boutros1 T, et al..Pharmacokinetic interactionbetween ezetimibe and lovastatin in healthy volunteers[J]. Current medical resarchand opinion,2004, 20:1493–1500.
    [68] Corsini A, Bellosta S, Baetta R, et al. New insights into the pharmacodynamics and pharmacokinetic properties of statins. [J].Pharmacol Ther 1999;84:413-428.
    [69] Endo A, Kuroda M, Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutanyl coenzyme A reductase by ML-236A and ML-236B, fungal metabolites having hypocholesterolemic activity. [J].FEBS Lett 1976;72:323–326.
    [70] MacDonald JS, Gerson RJ, Kornbrust DJ, et al. Preclinical evaluation of lovastatin.[J]. Am J Cardiol, 1988, 62: 16J–27J.
    [71] Kornburst DJ, MacDonald JS, Peter CP, et al. Toxicity of the HMG-CoA reductase inhibitor, lovastatin, to rabbits. [J].J Pharmacol Exp Ther 1989, 248:498-505.
    [72] Dujovne CA, Chremos AN, Pool JL, et al. Expanded clinical evaluation of lovastatin (EXCEL) study results: IV additional perspectives on the tolerability of lovastatin[J]. Am J Med 1991; 91(suppl 1B): 255–305.
    [73] Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, Langendorfer A, Stein EA, Kruyer W, Gotto AM Jr. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. Results of AFCAPS/TexCAPS [J]. JAMA 1998, 279: 1615-1622.
    [74] Jacobsen W, Kirchner G, Hallensleben K, et al. Small Intestinal Metabolism of the 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase Inhibitor Lovastatin and Comparison with Pravastatin[J]. J Pharmacol Exp Ther 1999, 291:131-139.
    [75] Duggan DE, Chen IW, Bayne WF, et al. The physiological disposition of lovastatin [J]. Drug Metab Disposit, 1989, 17(2):166-173.
    [76]岑彦艳,黄亚琴,曾本华等.巴马小型香猪口服洛伐他汀的药代动力学研究[J].中国比较医学杂志, 2006, 16(3):139-141.
    [77]岑彦艳,魏泓,曾本华等.巴马香猪多次灌胃洛伐他汀的药动学研究[J].山西医科大学学报, 2008,39(4): 343-346.
    [78]黄亚琴,岑彦艳,曾本华等.洛伐他汀在巴马小型香猪体内毒动学研究[J].医药导报,2006, 5(6):493-495.
    [79]曾本华,刘宇,黄亚琴等.洛伐他汀在巴马香猪体内的绝对生物利用度研究[J].中国实验动物学报, 2007, 15(1):67-69.
    [80] Friedrich J, Zuzek M, Bencina M, et al. High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths[J]. J Chromatogr A, 1995,704:363-367.
    [81]孙瑞元,郑青山.数学药理学新论[M].北京:人民卫生出版社, 2004, 26-33.
    [82]徐叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社, 2002, 703-712.
    [83]刘昌孝.实用药物动力学[M].中国医药科技出版社.2003.119-144.
    [84]苏成业韩国柱等.临床药物代谢动力学[M].科学出版社.2008.8-30.
    [85] Halpin RA, Ulm EH, Till AE, et al. Biotransformation of lovastatin V. Species differences in in vivo metabolite profiles of mouse,rat, dog, and human[J]. Drug Metab Dispos. 1993, 21: 1003–1011.
    [86] Christians U, Jacobsen W, Floren LC. 1998. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients are the statins mechanistically similar? [J]. Pharmacol. Ther. 80:1-34.
    [87]赵飞浪,袁倚盛,沈学英. RP-HPLC测定人血浆中洛伐他汀浓度及药动学研究[J].中国药科大学学报,1997,28(5):288-290.
    [88] Reilly PEB, Mason SR, Read MA. 1999. Human, rat and crocodile liver microsomal monooxygenase activities measured using diazepam and nifedipine: effects of CYP 3A inhibitors and relationship to immunochemically detected CYP 3A apoprotein[J]. Comp. Bio. Physio. (Part C) 122:197-204.
    [89] Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: Drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions[J]. Pharmacol Ther, 2006, 112: 71-105.
    [90] Jacobsen W, Kirchner G, Hallensleben K, et al.Comparison of Cytochrome P-450-Dependent Metabolism and Drug Interactions of the 3-Hydroxy-3-methylglutaryl- CoA Reductase Inhibitors Lovastatin and Pravastatin in the Liver[J]. Drug Metab Dispos, Feb 1999; 27: 173-179.
    [91] Wang RW, Kari PH, Lu AYH, et al. Biotransformation of lovastatin: IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for oxidative metabolism of lovastatin in rat and human liver microsomes[J]. Arch BiochemBiophys .1991, 290(2): 355–361.
    [92] Jacobsen W, kirchner G, hallensleben K. Comparison of Cypochrome P-450-dependent Metbaolism and Drug Interactions of The 3-Hydroxy-3-Methylglutaryl-Coa Reductase Inhibitors Lovastatin and Pravastatin In The Liver [J]. The Ame Pha and Exp The, 1999, 27: 173-179.
    [93]柯世怀.药物代谢与肝药酶[J].临床检验杂志,1994,12:173-174.
    [94]庹旌生,周炯亮.典型药物作为探针检测肝P450活性及在毒理学中的应用[J].国外医学卫生学分册,1994,21(3):132-135.
    [95] Zhang L, Sun X, Cheng J, et al. Study of Hepatic Function Matching Between Banna Minipig Inbred and Humans[J]. Transplantation Proceedings. 2004, 36: 2492–2494.
    [96]冷建军,专家鸿,韩本立,等.巴马小型猪肝脏应用解剖学观察[J].消化外科,2004,3(3): 181-184.
    [97] Yue-Ming M, Zhang-Qing M, Chang-Qing G, et al. Hepatotoxicity and toxicokinetics of ketoconazole in rabbits [J].Acta Pharmacol Sin 2003; 24(8):778-782.
    [98] Zomborszky KM, Vetesi F, and Kovacs F, et al. Preliminary communication: examination of the harmful effect to fetuses of fumonisin B (1) in pregnant sows [J].Teratog Carcinog Mutagen, 2000,20:293-299.
