用户名: 密码: 验证码:
模拟失重条件下microRNA-494抑制成骨细胞分化作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间长期重力环境的改变会引起机体多个系统的变化,包括骨质疏松、肌肉萎缩、免疫系统功能不全、心血管系统适应性减弱等。通过物理训练和营养补充等措施的实施可以缓解肌肉萎缩、提高心血管系统的适应性,然而,目前尚没有办法对抗微重力引起的宇航员骨质流失,这是威胁长期进行太空工作宇航员身体健康的最主要因素之一。微重力导致骨质流失速度大约为每月减少2 %的骨矿物质密度,相当于绝经后妇女一年流失的骨量。研究表明,重力和机械负荷是保持骨骼完整性的重要因素,然而微重力环境引起骨质丢失的机制尚不完全清楚。已有的研究显示,失重引起的骨量减少是因为骨形成与重吸收之间的平衡被破坏,骨质形成减少,而重吸收保持正常或增加,最终导致了骨量丢失。由于成骨细胞分化是骨骼形成和维持骨量的关键步骤,所以目前被普遍接受的观点认为微重力导致的骨丢失的主要原因是成骨的细胞分化障碍,但是导致成骨细胞分化障碍的分子机制并不完全清楚。
     miRNA是一类长度约18-25nt的小分子RNA,存在于包括哺乳动物在内的多种有机生命内。miRNA通过完全或不完全互补的方式结合于靶基因的mRNA的3’UTR,负向调控基因表达。大约超过30 %的基因表达都受到miRNA的调控,表明miRNA调控基因表达这一现象是普遍存在的。miRNA在细胞增殖、分化、死亡等过程中发挥着至关重要的作用。许多研究认为,miRNA参与了对成骨细胞成骨过程的表达调控,是成骨细胞分化的重要的调节分子。
     本研究中我们以BMP-2诱导小鼠间充质多能前体细胞C2C12成骨分化为研究对象,探讨模拟失重状态下,成骨细胞分化过程中miRNA表达谱的改变,进而研究miRNA在失重性骨丢失中的作用及其分子机制。本研究的主要发现和结果如下:
     1.微重力抑制成骨细胞分化和成熟。我们首先在细胞水平上检测微重力对成骨细胞分化的影响。我们将C2C12细胞置于回转器培养,同时加入300 ng/ml BMP-2诱导分化,对照组不加BMP-2刺激。72小时后,Real-time PCR检测成骨细胞特异基因碱性磷酸酶(Alkaline phosphatase,ALP),骨钙素(osteocalcin,OC),骨保护素(osteoprotegerin,OPG)和Runx2,结果显示,在模拟失重环境下,成骨细胞分化受到显著抑制。成骨细胞分化过程有多条通路参与,我们检测了微重力对部分通路相关分子表达的影响。我们按上述方法处理C2C12细胞,72小时后收集细胞裂解液,Western blot结果显示,微重力引起BMPR2、FGFR2、Runx2的蛋白表达降低。尾部悬吊能够消除大鼠后肢机械负荷,是研究模拟失重的良好动物模型。本研究中我们采用核素骨扫描检测了悬吊大鼠骨质形成。我们发现,与对照组大鼠相比悬吊大鼠骨和关节中99mTc-MDP的聚集明显减少,而且差异随悬吊时间延长而增大。该结果说明,微重力引起骨代谢减弱,骨生成减少。
     2.微重力环境可以引起成骨细胞miRNA表达谱的改变。我们将C2C12细胞置于回转器中模拟失重培养,模拟失重培养细胞与对照细胞均加入BMP-2诱导其向成骨方向分化。72小时后,收集细胞提取总RNA并进行miRNA芯片检测。miRNA芯片筛选结果发现了7个显著差异表达的miRNA,其中表达上调的miRNA有2个,表达下调的miRNA有5个。Real-time PCR验证结果与芯片结果基本一致,其中mmu-miR-494模拟失重后表达水平明显升高,mmu-miR-18*, mmu-miR-122a, mmu-miR-301, and mmu-miR-340表达水平则显著降低,但mmu-miR-143的表达与对照组相比无显著差别。生物信息学方法预测表达上调的miR-494的靶基因参与成骨细胞分化,因此我们将关注的焦点放在对miR-494的研究上。给予BMP-2处理的C2C12细胞在模拟失重0、2、4、8、12、24、48和72小时后分别收集细胞检测miR-494表达水平的变化。我们发现,在模拟失重2小时,miR-494表达开始上升,并且随着失重时间的延长,miR-494表达持续升高。此外,我们分离了悬吊大鼠股骨近侧干垢端成骨细胞,检测其中miR-494表达水平,发现悬吊2周和4周的大鼠其成骨细胞内miR-494表达均明显上调,并随悬吊时间的延长而持续升高。该实验表明微重力环境能引起成骨细胞miRNA表达谱的改变,其中mmu-miR-494的升高十分显著,且其表达水平与模拟失重的时间正相关。
     3. miR-494抑制成骨细胞分化。为了验证miR-494对骨形成的作用,我们首先检测miR-494对细胞增殖和细胞周期的影响。我们将miR-494 mimics及其相应阴性对照(N.C.)转染C2C12细胞和MC3T3-E1细胞,MTT实验和流式细胞术分析结果表明,miR-494对细胞增殖和周期无明显影响。进一步的研究显示,在BMP-2存在时,miR-494能明显抑细胞ALP活性,但未给予BMP-2刺激时,这种抑制效果不显著,表明miR-494可能参与了对C2C12细胞成骨分化的抑制。随后,我们用Reai-time PCR、ELISA和Western Blot分别在mRNA水平和蛋白水平检测了miR-494对成骨细胞特异基因ALP、OC、OPG、Runx2表达的影响。与ALP染色和活性测定结果一致,转染miR-494后细胞中ALP mRNA表达降低,而且无论是否存在BMP-2,OC、OPG和Runx2表达也有所下降。ELIAS分析结果显示,过表达miR-494减少了细胞分泌OC和OPG。在BMP-2诱导下,Runx2蛋白表达上调,但是转染miR-494后Runx2的上调被抑制。Osx是Runx2下游基因,我们发现在BMP-2诱导分化的C2C12细胞中过表达miR-494抑制了Osx的表达。另外,我们还发现在C2C12细胞中过表达miR-494后,其成肌分化的相关基因表达发生了上调,而miR-494对C2C12细胞成脂分化无明显作用。我们的研究表明,miR-494能抑制细胞的成骨分化。