    [99] Brandt H, Mllers B, Glodek P. Prospects for a genetically very small minipig [J].Scand J Lab Anim Sci, 1998 (Suppl 1), 25:93-96.
    [100] Jones RD, Stuart BP, Greufe NP, et al. Electrophysiology and pathology evaluation of the Yucatan pig as a non-rodent animal model for regulatory and mechanistic toxicology studies [J]. Lab Anim, 1999, 4:356-365.
    [101] Lehmann H The minipig in general toxicology[J]. Scand J Lab Anim Sci, 1998(Suppl1),25:59-62.
    [102] Ikeda GJ, Miller E, Sapienza PP, et al. Comparative tissue distribution and excretion of [1-14C] acrylamide in beagle dogs and miniature pigs [J]. Food Chem Toxicol, 1987, 11:871-875.
    [103] Vaclavikova R, Soucek Pl, Svobodova La,et al.Gut different in vitro metabollism of paclitaxel and docetaxel in humans,rats,pigs,and minipigs[J].Drug Metab. Dispos, 2004, 32: 666 - 674.
    [104]陈华.小型猪在毒理学研究中的应用[J].中国比较医学杂志, 2003,13(3):175—178.
    [105]李连达,张荣利,冯新庆等.中国小型猪心导管介入冠状动脉栓塞心肌梗塞模型的建立[J].中药新药与临床药理.2003,14(3):143-146.
    [106] St. Louis JD, Hughes G.C, Kypson AP., et al. An experimental model of chronic myocardial hibernation[J].Ann. Thorac. Surg, 2000; 69: 1351 - 1357.
    [107] Ruel M, Gui-Fu W, Khan TA, et al. Inhibition of the Cardiac Angiogenic Response to Surgical FGF-2 Therapy in a Swine Endothelial Dysfunction Model[J].Circulation, 2003; 108: 335 - 340.
    [108] Hughes GC, Kypson AP, Annex BH, et al. Induction of angiogenesis after TMR: a comparison of holmium:YAG, CO2, and excimer lasers[J].Ann. Thorac. Surg, 2000, 70: 504 - 509.
    [109] Hopkins SR, Stary CM, Falor E, et al. Pulmonary gas exchange during exercise in pigs[J].J Appl Physiol, 1999; 86: 93-100.
    [110] Fogarty JA., Muller-Delp JM., Delp MD, et al. Exercise Training Enhances Vasodilation Responses to Vascular Endothelial Growth Factor in Porcine Coronary Arterioles Exposed to Chronic Coronary Occlusion[J].Circulation, 2004; 109: 664 - 670.
    [111] Johnson LR, Laughlin MH, et al. Chronic exercise training does not alter pulmonary vasorelaxation in normal pigs[J].J Appl Physiol, 2000; 88: 2008 - 2014.
    [112] Haskal ZJ, Brennecke LJ, et al. Porous and nonporous polycarbonate urethane stent- grafts for TIPS formation: biologic responses[J].J. Vasc. Interv. Radiol.,1999; 10: 1255-1263.
    [113] Hughes GC, Kypson AP, Louis JDS, et al. Improved perfusion and contractile reserve after transmyocardial laser revascularization in a model of hibernating myocardium[J]. Ann. Thorac Surg, 1999; 67: 1714 - 1720.
    [114] Allan JS, Choo JK, Vesga L, et al. Cardiac Allograft Vasculopathy Is Abrogated by Anti-CD8 Monoclonal Antibody Therapy[J].Ann. Thorac. Surg., 1997; 64: 1019 - 1025.
    [115] Symons JD, Stebbins CL, Musch TI,et al. Interactions betweenangiotensin II and nitric oxide during exercise in normal and heart failure rats[J]. J ApplPhysiol, 1999; 87: 574 - 581.
    [116] Hughes GC, Post MJ, Simons M, et al Translational Physiology: Porcinemodels of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis[J].J Appl Physiol, 2003; 94: 1689 - 1701.
    [117]詹纯列,徐本法,朝晖.小型猪在医学实验中的应用[J].中国实验动物学杂志, 2000, 10(2):118-120.
    [118] TABLETS MEVACOR@ (LOVASTATIN).Merck &CO..INC.Whitehouse Station,NJ 08889,USA[R].(www.fda.gov)
    [119] Keith G. Tolman MD, Tolman KG The Liver and Lovastatin [J]. Am J Cardiol 2002,89:1374-1380.
    [120] Zatarain GF. Rhabdomyolysis and acute renal failure associated with lovastatin[J]. Nephron, 1994, 66(4): 483.
    [121] Ahmad S. Lovastatin and peripheral neuropathy[J]. Am Heart J, 1995, 130(6):1321.
    [122] Gavilan J, Carrasco JC, Bermudez RF, et a1. Hepatitisdue to lovastatin.[J]. Med Clin(Barc), 1996, 107: 557-558.
    [123] Lee RS, Lee AM. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole.[J].N Eng J Med, 1995, 333 (10): 664.
    [124] Rosenson RS , Goranson N. Lovastatin - associated sleep and mood disturbances. [J]. Am J Med, 1993, 95 (5): 548.
    [125]邢旺兴、陈士景、宓鹤鸣.洛伐他汀的药物不良反应[J].药学实践杂志1999 ,17 (3):175-178.
    [126] Delaforge M. Importance of Metabolism in Pharmacological Studies: Possible in Vitro Predictability[J]. Nuclear Medicine & Biology, 1998; 25: 705-709.
    [127] Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism[J]. Crit Rev Toxicol 1992; 22: 1-21.
    [128] Wrighton SA, VandenBranden M, Stevens JC, et al. In vitro methods for assesing human hepatic drug metabolism: their use in drug development[J]. Drug Metab Rev 1993; 25: 453-484.
    [129]蔡卫民,张银娣.药物代谢酶的分子遗传学[J].中国药理学通报, 1999, 15(6):491-496.
    [130] Masimirembwa CM, Thompson R, Andersson TB. In Vitro High Throughput Screening of Compounds for Favorable Metabolic Properties in Drug Discovery[J]. Comb Chem High Throughput Screen, 2001, 4: 245-263.
    [131] Pelkonen O, Breimer DD Role of environmental factors in the pharmacokinetics of drugs: Considerations with respect to animal models, P-450 enzymes, and probe drugs. In (Welling PG & Balant LP eds.) Handbook of Experimental Pharmacology 1994: 110: 289-332.
    [132] Pelkonen O, M?enp?? J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes[J].Xenobiotica 1998; 28: 1203-1253.
    [133] Klingenberg M. Pigments of rat liver microsomes. Arch Biochem Biophys 1958, 75: 376-386.
    [134] Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics 1996; 6: 1-42.
    [135] Nelson DR, Kamataki T, Waxman DJ, et al. The P450 superfamily: update on new suquences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature[J]. DNA Cell Biol., 1993, 12,1-51.
    [136] Monshouwer M, Witkamp RF, Nijmeijer SM, et al. Infection (Actinobacillus pleuropneumoniae)- mediated suppression of oxidative hepatic drug metabolism and cytochrome P450 3A mRNA levels in pigs[J].Drug Metab Dispos. 1995; 23:44–47.
    [137] Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species[J]. Chem Biol Interact, 1997,106(3):161-182.
    [138] Bogaards JJ, Bertrand M, Jackson P, et al. Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man [J]. Xenobiotica,2000,30(12):1131-1152.
    [139] Anzenbacherova′E, Baranova′J, Zuber R, et al. Model Systems Based on Experimental Animals for Studies on Drug Metabolism in Man: (Mini)Pig Cytochromes P450 3A29 and 2E1[J]. Pharmacology & Toxicology 2004, 95:244–245.
    [140]黄林清,杨志勇.肝细胞色素P450与药物代谢的研究进展[J].中国药房, 2001, 12(6): 372-373.
    [141] Imaoka S, Yamada T, Hiroi T, Hayashi K, Sakaki T, Yabusaki Y, Funae Y. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat[J]. Biochem Pharmacol, 1996, 51(8): 1041-1050.
    [142] Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP 3A[J]. Annu Rev Pharmacol Toxicol, 1998, 38: 389-430.
    [143] Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene[J]. Chem Res Toxicol, 1995, 3:363–371.
    [144] Hosagrahara VP, Hansen LK, Remmel RP. Induction of the metabolism of midazolam by rifampin in cultured porcine hepatocytes: preliminary evidence for CYP 3A isoforms in pigs[J]. Drug Metab Dispos, 1999, 27(12): 1512-1518.
    [145] Kocarek TA, Schuetz EG, Strom SC, et al. Comparative analysis of cytochrome P450 3A induction in primary cultures of rat, rabbit, and human hepatocytes[J]. Drug Metab Dispos, 1995, 23(3): 415-421.
    [146] Nishibe Y, Wakabayashi M, Harauchi T, et al. Characterization of cytochrome P450(CYP 3A12) induction by rifampicin in dog liver[J]. Xenobiotica, 1998, 28(6):549-557.
    [147] Bourrie M., Meunier V., Berger Y., et al. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes[J]. J Pharmacol Exp Ther., 1996, 277(1): 321-332.
    [148] Sanderink GJ, Bournique B, Stevens J, et al. Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro [J]. J. Pharmacol. Exp. Ther., 1997, 282: 1465-1472.
    [149] Floby E, Briem S, Terelius Y, et al. Use of a cocktail of probe substrates for drug-metabolizing enzymes for the assessment of the metabolic capacity of hepatocyte preparations[J]. Xenobiotica., 2004, 34(11-12): 949-959.
    [150] Lowry OH, Roseborough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent[J]. J. Biol. Chem., 1951,193: 265-275.
    [151] Guengerich FP, Martin MV, Beaune PH,et al. Characterization of rat and human liver microsomal cytochrome CYP forms involved in nifedipine oxidation: prototype for genetic polymorphism in oxidative drug metabolism [J]. Biol. Chem., 1986, 261:5051–5060.
    [152] Vyas KP, Kari PH, Pitzenberger SM, et al. Biotransformation of lovastatin: I. Structure elucidation of in vitro and in vivo metabolites in rat and mouse[J]. Drug Metab Dispos 1990,18(2):203–211.
    [153] Vyas KP, Kari PH, Wang RW, et al. Biotransformation of lovastatin III. Effect of cimetidine and famotidine on in vitro metabolism of lovastatin by rat and human liver microsomes[J]. Biochem-Pharmacol. 1990, 39(1): 67-73.
    [154] Vyas KP, Kari PH, Prakash SR, et al. Biotransformation of lovastatin II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin [J]. Drug-Metab-Dispos,1990,18(2): 218-222.
    [155] Rita AH, Edgar HU, Alice ET, et al. Biotansformation of lovastatinⅤ.Species Differences in In Vivo Metabolite Profiles of Mouse,Rat,Dog,and Human[J].Drug metabolism and disposition.1993,21(6):1003-1011.
    [156] Lin JH. Species similarities and differences in pharmacokinetics. [J]. Drug Metab. Dispos., 1995, 23(10): 1008–1021.
    [157] Smith DA. Species differences in metabolism and pharmacokinetics: are we close to anunderstanding[J].Drug Metab Rev ,1991,23:355–373.
    [158] Bjornsson TD, Callaghan JT, Einolf HJ., et al. The conduct of in vitro and in vivodrug-drug interaction studies: a pharmaceutical research and manufacturers of america (PHRMA) perspective[J]. Drug Metab Dispos 2003: 31(7): 815-832.
    [159] Boobis AR, Sesardic D, Murray BP, et al. Species variation in the response of the cytochrome P450-dependent monooxygenase system to inducers and inhibitors [J]. Xenobiotica., 1990, 20:1139–1161.
    [160] Michael DG, Joel BY, Alfred WA, et al. Metabolism of lovastatin by rat and human liver microsomes in vitro [J]. Drug Metab Disposit, 1988, 16(5):678-682.
    [161] Nissen PH, Wintero AK,Fredholm M. Mapping of porcine genes belonging to two different cytochrome P450 subfamilies[J]. Anim Genet, 1998,29(1):7-11.
    [162] Guengerich, FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species[J]. Chemico-Biological Interactions, 1997, 106: 161-182.
    [163] Nowakowski-Gashaw I, Mrozikiewicz PM, Roots I, et al.Rapid quantification of CYP 3A4 expression in human leukocytes by real-time reverse transcription-PCR[J]. Clin Chem,2002,48(2):366-370.