     4. miR-494通过调节Runx2、BMPR2和FGFR2的表达抑制成骨细胞分化。我们用生物信息学方法在包括miRanda、TargetScan、pictar和RNAhybrid databases等在内的多个网站进行miR-494靶基因预测,得到可能的靶基因超过1,000个。我们进一步从中筛选出参与成骨细胞分化的靶基因30个,并将这些基因3’UTR克隆入荧光素酶报告载体,与miR-494 mimics或N.C.共转染293A细胞,检测其相对荧光强度。结果发现,miR-494能显著抑制BMPR2、FGFR2和Runx2 3’UTR报告基因的荧光素酶活性,且抑制效率达到40-60 %。相反地,突变掉这些基因上miR-494的结合位点后,miR-494对荧光素酶活性的影响消失,表明miR-494可以结合并作用于上述基因的3’UTR。Western Blot和Real-time PCR结果显示,过表达miR-494明显抑制内源性BMPR2、FGFR2和Runx2的蛋白和mRNA表达。为了进一步确定miR-494是通过抑制BMPR2、FGFR2和Runx2的表达影响成骨细胞分化,我们合成了针对这3个基因的siRNA。将3种siRNA分别转染C2C12细胞72小时,成骨细胞特异基因表达下调,骨分化受抑制,其趋势与转染miR-494一致。我们的研究证明,miR-494通过直接下调和Runx2、BMPR2和FGFR2抑制成骨细胞的分化。
     5.转录因子MyoD可能参与了对miR-494的表达调控。为了探讨miR-494转录调控机制,我们对miR-494上游序列进行了生物信息学分析。分析结果显示,距离pre-miR-494 5’端2-3kb的上游序列在不同种属中有高度的保守性,提示这段序列可能参与了对miR-494的转录调控。进一步的分析表明该区域有多个Myod的结合位点,提示转录因子Myod可能参与了miR-494的转录调节。我们首先分析了模拟失重时,BMP-2诱导分化的C2C12细胞中Myod表达情况,发现随着失重时间的延长,Myod表达发生了上调,这与miR-494表达变化相一致。随后,我们在正常重力条件下培养的C2C12细胞中加入BMP-2,研究细胞分化过程中mi-494与Myod表达变化情况,Real-time PCR结果显示两者表达水平随诱导时间的延长同时下降。此外,我们还发现转染miR-494后,MyoD的表达水平也发生了上调。我们的研究初步显示了转录因子MyoD可能参与了对miR-494的表达调控。为了证实我们的推测,进一步的的相关实验还在深入进行中。
     6. miR-494 inhibitor能够部分缓解失重引起的成骨分化障碍。模拟失重时成骨细胞分化受抑制,miR-494表达升高。我们将针对miR-494的反义寡核苷酸,即miR-494 inhibitor及其相应对照N.C. inhibitor分别转染C2C12细胞,同时加入300 ng/ml BMP-2诱导分化,置于回转器模拟失重培养72小时,用Real-time PCR方法检测细胞成骨相关基因表达,发现抑制miR-494的表达能够使ALP染色增强,说明miR-494 inhibitor能够增加骨形成能力,部分缓解失重引起的成骨分化障碍。
     总之,我们发现miRNA参与失重性成骨细胞功能异常的发生。其中,我们对表达上调的miR-494功能和作用机制进行了较为全面的研究,发现在模拟失重时miR-494表达升高,而且与失重时间正相关。体外实验证明,miR-494通过降低其靶基因BMPR2、FGFR2和Runx2的表达参与成骨细胞分化。过表达miR-494抑制成骨相关基因的表达,从而抑制骨形成;降低内源性miR-494表达则促进成骨分化,并且能够部分缓解由于失重引起的成骨分化障碍。该研究将对预防和治疗失重性骨质疏松提供理论依据。
Many serious adverse physiological changes occur during space?ight. Some of these include bone deterioration, muscle loss, immune system dysfunction, cardiovascular deconditioning and so on. Some of these pathophysiological adjustments can be counteracted adequately with physical exercise or nutritional supplementation. But many of the changes cannot be overcome. In particular, microgravity(MG)-induced osteoporosis is one of the most severe harms and the mechanism is not clear, which have always been the critical issue in this field. In the most severe forms of MG-induced bone loss, there is an approximately 2 % decrease in bone mineral density in only 1 month, equal to that of a postmenopausal woman in 1 year. Gravity and mechanical loading are known to be essential for the maintenance of skeletal integrity. It has been reported that the change induce by microgravity in bone mass is a result of the uncoupling of bone remodeling between decreased formation and normal (or increased) resorption. Osteoblast differentiation is a key step in proper skeletal development and acquisition of bone mass, and previous syudy proved that altered osteoblast function and development play an important role in MG-induced bone loss. But it is unclear that what mechanisms result in the dysfunction of osteoblast and what moleculars are involved in it.