    [164] Olsen AK, Hansen KT and Friis C.Pig hepatocytes as an in vitro model to study the regulation of human CYP 3A4: Prediction of drug-drug interactions with 17- aethynylestradiol[J]. Chem Biol Interact,1997,107:93-108.
    [165] Jurima-Romet M, Casley WL, Leblanc CA, et al. Evidence for the catalysis of dextromethorphan O-demethylation by a CYP2D6-like enzyme in pig Liver[J]. Toxicology in Vitro, 2000, 14(3):253-263.
    [166] Skaanild MT, Friis C. Characterization of the P450 system in Gottingen minipigs[J]. Pharmacol Toxicol, 1997,80 Suppl 2:28-33.
    [167] Kranendonk M, Carreira F, Theisen P, et al. Escherichia coli MTC, a human NADPH P450 reductase competent mutagenicity tester strain for the expression of human cytochrome P450 isoforms 1A1, 1A2, 2A6, 3A4, or 3A5: catalytic activities and mutagenicity studies[J]. Mutat. Res. 1999, 441, 73–83.
    [168] Gillam EM, Guo Z, Ueng YF , et al. Expression of cytochrome P450 3A5 in Escherichia coli: effects of 5' modification, purification, spectral characterization, reconstitution conditions, and catalytic activities[J]. Arch Biochem Biophys 1995, 20;318(2):498.
    [169] Shet MS, Fisher CW, Holmans, et al. Human cytochrome P450 3A4: enzymatic properties of a purified recombinant fusion protein containing NADPH - P450 reductase[J]. Proc Natl Acad Sci, 1993,90:11748-11752.
    [170]商海涛,杨家大,魏泓,小型猪肝脏细胞色素P450基因CYP 3A29克隆与序列分析[J].畜牧与兽医2008,40(5):21-25.
    [171] Scott EE, Spatzenegger M, Halpert JR. A Truncation of 2B Subfamily Cytochromes P450 Yields Increased Expression Levels, Increased Solubility, and Decreased Aggregation While Retaining Function[J]. Archives of Biochemistry and Biophysics, 2001 ,395(1): 57-68.
    [172] Larson JR, Coon MJ, Porter TD. Alcohol-inducible cytochrome P450IIE1 lacking the hydrophobic NH2-terminal segment retains catalytic activity and is membrane bound when expressed in Escherichia coli[J]. J Biol Chem 1991;266:7321-7324.
    [173] Friedberg T, Pritchard MP, Bandera M, et al. MeriIs and limirations of recombinant models for the study of human D45 Inediated drug metabolism and toxicity: an intra-laboratory comrison[J]. Drug Metab Rev, 1999, 31:523-544.
    [174] Larson JR , Coom MJ , Porter TD. Purification andproperties of a shortened form of cytochrome P450 2E1 : Deletion of the NH2- terminal membrane insertion signal peptide does not alter the catalytic activities[J ] . Procession of National Academy of Science , 1991a , 88 : 9141 - 9145.
    [175] Barnes HJ , Arlotto MP , Waterman MR. Expression and enzymatic activity of recombinant cytochrome P450 17-hydroxylase in Escherichia coli [J] . Processing of National Academy of Science , 1991 , 88 : 5597-5601.
    [176] Sueyoshi T , Parkl J. Molecular engineering of microsomal CYP 2a-4 to a stable ,watersoluble enzyme[J] . Archive of Biochemical and Biophysic, 1995 , 322(10) : 265 - 271.
    [177]朱立勤,娄建石.细胞色素P450与药物代谢的研究现状[J].中国临床药理学与治疗学,2004,10: 5-10.
    [178] Sandhu P,Baba T,Guenguerich FP.Expression of modified cytochrome 450 2C10(2C9)in Eeherichia coli,purification,and reconstitution of catalytic activity[J]. Arch Biochem Biophys, 1993, 306: 443-450.
    [179] Mitraki A, King J. Protein folding intermediates and inclusion body formation[J]. Bio/Technology, 1989, 7: 690-697.
    [180] Schein N, Schein CH, Noteborn MH. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperatures[J]. Bio/Technology, 1988, 6: 291-294.
    [181] Chalmers JJ, Kim E, Telford JN, et al. Effects of temperature on Escherichia colioverproducing beta -lactamase or epidermal growth factor[J]. Appl Environ Microbiol, 1990, 56: 104-111.
    [182] Ahn T, Yang S, Yun CH, Enhanced expression of. human cytochrome P450 1A2 by co-expression with human. molecular chaperone Hsp70[J]. Toxicol Lett. 153 (2004) 267–272.
    [183] Jansson I, Stoilov I, Sarfarazi M, et al. Enhanced expression of CYP1B1 in Escherichia coli[J]. Toxicology, 2000,144,211-219.
    [184] Mosadeghi S, Furnes B, Matsuo AY, et al. Expression and characterization of cytochrome P450 2X1 in channel catfish (Ictalurus punctatus) [J]. Biochimica et Biophysica Acta 1770 (2007) 1045-1052.
    [185] Kagawa N, Cao Q, Kusano K. Expression of human aromatase (CYP19) in. Escherichia coli by N-terminal replacement and induction of cold stress. Response [J]. Steroids, 2003(68): 205–209.
    [186] Bort R, Mace K, Boobis A, et al. Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways[J]. Biochem Pharmacol 1999; 58: 787-796.
    [187] Shet MS.Fisher CW,Ariotto MP,et al.Purification and enzymatic properties of a recomb inant fusion protein expressed in Escherichia coli containing the domains of bovine P45o 17A1and rat NADPH—P450 reductase[J]. Arch Biochem Biophys, 1994, 377: 402-417.
    [188] Blake JAR,Pritchard M,Ding SH,et a1.Co-expresion of a human p450(CYP 3A4)and p450 reductase generates a highly functional mono-oxygenase system in Escherichia coli[J]. FEBs Lett, 1996, 397:210-214.
    [1] Prentis RA., Lis Y, Walker SR. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985) [J]. Br. J. Clin. Pharmacol., 1988, 25: 387-396.
    [2] Lin JH. Species similarities and differences in pharmacokinetics. [J]. Drug Metab. Dispos., 1995, 23(10): 1 008–1 021.
    [3] H su FS,Du SJ. Cardiac disease in swine. The Pig Model For Biomedical Research [M ]. Pig Research Institute, Taiwan, ROC, 1982, I : 134-143.
    [4] Anzenbacherova E, Anzenbacher P, Svoboda Z. Minipig as a model for drug metabolism in man:Comparison of in vitro and in vivo metabolism of propafenone[J]. Biomed.Papers, 2003, 147(2): 155-159.
    [5] Nouws JFM, Vree TB, Baakman M, et al. Pharmacokinetics,renal clearance, tissue distribution and residue aspects of sulphadimidine and its N4-acetyl metabolite in pigs[J]. The Veterinary Quarterly, 1986, 8(2): 123-135.
    [6] Bronner S, Murbach V, Peter ED. Ex Vivo Pharmacodynamics of Amoxicillin-Clavulanate against ?-Lactamase-Producing Escherichia coli in a Yucatan miniature pig modle that minics human pharmacokinetics[J]. American. Society for Microbiology.2002, 46(12): 3728-3798.
    [7] Květina J,Svoboda Z, AnzenbacherováE, et al. Psychotropic agens sulpiride: its pharmacokinetics (man /minipigs) and organ distribution (minipig) [J].Archives of Pharmacology , 1998,358(1), 404.
    [8] Nobilis M, Kopecky J, kvetina J, et al. Comparative biotransformation and disposition studies of nabumetone in humans and minipigs using high-performance liquid chromatography with ultrviolet,fluorscence and mass spectrometric detection[J]. Joural of Pharmaceutical and Biomedical Analysis.2003(32),641-656.
    [9] Xing QF, Lin S, YW Chien.Transdermal testosterone delivery in castrated Yucatan minipigs: pharmacokinetics and metabolism[J]. J Control Release, Mar 1998: 52(1-2): 89-98.
    [10] Vardaxis NJ.Brans TA,Boon ME, et al.Confocal laser scaning microscopy of porcine skin:implications for human wound healing studies[J].J Anat,1997,190:601-611
    [11] Meyer W,Scharz R,Neurand K.The skin of domestic mammals as a model for the humanskin with special reference to the domestic pig[J].Curr Probl Dermatol,1978,7:39-52
    [12] Smith DA. Species differences in metabolism and pharmacokinetics: are we close to anunderstanding[J].Drug Metab Rev ,1991,23:355–373.
    [13] Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene[J].Chem Res Toxicol,1995a,3:363–371.
    [14] Guengerich FP. Human cytochrome P-450 enzymes, in Cytochrome P-450 (Ortiz de Montellano PR ed) [M]. Plenum, New York ,1995,473–535.
    [15] Soucek P , Gut I. Cytochromes P-450 in rats: structures, functions, properties andrelevant human forms[J]. Xenobiotica ,1992,22:83–103.
    [16] Pelkonen O, Breimer DD. Role of environmental factors in the pharmacokinetics of drugs: Considerations with respect to animal models, P-450 enzymes, and probe drugs. In (Welling PG & Balant LP eds.) Handbook of Experimental Pharmacology 1994: 110: 289-332.
    [17] Kocarek TA, Schuetz EG, Guzelian PS .Expression of multiple forms of cytochrome P450 mRNAs in primary cultures of rat hepatocytes maintained on matrigel[J].Mol Pharmacol ,1992,43:328-334.
    [18] Kocarek TA, Schuetz EG, Strom SC, et al. Comparative analysis of cytochrome P450 3A induction in primary cultures of rat, rabbit, and human hepatocytes[J]. Drug Metab Dispos,1995,23:415-421.
    [19] Olsen AK, Hansen KT and Friis C. Pig hepatocytes as an in vitro model to study the regulation of human CYP 3A4: Prediction of drug-drug interactions with 17- aethynylestradiol[J]. Chem Biol Interact,1997,107:93-108.
    [20] Anzenbacher P, Soucek P, AnzenbacherováE, et al. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples[J].Drug Metab. Dispos 1998, 26(1): 56-59.
    [21] Witkamp RF,. Nijmeijer SM, Monshouwer M, et al. The antibiotic tiamulin is a potent inducer and inhibitor of cytochrome P450 3A via the formation of a stable metabolite intermediate complex[J].Drug Metab Dispos. 1995: 23:542-547.
    [22] Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P-450, drug interactions and interindividual variability[J].Drug Metab Dispos. 1995: 23:1315-1323.
    [23] Monshouwer M, van't Klooster GAE, Nijmeijer SM, et al. Characterization ofcytochrome P450 isoenzymes in primary cultures of pig hepatocytes[J].Toxicol. in Vitro 1998; 12:715-723
    [24] Zuber R, Anzenbacherov`a Eva, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism[J].Cell Mol Med, 2002, 5(2): 189-198.
    [25] Michael JM, Dorothy EF, Karyn DH, et al. Identification of Mutiple Constitutive and Inducible Hepatic Cytochrome P 450 Enzymes in Market Weight Swine [J]. Drug Metab Dispos, 2001,29:908-915.
    [26] Lin Z, Lou Y, Squires EJ. Molecular cloning, expression and functional characterization of the cytochrome P450 2A6 gene in pig liver [J]. Anim Genet, 2004,35(4): 314-316.
    [27] Baranova J, Anzenbacherova E, Anzenbacher P, et al. Minipig cytochrome P450 2E1: comparison with human enzyme. Drug Metab. Dispos., 2005, 33(6): 862-865.
    [28] Guengerich, FP. Metabolism of chemical carcinogens. Carcinogenesis 2000, 21:345-351. Anzenbacher, P & Anzenbacherová, E: Cytochromes P450 and metabolism of xenobiotics[J].CMLS, Cell. Mol. Life Sci 2001, 58:737-747.
    [29]李健,刘勇,张江伟等.贵州小型香猪与人5种CYP酶活性的比较[J].中国比较医学杂志,2006, 16(3): 157-161.
    [30] Jian L, Yong L, Jiang-wei Z, et al. Characterization of drug metabolizing activities in Chinese Bama miniature pigs: comparison with human analogs[J].Comp. Med. 2006, 56(4): 269-273.