     MiRNA are endogenously expressed single-stranded noncoding RNAs of 18-25 nucleotides in length which have been identified in diverse organisms, including mammalian cells. MiRNA negatively regulate the translations of specific target genes by binding to the 3’untranslated regions (3’UTR) of the genes with partially or fully complementary sequences. It has been reported that over 30% of protein coding genes in humans are regulated by miRNA, which are involved in the regulation of development and homeostatic events. MiRNA play critical roles in cell proliferation, cell differentiation, and cell death. Many studies have identified that miRNA attenuation of gene expression posttranscripted has emerged as an important regulator of mesenchymal cell differentiation into the osteoblast lineage.
     In this study, we determined the changes of miRNA expression partten in the BMP-2-induced differertiation of the pluripotent mesenchymal precursor cell line C2C12 simulated by microgravity exposure and further explored roles and mechanisms of miRNA in MG-induced bone loss. The main results and findings of this work are as follows:
     1. Osteoblast differentiation and maturation are suppressed in microgravity. To identify the alterations of osteoblast differentiation induced by microgravity at the cellular level, C2C12 cells were cultured in clinorotation condition for 72 h without or with 300ng/ml BMP2. Real-time PCR for mRNA of the typical osteoblastic markers Alkaline phosphatase(ALP), osteocalcin(OC), osteoprotegerin(OPG), and runt-related transcription factor 2(Runx2)results showed the inhibition of osteogenesis either the BMP-2 absence or not. There are many pathways involved in osteogenesis. We investigated the expression levels of the critical moleculars related to osteoblast differentiation and maturation. We treated C2C12 cells under the same conditions for 72 hr and collected cell lysis. Western blot analysis revealed that the expressions of FGFR2, BMPR2, and Runx2 were reduced in microgrativity with or without BMP-2. The rat model of tail-suspended to make hind limb unloading has been used for detection the effects of microgrativity. The bone formation of tail-suspended rats was investigated by radionuclide bone scintigraphy, which has always been used to examine bone metabolism. We found that compard with the control group the accumulation of 99mTc-MDP was significantly lower either in bones or joints of the tail-suspended rats. And the di?erences became more and more significcant along with the time prolongation. These findings suggested that microgrativity resulted in decrease of bone metabolism and osteoblastogenesis.
     2. Microarray analysis reveals the differential expression partten of microRNAs in microgravity. To detect the potential involvement of miRNA in osteoblast differentiation program in microgravity, microarray was performed by using total RNA from C2C12 cells cultured in clinorotation condition for 72h. The expression levels of 2 miRs (ratio≥2.0) increased and 5 miRNA decreased between stationary control and microgravity group. To validate the results of microarray profiling, Real-time PCR was performed to analyze miRNA in C2C12 cells cultured in microgravity condition for 72hr. Precursor of miR-494 (mmu-miR-494) was robustly up-regulated (>2-fold), and precursors of miR-18*, miR-122a, miR-301, and miR-340 (mmu-miR-18*, mmu-miR-122a, mmu-miR-301, and mmu-miR-340) were significantly down-regulated (>2-fold). However, precursor of miR-143 (mmu-miR-143) did not show significant change between stationary control and microgrativity group, which was not coincidence with the data from microarray analysis. Among the differentially expressed miRNA screened, we focused on the up-regulation of miR-494, because the potential target genes of miR-494 predicted by bioinformatic method play positive roles in osteoblast differentiation. To clarify the time-dependent expression of miR-494, we collected RNA from stationary control and microgrativity-treated samples at 2, 4, 8, 12, 24, 48 and72 h. Real-time PCR was performed to further analyze the expression pattern of miR-494 during microgravity of C2C12 cells. We found that miR-494 began to upregulate at 2h and kept increasing along with the time of microgravity. In addition, we isolated osteoblasts from the proximal femurs of tail-suspended rats to detecte the expression levels of miR-494. Real-time PCR analysis showed the expression of miR-494 was dramatically increased after 2 weeks of tail-suspension, and kept increasing with the time of unloading. These results indicited that miRNA may play important roles in abnomal osteblastogenesis induced by microgrativity.