    [31] Soucek P, Zuber R, AnzenbacherováE, et al. Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs[J].BMC Pharmacology. 2001,1(1): 11.
    [32] Skaanild MT, Friis C.Characterization of the P450 system in Gottingen minipigs[J]. Pharmacol Toxicol, Jan ,1997,80 Suppl 2: 28-33.
    [33] Kvetina J, Svoboda Z, Nobilis M, Pastera J, Anzenbacher P. Experimental Goettingen minipig and Beagle dog as two species used in bioequivalence studies for clinical pharmacology(5-aminosalicylic acid and atenolol as model drugs)[J].Gen. Physiol. Biophys ,1999, 18:80-85.
    [34]王爱德,甘世祥,冯书堂等.丹麦Gottingen小型猪科学考察报告[J].中国实验动物学杂志,2002,12(1):47-48
    [35]张铣,刘毓.毒理学.北京医科大学,中国协和医科大学联合出版社,1997(第二版):1-4.
    [36] Steiner S, Anderson NL. Expression prodiling in toxicology-potentials and limitations[J].Toxicol Letter, 2000: 112-113:467.
    [37]王治乔,袁伯俊.新药临床前安全性评价与实践.军事医学科学出版社,1997 (第一版) :10-16.
    [38] Brandt H, M llers B, Glodek P. Prospects for a genetically very small minipig [J].Scand JLab Anim Sci, 1998 (Suppl 1), 25:93 -96.
    [39] Jones RD, Stuart BP, Greufe NP, et al. Electrophysiology and pathology evaluation of the Yucatan pig as a non-rodent animal model for regulatory and mechanistic toxicology studies [J].Lab Anim, 1999, 4:356-365.
    [40] Lehmann H. The minipig in general toxicology [J] .Scand J Lab Anim Sci, 1998 (Suppl1), 25:59 - 62.
    [41] Bartek MJ, Labudde JA, Maibach HI. Skin permeability in vivo: Comparison in rat, rabbit, pig and man [J]. J Invest Dermatol, 1972, 58:114-123.
    [42] Reifenrath WG, Chellquist EM, Shipwash EA, et al. Percutaneous penetration in the hairless dog, weanling pig, and the grafted athymic nude mouse: Evaluation of models for predicting skin penetration in man[J ] .Br J Dermatol, 1984, 111:123-135.
    [43] Wester RC, Noonam PK, Cole MP, et al. Percutaneous absorption of testosterone in the newborn rhesus monkey: comparison to the adult [J] . Pedistr Re, 1977, 11:737-739.
    [44]陈俊颖,魏泓,叶华虎等.山羊体外受精的研究[J].中国实验动物学报,2004,12(1):35-39.
    [45]陈俊颖,胡俊西,魏泓.人与巴马香猪皮肤的比较生物学研究[J].中国比较医学杂志,2005,16(5):288-290.
    [46]陈俊颖,魏泓,周建华.人表皮细胞分离培养的研究[J].中国实验动物学报,2005,14(2):37-40.
    [47] Hayama T, Kokue E. Use of the Goettingen miniature pig for studying pyrimethamine teratogenesis [J]. Crit Rev Toxicol, 1985, 14:403-421.
    [48] Luo X, Heidinger V, Picaud S, et al, Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro [J]. Invest Ophthalmol Vis Sci, 2001, 42:1096-1106.
    [49] RL Oberle, H Das, SL Wong, et al..Pharmacokinetics and metabolism of diclofenac sodium in Yucatan miniature pigs[J].Pharm Res, May 1994: 11(5): 698-703.
    [50]蔡绍晖,熊文碧,李幼平等.中国内江猪与中国人肌注头孢唑啉药代动力学的比较研究[J].中国修复重建外科杂志,1999,13(3):178-182.
    [51]薛明,崔颖,汪汉卿等.隐丹参酮及其代谢物在猪体内的药代动力学研究[J].药学学报,1999,34(2):81-84.
    [52]袁宗辉,缪小群.四种药物在猪的药动学特征[J].华南农业大学学报1992,13(3):103-106.
    [53]朱星红,炳银,应大君.版纳微型猪近交系的解剖组织学[M].高等教育出版社.2004(第1版).
    [54] Hong W, Yangzhi Z, Aide W, et al. Researches on Chinese laboratory miniature pigs, China-EU Animal Biotechnology Conference Proceedings, October 11-13, 2000 Shenzhen.
    [55]李连达,张荣利,冯新庆等.中国小型猪心导管介入冠状动脉栓塞心肌梗塞模型的建立[J].中药新药与临床药理.2003,14(3):143-146.
    [56]王胜洵,于建波,刘东.猪慢性心肌缺血模型的建立[J].中国胸心血管外科临床杂志.2004,11(1):76-77.
    [57]章辰芳,孔繁智.黄芪生脉颗粒剂对小型猪实验性心肌缺血时的影响[J].中国实验方剂学杂志.1998,4(5):22-24.
    [58] Maedaa K, Yasunari K, Eisuke FS, et al. Enhanced oxidative stress in neutrophils from hyperlipidemic guinea pig [J]. Atherosclerosis,2005 1-6.
    [59] Silvia D, Budriesi R, Sudwan P, et al. Diphenylcyclohexylamine derivatives as new potent multidrug resistance (MDR) modulators [J]. Bioorganic & Medicinal Chemistry, 2005,13(4),985-998.
    [60] Keith G. Tolman MD, Tolman KG The Liver and Lovastatin [J]. Am J Cardiol 2002;89:1374-1380.
    [61] Jacobsen W, kirchner G, hallensleben K. Comparison of Cypochrome P-450-dependent Metbaolism and Drug Interactions of The 3-Hydroxy-3-Methylglutaryl-Coa Reductase Inhibitors Lovastatin and Pravastatin In The Liver [J]. The Ame Pha and Exp The,1999,Vol.27,173-179.
    [62] Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, Langendorfer A, Stein EA, Kruyer W, Gotto AM Jr. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. Results of AFCAPS/TexCAPS [J]. JAMA 1998, 279: 1615-1622.
    [63] Vyas KP, Kari PH, Pitzenberger SM, et al.Biotransformation of lovastatinⅠ.Structure elucidation of invitro and in vivo metabolites in the rat and mouse[J].Drug Metabolism and Disposition,1990,18(2):203-211.
    [64] Regina WW, Prasad HK, Anthony YH. et al. Biotransformation of lovastatin[J]. ArchBiochem Biophys, Nov 1999,290(2):355-361
    [65] Rita AH, Edgar HU, Alice ET, et al.Biotansformation of lovastatinⅤ.Species Differences in In Vivo Metabolite Profiles of Mouse,Rat,Dog,and Human[J].Drug metabolism and disposition.1993,21(6):1003-1011.
    [66] Pelkonen O, M?enp?? J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes[J].Xenobiotica 1998, 28: 1203-1253.
    [67] Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians[J].J. Pharmacol. Exp. Ther. 1994: 270:414–23.
    [68] Kolars JC, Lown KS, Schmiedlin RP, et al. CYP 3A gene expression in human gut epithelium[J].Pharmacogenetics 1994: 4:247-59.
    [69] McKinnon RA, Burgess WM, Hall P, et al. Characterization of CYP 3A gene subfamily expression in human gastrointestinal tissues[J].Gut 1995: 36:259-67.
    [70] Schuetz EG, Schuetz JD, Grogan WM, et al. Expression of cytochrome P450 3A in amphibian, rat, and human kidney[J].Arch. Biochem. Biophys. 1992: 294:206-14.
    [71]魏泓.我国小型猪的研究现状[J].中国实验动物学杂志,1997,7(4):252.
    [72]刘中禄,魏泓,曾养志等.中国三种实验用小型猪mtDNA D-loop多态性分析[J].动物学报,2001,47(4):425-430.
    [73]吴丰春,魏泓,王爱德.AFLP技术用于巴马小型猪遗传多样性的研究[J].中国实验动物学杂志,2002,12(4):207-209.
    [74]王爱德,郭亚芬,李柏等.巴马小型猪血液生化指标[J].上海实验动物科学,2001,21(1):8-12.
    [75]王爱德,郭亚芬,李柏等.巴马小型猪血液生理指标[J].上海实验动物科学, 2001, 21(2): 75-78.
    [76] David CD, Janice AD, Mark P, et al. Acute Methanol Toxicity in Minipigs [J]. Fundamental and Applied Toxicology, 1993, 20(3): 341-347.
    [1] Klingenberg M. Pigments of rat liver microsomes. Arch Biochem Biophys 1958; 75: 376-386. ;Omura T, Sato R. A new cytochrome in liver microsomes[J].J Biol Chem 1962; 237: 1375-1376.
    [2] Delaforge M. Importance of Metabolism in Pharmacological Studies: Possible in Vitro Predictability[J].Nuclear Medicine & Biology 1998; 25: 705-709.
    [3] Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism[J].Crit Rev Toxicol 1992; 22: 1-21.
    [4] Wrighton SA, VandenBranden M, Stevens JC, et al. In vitro methods for assesing human hepatic drug metabolism: their use in drug development[J].Drug Metab Rev 1993; 25: 453-484.
    [5] Masimirembwa CM, Thompson R, Andersson TB. In Vitro High Throughput Screening of Compounds for Favorable Metabolic Properties in Drug Discovery [J]. Comb Chem High Throughput Screen, 2001, 4, 245-263.
    [6] Pelkonen O, Breimer DD. Role of environmental factors in the pharmacokinetics of drugs: Considerations with respect to animal models, P-450 enzymes, and probe drugs. In (Welling PG & Balant LP eds.) Handbook of Experimental Pharmacology 1994; 110: 289-332.
    [7] Pelkonen O, M?enp?? J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes[J].Xenobiotica 1998; 28: 1203-1253.
    [8] Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians[J].J. Pharmacol. Exp. Ther. 1994; 270:414–23.
    [9] Kolars JC, Lown KS, Schmiedlin RP., et al. CYP 3A gene expression in human gut epithelium[J].Pharmacogenetics 1994; 4:247–59.
    [10] McKinnon RA, Burgess WM, Hall P, et al. Characterization of CYP 3A gene subfamily expression in human gastrointestinal tissues[J].Gut 1995; 36:259–67.
    [11] Schuetz EG, Schuetz JD, Grogan WM, et al. Expression of cytochrome P4503A in amphibian, rat, and human kidney[J].Arch. Biochem. Biophys. 1992; 294:206–14.
    [12] Haehner BD, Gorski JC, Vandenbranden M, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans[J].Mol. Pharmacol. 1996; 50:52–59.
    [13] Maurel P. The CYP3 Family. In Cytochromes P450: Metabolic and Toxicological Aspects, ed[M].C Ioannides, Boca Raton, FL: CRC 1996: 241–70.
    [14] Guengerich FP. Humancytochrome P450 enzymes. In Cytochrome P450:Structure, Mechanism, and Biochemistry, ed[M].PR Ortiz de Montellano, New York: Plenum, 1995: 473–535.
    [15] Hoensch H, Woo CH, Raffin SB, et al. Oxidative metabolism of foreign compounds in rat small intestine: cellular localization and dependence on dietary iron[J].Gastroenterology 1976; 70: 1063-1070.
    [16] Monshouwer M, Witkamp RF, Nijmeijer SM, et al. Infection (Actinobacillus pleuropneumoniae)- mediated suppression of oxidative hepatic drug metabolism and cytochrome P450 3A mRNA levels in pigs[J].Drug Metab Dispos. 1995; 23:44–47.
    [17] Anzenbacher P, Soucek P, AnzenbacherováE, et al. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples[J].Drug Metab. Dispos 1998, 26(1): 56 - 59.
    [18] Witkamp RF,. Nijmeijer SM, Monshouwer M, et al. The antibiotic tiamulin is a potent inducer and inhibitor of cytochrome P450 3A via the formation of a stable metabolite intermediate complex[J].Drug Metab Dispos. 1995; 23:542–547.
    [19] Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P-450, drug interactions and interindividual variability[J].Drug Metab Dispos. 1995; 23:1315–1323.
    [20] Monshouwer M, van't Klooster GAE., Nijmeijer SM., et al. Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes[J].Toxicol. in Vitro 1998; 12:715-723
    [21] Zuber R, Anzenbacherov`a Eva, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism[J].Cell Mol Med,2002,5(2):189-198.