     3. MiR-494 inhibits the differentition of osteoblast in normal grativity. To elucidate the role of miR-494 in osteogenesis, firstly we investigated the effects of miR-494 on proliferation and cell cycles. We transfected C2C12 cells and MC3T3-E1 cells separately with miR-494 mimics and negative contro(lN.C.), and MTT assay and flow cytometry analysis suggested miR-494 had no significant effects on cell proliferation and cycles either in C2C12 cells or MC3T3-E1 cells. Then we measured ALP activities in C2C12 cells transfected with N.C. or miR-494 mimic with and without BMP-2 treatment for 72 h. The ALP activities in the transfected with miR-494 cells were significantly suppressed in the presence of BMP-2. There was no significant difference between transfection with negative control and miR-494, because mesenchymal stem cell C2C12 did not osteogenicly differentiate without BMP-2. To further investigated whether miR-494 are directly coupled to BMP-2-induced C2C12 osteoblastogenesis, C2C12 cells were transfected with N.C. or miR-494 and treated with BMP-2 simultaneously for 72 h. Real-time PCR, ELISA, and Western Blot were performed to determine the mRNA levels ALP, OC, OPG, and Runx2. Consistent with the ALP staining analysis, the mRNA expression of ALP was reduced, and the gene expressionsof OC, OPG, Runx2 were decreased whether BMP-2 presence or not. ELISA analysis showed miR-494 reduced the secretions of OC and OPG. Runx2 protein level was enhanced by BMP-2, but the enhancement was deducted in cells transfected with miR-494 compared with cells transfected with negative control. Thus, for osteogenesis of C2C12 cells to proceed, there is a requirement for BMP-2. But the introduction of miR-494 inhibits the osteoblast differentiation whether BMP-2 exist or not. Osx acts the downstreamof Runx2, and we found miR-494 inhibited Osx mRNA expression in C2C12 cell induced by BMP-2. In addition, miR-494 could promote myogenesis and have no effect on adipogenesis.
     4. MiR-494 targeting Runx2, BMPR2, and FGFR2 inhibits the osteoblast differentition. More than 1,000 genes were predicted by miRanda, TargetScan, pictar or RNAhybrid databases to be potential target genes for miR-494. We selected more than 30 putative miR-494 target genes involved in osteoblastic differentiation from all the predicted genes and used a luciferase reporter assay system and transfection of miR-494 mimics to determine which targets were for miR-494. We cotransfected the luciferase reporter plasmids cloned the 3’-untranslated region (3’-UTR) sequences of the selected genes and negative control or miR-494 into 293A cells, the relative luciferase activity demonstrated whether miR-494 had effect on the genes. In 293A cells cotransfected with luciferase reporter genes carrying 3’-UTRs of BMPR2, FGFR2, and Runx2 with a putative miR-494 binding site, the level of suppression was about 40-60%. In contrast, the suppressive activity was lost when the seed sequence of miR-494 on 3’-UTRs of these genes were mutant. MiR-494 was able to down-regulated endogenous proteins of BMPR2, FGFR2, and Runx2, and able to suppress the mRNA levels of the three genes, consistent with the mechanism of miRNA regulation. To further address the hypothesis that miR-494 negatively regulated osteoblast differentiation by targeting key signal transduction factors as BMPR2, FGFR2, and Runx2, we introduced siRNAs targeted these genes which repression effects were confirmed by western blot analysis into C2C12 cells for 72 h. Real-time PCR analysis suggested knockdown of the three genes suppress the osteoblast differerntiation. Together, these results suggest that BMPR2, FGFR2, and Runx2 are targets for miR-494. On the other hand, miR-494 may indirectly downregulate Runx2 through suppressing the expressions of BMPR2 and FGFR2 which are the upstream genes of Runx2.
     5. Myod enhances the expression of miR-494. To investigate the transcriptional regulation mechanism of miR-494, we analyzed the conservatism of 5’terminal of miR-494 by bioinformatics method. The region about 2-3 kb upstream of 5’terminal of pre-miR-494 is highly conserved, and there are several binding sites of Myod in this sequence. We identified the expression pattern of Myod during microgravity and BMP-2 induction in C2C12 cells. Real-time PCR result suggested the expression of Myod was increasd along with the time of MG and decreased with BMP-2 induction. So we presumed that Myod promote the expression of miR-494, and miR-494 upregulate Myod mRNA.
     6. MiR-494 inhibitor can partly rescue the dysdifferentiation of osteoblast in microgrativity. Osteoblastic differentiation is suppressed and the expression of miR-494 is upregulated in microgrativity condition. C2C12 cells were transfected with miR-494 inhibitor or N.C.inhibitor and cultured in clinorotation condition for 72 h without or with 300ng/ml BMP-2. Real-time PCR analysis for the osteoblastic markers suggested that the inhibition of miR-494 partly enhanced ostogenesis with the presence of BMP-2 or not. Consistent with Real-time PCR array, ALP staining was increased following transfection of miR-494 inhibitor compared with transfection of N.C. inhibitor.
     In conclusion, we found miRNA involved in dysfunction of osteoblast during MG. Overexpression of miR-494 inhibits osteogenesis and inhibition of endogenous miR-494 promotes ostenblast differentiation. Our finding might help to provide some theoretical basis to the protection and treatment of MG-induced Osteoporosis.