    [22] Michael JM, Dorothy EF, Karyn DH, et al. Identification of Mutiple Constitutive and Inducible Hepatic Cytochrome P 450 Enzymes in Market Weight Swine [J]. Drug MetabDispos, 2001,29:908~915.
    [23] Lin Z, Lou Y, Squires E J. Molecular cloning, expression and functional characterization of the cytochrome P450 2A6 gene in pig liver [J]. Anim Genet, 2004,35(4): 314~316.
    [24] Baranova J, Anzenbacherova E, Anzenbacher P, et al. Minipig cytochrome P450 2E1: comparison with human enzyme. Drug Metab. Dispos., 2005, 33(6): 862-5.
    [25] Guengerich, FP. Metabolism of chemical carcinogens. Carcinogenesis 2000, 21:345351. Anzenbacher, P & Anzenbacherová, E: Cytochromes P450 and metabolism of xenobiotics[J].CMLS, Cell. Mol. Life Sci 2001, 58:737747.
    [26]李健,刘勇,张江伟等.贵州小型香猪与人5种CYP酶活性的比较[J].中国比较医学杂志,2006, 16(3): 157-161.
    [27] Jian L, Yong L, Jiang WZ, et al. Characterization of drug metabolizing activities in Chinese Bama miniature pigs: comparison with human analogs[J].Comp. Med. 2006,56(4):269-273.
    [28] Soucek P, Zuber R, AnzenbacherováE, et al. Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs[J].BMC Pharmacology. 2001,1(1): 11.
    [29] Skaanild MT, Friis C. Characterization of the P450 system in Gottingen minipigs[J]. Pharmacol Toxicol, Jan ,1997,80 Suppl 2: 28-33.
    [30] Kvetina J, Svoboda Z, Nobilis M, et al. Experimental Goettingen minipig and Beagle dog as two species used in bioequivalence studies for clinical pharmacology(5-aminosalicylic acid and atenolol as model drugs)[J].Gen. Physiol. Biophys ,1999, 18:80-85.
    [31] Vaclavikova R, Soucek P, Svobodova L, et al. Gut different in vitro metabolism of paclitaxel and docetaxel in humans,rats,pigs,and minipigs[J]. Drug Metab. Dispos., Jun 2004; 32: 666 - 674.
    [32] Lu C, Li AP. Species comparison in P450 induction: effects of dexamethasone, omeprazole, and rifampin on P450 isoforms 1A and 3A in primary cultured hepatocytes from man, Sprague-Dawley rat, minipig, and beagle dog [J]. Chem Biol Interact, 2001,134(3):271~281.
    [33] Lejus C, Fautrel A, Malledant Y, et al. Inhibition of cytochrome P450 2E1 by propofol in human and porcine liver microsomes [J]. Biochem Pharmacol, 2002,64(7):1151~1156.
    [34] Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism[J].J.Cell,No 2 2002,189-198
    [35] Sakuma T, Shimojima T, Miwa K, et al. Clonging CYP2D21 and CYP 3A22 cDNAs from liver of miniature pigs[J].Drug Metabolism and Disposition 2004,32:376-378.
    [36] Myers MJ, Farrell DE, Howard KD , et al. Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine[J].Drug Metab. Disposition, 2001,29:908.
    [37] Rodrigues AD, Wong SL. Application of human liver microsomes in metabolism-based drug-drug interactions[J]. Adv Pharmacol 1997, 43: 65-101.
    [38] Reinach B, de Sousa G, Dostert P, et al. Comparative effects of rifabutin and rifampicin on cytochromes P450 and UDP-glucuronosyl-transferases expression in fresh and cryopreserved human hepatocytes. Chem Biol Interact 1999; 121(1): 37-48.
    [39] Li AP. Primary hepatocyte cultures as an in vitro experimental system for the evaluation of pharmacokinetic drug-drug interactions. Adv Pharmacol 1997; 43: 103-130.
    [40] Ferrini JB, Pichard L, Domergue J, et al. Long-term primary cultures of adult human hepatocytes. Chem Biol Interact 1997; 107(1-2): 31-45.
    [41]Yoshitomi S, Ikemoto K, Takahashi J, et al. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol In Vitro 2001; 15(3): 245-56.
    [42] Ferrero JL, Brendel K. Liver slices as a model in drug metabolism. Adv Pharmacol 1997; 43: 131-169.
    [43] Lin JH, Lu AYH. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 5(5): 361-390.
    [44] Crespi CL, Miller VP. The use of heterologously expressed drug metabolizing enzymes--state of the art and prospects for the future. Pharmacol Ther 1999; 84(2): 121-131.
    [45] Crespi CL, Penman BW. Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug-drug interactions. Adv Pharmacol 1997; 43: 171-188.
    [46] Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Human cytochromes P450 mediating phenacetin O-deethylation in vitro: validation of the high affinity component as an index of CYP1A2 activity[J]. J Pharm Sci 1998; 87: 1502-1507.
    [47] Miles JS, McLaren AW, Forrester LM, et al. Identification of the human liver cytochrome P-450 responsible for coumarin 7-hydroxylase activity[J]. Biochem J 1990; 267: 365-371
    [48] Bort R, Mace K, Boobis A, et al. Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways[J]. Biochem Pharmacol 1999; 58: 787-796.
    [49] Jones DR, Gorski JC, Hamman MA, et al. Quantification of dextromethorphan and metabolites: a dual phenotypic marker for cytochrome P450 3A4/5 and 2D6 activity[J]. J Chromatogr B 1996; 678: 105-111.
    [50] Kim RB, O'Shea D. Interindividual variability of chlorzoxazone 6-hydroxylation in men and women and its relationship to CYP2E1 genetic polymorphisms[J].Clin Pharmacol Ther 1995; 57: 645-655.
    [51] Waxman DJ, Attisano C, Guengerich FP, et al. Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme[J].Arch Biochem Biophys 1988: 263: 424-436
    [52] Bjornsson TD, Callaghan JT, Einolf HJ., et al. The conduct of in vitro and in vivo drug-drug interaction studies: a pharmaceutical research and manufacturers of america (PHRMA) perspective[J].Drug Metab Dispos 2003: 31(7): 815-832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700