引文
1.贾弘褆主编.生物化学.北京:人民卫生出版社. 2005, 503-505.
    2. Lian JB, Stein JB, Stein JL, et al. Osteocalcin gene promoter: unlocking the secrets for regulation of osteoblast growth and differentiation. J Cell Biochem Suppl. 1998;30-31:62-72.
    3. Whyte MP, Mumm S. Heritable disorders of the RANKL/OPG/RANK signaling pathway. J Musculoskelet Neurobal Interact. 2004 Sep 4(3):254-67.
    4. Palmqvist P, Persson E, Conaway HH, et al. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol. 2002 Sep; 15;169(6):3353-62.
    5. Mornoy S, Capparelli C, Lee R, et al. A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1beta, TNF-alpha, PTH, PTHrP, and 1, 25(OH)2D3. J Bone Miner Res. 1999 Sep; 14(9):1478-85.
    6.王国红,李祺福. Cbfαl/Runx2与成骨细胞分化调控.生命科学,2005,Feb,17(1):41-44.
    7. Yue J, Mulder KM. Transforming growth factor-beta signal transduction in epithelial cells. Pharmacol Ther. 2001 Jul;91(1):1-34.
    8. Hu Z, Peel SA, Ho SK, et al. Role of bovine bone morphogenetic proteins in bone matrix protein and osteoblast-related gene expression during rat bone marrow stromal cell differentiation. J Craniofac Surg. 2005 Nov; 16(6):1006-14.
    9. Nakayama T, Cui Y, Christian JL. Regulation of BMP/Dpp signaling during embryonic development. Cell Mol Life Sci. 2000 Jun; 57(6):943-56.
    10. Kong Q, Xiang Z, Xian S, et al. Effect of autologous bone marrow mesenchymal stem cells and extrogenous sodium hyaluronate on repairing knee joint defect in rabbits. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2004 Jul; 18(4):318-22.
    11. Storm EE, Kingsley DM. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 1999 May 1; 209(1):11-27.
    12. Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches. Bone. 1998 Jun; 22(6):591-603.
    13. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004 Dec; 22(4):233-41.
    14. Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 2000 Aug; 6(4):351-9.
    15. Salasznyk RM, Klees RM, Boskey A, Plopper GE. Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem. 2007 Feb1; 100(2):499-514.
    16.廖清船,肖洲生,秦艳芳,等.p44/42和p38MAPKs在骨髓间充质干细胞向成骨细胞分化中发挥不同的功能.中国骨质疏松杂志,2004,10(3):267.
    17. Zhou H, Yang X, Wang N, Zhang Y, Cai G. Tigogenin inhibits adipocytic differentiation and induces osteoblastic differentiation in mouse bone marrow stromal cells. Mol Cell Endocrinol. 2007 May 30; 270(1-2):17-22.
    18. Guicheux J, Lemonnier J, Ghayor C, et al. Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res. 2003 Nov; 18(11):2060-8.
    19. Suzuki A, Ghayor C, Guicheux J, et al. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res. 2006 May;21(5):674-83.
    20. Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002 Oct 17; 21(47):7156-63.
    21. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982 Nov; 31(1):99-109.
    22. Van Ooyen A, Nusse R. Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell. 1984 Nov; 39(1):233-40.
    23. Rijsewijk F, Schuermann M, Wagenaar E, et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987 Aug 14; 50(4):649-57.
    24. Nusse R. Wnt signaling in disease and in development. Cell Res. 2005 Jan; 15(1):28-32.
    25. Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther. 2008 Apr; 118(1):58-81. Epub 2008 Feb 11.
    26. Church VL, Francis-West P. Wnt signalling during limb development. Int J Dev Biol. 2002; 46(7):927-36.
    27. Behrens J, von Kries JP, Bruhn L, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996 Aug 15; 382(6592):638-42.
    28. Wallingford JB, Rowning BA, Vogeli KM, et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature. 2000 May 4; 405(6782):81-5.
    29. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005 May; 8(5):739-50.
    30. Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 2005 Mar 1; 102(9):3324-9. Epub 2005 Feb 22.
    31. Liu Z, Tang Y, Qiu T, Cao X, Clements TL. A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. J Biol Chem. 2006 Jun
    23; 281(25):17156-63. Epub 2006 Apr 18.
    32. Brain G, Muller T, Wang X, Papkoff J. Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun. 2003 Jan 31; 301(1):84-91.
    33. Mbalaviele G, Sheikh S, Stains JP, et al. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005 Feb 1; 94(2):403-18.
    34. Kato M, Patel MS, Levasseur R, et al. Cbfα1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002 Apr 15; 157(2):303-14.
    35. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature. 2000 Sep 28; 407(6803):535-8.
    36. Babij P, Zhao W, Small C, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003 Jun; 18(6):960-74.
    37. Golden LH, Insogna KL. The expanding role of PI3-kinase in bone. Bone. 2004 Jan; 34(1):3-12.
    38. Yeh LC, Tsai AD, Lee JC. Osteogenic protein-1 (OP-1, BMP-7) induces osteoblastic cell differentiation of the pluripotent mesenchymal cell line C2C12. J Cell Biochem. 2002; 87(3):292-304.
    39. Chen TL, Shen WJ, Kraemer FB. Human BMP-7/OP-1 induces the growthand differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J Cell Biochem. 2001; 82(2):187-99.
    40. Carpio L, Gladu J, Glotzman D, Rabbani SA. Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways. Am J Physiol Endocrinol Metab. 2001 Sep; 281(3):E489-99.
    41. Borgatti P, Martelli AM, Bellacosa A, et al. Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett. 2000 Jul 14; 477(1-2):27-32.
    42. Sabbieti MG, Marchetti L, Abreu C, et al. Prostaglandins regulate the expression of fibroblast growth factor-2 in bone. Endocrinology. 1999 Jan; 140(1):434-44.
    43. Sommer A, Rifkin DB. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol. 1989 Jan; 138(1):215-20.
    44. Boudreaux JM, Towler DA. Synergistic induction of osteocalcin gene expression: identification of a bipartite element conferring fibroblast growth factor 2 and cyclic AMP responsiveness in the rat osteocalcin promoter. J Biol Chem. 1996 Mar 29; 271(13):7508-15.
    45. Nugent MA, Lozzo RV. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000 Feb; 32(2):115-20.
    46. MonteroA, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000 Apr; 105(8):1085-93.
    47. David T, Tassin J, Lappi DA, Baird A, Courtois Y. Biphasic effect of the mitotoxin bFGF-saporin on bovine lens epithelial cell growth: effect of cell density and extracellular matrix. J Cell Physiol. 1992 Dec; 153(3):483-90.
    48. Walsh S, Jefferiss C, Stewart K, et al. Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrowstromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1-4. Bone. 2000 Aug; 27(2):185-95.
    49. Locklin RM, Williamson MC, Beresford JN, Triffitt JT, Owen ME. In vitro effects of growth factors and dexamethasone on rat marrow stromal cells. Clin Orthop Relat Res. 1995 Apr; (313):27-35.
    50.郭勇,张西正,赵云山,等.碱性成纤维细胞生长因子对成骨细胞生长与c-fos表达的影响.生物医学工程学杂志,2004,21(1):8-11.
    51. Sandgren ME, Bronnegard M, Deluca HF. Tissue distribution of the 1,25-dihydroxyvitamin D3 receptor in the male rat. Biochem Biophys Res Commun. 1991 Dec 16; 181(2):611-6.
    52. Noda M, Yoon K, Rodan GA. Cyclic AMP-mediated stabilization of osteocalcin mRNA in rat osteoblast-like cells treated with parathyroid hormone. J Biol Chem. 1988 Dec 5; 263(34):18574-7.
    53. Cuevas P, Burgos J, Baird A. Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo. Biochem Biophys Res Commun. 1988 Oct 31; 156(2):611-8.
    54. Saldanha KA, Keys GW, Svard UC, White SH, Rao C. Revision of Oxford medial unicompartmental knee arthroplasty to total knee arthroplasty results of a multicentre study. Knee 2007 Aug; 14(4):275-9. Epub 2007 May 23.
    55. Cushing MC, Mariner PD, Liao JT, et al. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASED J. 2008 Jun; 22(6):1769-77. Epub 2008 Jan 24.
    56.冯萍,刘琪,高丽,等.转化生长因子?1和碱性成纤维细胞生长因子对人牙周膜成纤维细胞增殖的影响.广东牙病防治,2005,13(4):270-272.
    57.刘宏伟,李才良.rhTGF、rhBMP-2和rhbFGF单独或者联合应用对BMSC的ALP活性和钙化能力影响.实用口腔医学杂志,2005,21(1):3l-34.
    58. Skaletz-Rorowski A, Eschert H, Leng J, et al. PKC delta-induced activation of MAPK pathway is required for bFGF-stimulated proliferation of coronary smooth muscle cells. Cardiovasc Res. 2005 Jul 1; 67(1):142-50. Epub 2005 Apr 12.
    59. Liu F, Huang L. A syringe electrode device for simultaneous injection of DNA and electrotransfer. Mol Ther. 2002 Mar; 5(3):323-8.
    60. Allman D, Aster JC, Pear WS. Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev. 2002 Sep; 187:75-86.
    61. Fiuza UM, Arias AM. Cell and molecular biology of Notch. J Endocrinol. 2007 Sep; 194(3):459-74.
    62. Kolev V, Kacer D, Trifonova R, et al. The intracellular domain of Notch ligand Delta1 induces cell growth arrest. FEBS LETT. 2005 Oct 24; 579(25):5798-5802.
    63. Karlsson C, Jonsson M, Asp J, et al. Notch and HES5 are regulated during human cartilage differentiation. Cell Tissue Res. 2007 Mar; 327(3):539-51.
    64. Tezuka K, Yasuda M, Watanabe N, et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res. 2002 Feb; 17(2):231-9.
    65.鲁茁壮,吴祖泽,张群伟,等.激活No t c h信号通路促进骨髓间充质干细胞向成骨细胞分化.科学通报,2004,49(6):554.
    66. de Jong DS, Steegenga WT, Hendriks JM, et al. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. Biochem Biophys Res Commun. 2004 Jul 16; 320(1):100-7.
    67. Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem. 2006 Mar 10; 281(10):6203-10.
    68. Thirunavukkarasu K, Mahajan M, Mclarren KW, et al. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfα1 contribute toits transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol. 1998 Jul; 18(7):4197-208.
    69. Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997 May 30; 89(5):747-54.
    70. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997 May 30; 89(5):755-64.
    71. Liu W, Toyosawa S, Furuichui T, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol. 2001 Oct 1; 155(1):157-66.
    72. Lengner CJ, Drissi H, Choil JY, et al. Activation of the bone-related Runx2/Cbfa1 promoter in mesenchymal condensations and developing chondrocytes of the axial skeleton. Mech Dev. 2002 Jun; 114(1-2):167-70.
    73. Tsuji K, Ito Y, Noda M. Expression of the PEBP2alphaA/AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone. 1998 Feb; 22(2):87-92.
    74. Pratap J, Galindo M, Zaidi S, et al. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res. 2003 Sep 1; 63(17):5357-62.
    75. Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000 Aug; 21(4):393-411.
    76. Kim IS, Otto F, Zabel B, Mundlos S. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999 Feb; 80(2):159-70.
    77. Takeda S, Bonnamy JP, Owen MJ, et al. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001 Feb 15; 15(4):467-81.
    78. Enomoto-Iwamoto M, Enomoto H, Komori T, Iwamoto M. Participation of Cbfa1 in regulation of chondrocyte maturation. Osteoarthritis Cartilage. 2001; 9 Suppl A:S76-84.
    79. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997 May 30; 89(5):755-64.
    80. Ueta C, Iwamoto M, Kanatani M, et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol. 2001 Apr 2; 153(1):87-100.
    81. Thirunavukkarasu K, Halladay DL, Miles RR, et al. The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem. 2000 Aug 18; 275(33):25163-72.
    82. Kitazawa R, Kitazawa S, Maeda S, et al. Promoter structure of mouse RANKL/TRANCE/OPGL/ODF gene. Biomchim Biophys Acta. 1999 Apr 14; 1445(1):134-41.
    83. Enomoto H, Shiojiri S, Hoshi K, et al. Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene. J Biol Chem. 2003 Jun 27; 278(26):23971-7.
    84. Himeno M, Enomoto H, Liu W, et al. Impaired vascular invasion of Cbfa1-deficient cartilage engrafted in the spleen. J Bone Miner Res. 2002 Jul; 17(7):1297-305.
    85. Zelzer E, Glotzer DJ, Hartmann C, et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev. 2001 Aug; 106(1-2):97-106.
    86. Renny T. Franceschi, Guozhi Xiao, Di Jiang et al. Multiple Signaling Pathways Converge on the Cbfa1/Runx2 Transcription Factor to RegulateOsteoblast Differentiation. Connective Tissue Research, 44(Suppl. 1): 109–116, 2003.
    87. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003 Oct 9; 425(6958):577-84.
    88. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997 May 30; 89(5):765-71.
    89. Yang S, Wei D, Wang D, et al. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res. 2003 Apr; 18(4):705-15.
    90. Nishimura R, Hata K, Harris SE, et al. Core-binding factor alpha 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone. 2002 Aug; 31(2):303-12.
    91. Ogawa E, Maruyama M, Kagoshima H, et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA. 1993 Jul 15; 90(14):6859-63.
    92. Xiao G, Jiang D, Thomas P, etal. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem. 2000 Feb 11; 275(6):4453-9.
    93. Ziros PG, Gil AP, Georgakopoulos T, et al. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem. 2002 Jun 28; 277(26):23934-41.
    94. D’Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem. 2002 Jan 4; 277(1):816-22.
    95. Salim A, Nacamuli RP, Morgan EF, et al. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression inosteoblasts. J Biol Chem. 2004 Sep 17; 279(38):40007-16.
    96. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002 Jan 11; 108(1):17-29.
    97. Gao Y, Jheon A, Nourkeyhani H, et al. Molecular cloning, structure, expression, and chromosomal localization of the human Osterix (SP7) gene. Gene. 2004 Oct 27; 341:101-10.
    98. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002 May; 8(3):147-59.
    99. Karsenty G. The genetic transformation of bone biology. Genes Dev. 1999 Dec 1; 13(23):3037-51.
    100. Tadic T, Dodig T, Erceg I, et al. Overexpression of Dlx5 in chicken calvarial cells accelerates osteoblastic differentiation. J Bone Miner Res. 2002 Jun; 17(6):1008-14.
    101. Lee MH, Kwon TG, Park HS, et al. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun. 2003 Sep 26; 309(3):689-94.
    102. Acampora D, Merlo GR, Paleari L, et al. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development. 1999 Sep; 126(17):3795-809.
    103. Lee MH, Kim YJ, Kim HJ, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem. 2003 Sep 5; 278(36):34387-94.
    104. Ma L, Golden S, Wu L, Maxson R. The molecular basis of Boston-type craniosynostosis: the Pro148-->His mutation in the N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide sequence preferences. Hum Mlo Genet. 1996 Dec; 5(12):1915-20.
    105. Shirakabe K, Terasawa K, Miyama K, et al. Regulation of the activity ofthe transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells. 2001 Oct; 6(10):851-6.
    106. Satokata I, Ma L, Ohshima H, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000 Apr; 24(4):391-5.
    107. Lee MH, Kim YJ, Yoon WJ, et al. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem. 2005 Oct 21; 280(42):35579-87. Epub 2005 Aug 22.
    108. Qu Q, Perala-Heape M, Kapanen A, et al. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone. 1998 Mar; 22(3):201-9.
    109. Di Gregorio GB, Yamamoto M, Ali AA, et al. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 beta-estradiol. J Clin Invest. 2001 Apr; 107(7):803-12.
    110. Zhou S, Zilberman Y, Wassermann K, et al. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem Suppl. 2001; Suppl 36:144-55.
    111. Weinreb M, Suponitzky I, Keila S. Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone. 1997 Jun; 20(6):521-6.
    112. Lecka-Czernik B, Moerman EJ, Grant DF, et al. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002 Jun; 143(6):2376-84.
    113. Zambotti A, Makhluf H, Shen J, Ducy P. Characterization of an osteoblast-specific enhancer element in the CBFA1 gene. J Biol Chem. 2002 Nov 1; 277(44):41497-506.
    114. Mackenna DA, Dolfi F, Vuori F, Ruoslahti E. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest. 1998 Jan 15; 101(2):301-10.
    115. Ambros V. The functions of animal microRNAs. Nature. 2004 Sep 16; 431(7006):350-5.
    116. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003 Jul 18; 301(5631):336-8.
    117. Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005 Sep 2; 309(5740):1519-24.
    118. Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science. 2001 Oct 26; 294(5543):797-9.
    119. Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Pron Natl Sci USA. 2004 Jun 29; 101(26):9740-4.
    120. Strauss WM, Chen C, Lee CT, Ridzon D. Nonrestrictive developmental regulation of microRNA gene expression. Mamm Genome. 2006 Aug; 17(8):833-40.
    121. Smallridge R. A small fortune. Nat Rev Mol Cell Biol. 2001 Dec; 2(12):867.
    122. Babak T, Zhang W, Morris Q, et al. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004 Nov; 10(11):1813-9.
    123. Suh MR, Lee Y, Kim JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004 Jun 15; 270(2):488-98.
    124. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002 Sep 20; 297(5589):2056-60.
    125. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001 Oct 26;294(5543):853-8.
    126. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004 Dec; 10(12):1957-66.
    127. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004 Oct; 14(10A):1902-10.
    128. Bracht J, Hunter S, Eachus R, et al. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA. 2004 Oct; 10(10):1586-94.
    129. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004 Oct 13; 23(20):4051-60.
    130. Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004 Nov 11; 432(7014):231-5.
    131. Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004 Nov 11; 432(7014):235-40.
    132. Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004 Dec 15; 18(24):3016-27.
    133. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003 Sep 25; 425(6956):415-9.
    134. Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. RNA. 2003 Jan; 9(1):112-23.
    135. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 2005 Jan 12; 24(1):138-48.
    136. Wu H, Xu H, Miraglia LJ, Crooke ST. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem. 2000 Nov 24; 275(47):36957-65.
    137. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004 Dec 14; 14(23):2162-7.
    138. Gwizdek C, Ossareh-Nazari B, Brownawell AM. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J Biol Chem. 2003 Feb 21; 278(8):5505-8.
    139. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003 Dec 15; 17(24):3011-6.
    140. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science. 2004 Jan 2; 303(5654):95-8.
    141. Song JJ, Liu J, Tolia NH, et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol. 2003 Dec; 10(12):1026-32.
    142. Volpe TA, Kidner C, Hall IM, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002 Sep 13; 297(5588):1833-7.
    143. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001 Jan 15; 15(2):188-200.
    144. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001 Jul 13; 106(1):23-34.
    145. Tang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes Dev. 2003 Jan 1; 17(1):49-63.
    146. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004 Apr 23; 304(5670):594-6.
    147. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23; 116(2):281-97.
    148. Kidner CA, Martienssen RA. The developmental role of microRNA inplants. Curr Opin Plant Biol. 2005 Feb; 8(1):38-44.
    149. Sun BK, Tsao H. Small RNAs in development and disease. J Am Acad Dermatol. 2008 Nov; 59(5):725-37.
    150. Erson AE, Petty EM. MicroRNAs in development and disease. Clin Genet. 2008 Oct; 74(4):296-306.
    151. Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006 Jan 19; 439(7074):283-9.
    152. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007 Apr 20; 129(2):303-17
    153. Mishima Y, Stahlhut C, Giraldez AJ. miR-1-2 gets to the heart of the matter. Cell. 2007 Apr 20; 129(2):247-9.
    154. Sun BK, Tsao H. Small RNAs in development and disease. J Am Acad Dermatol. 2008 Nov; 59(5):725-37.
    155. Erson AE, Petty EM. MicroRNAs in development and disease. Clin Genet. 2008 Oct; 74(4):296-306.
    156. Croce CM, Calin GA. miRNA, cancer, and stem cell division. Cell. 2005 Jul 15; 122(1):6-7.
    157. Shi XB, Tepper CG, deVere White RW. Cancerous miRNA and their regulation. Cell Cycle. 2008 Jun 1; 7(11):1529-38.
    158. Chunmeng S, Tianmin C. Skin: a promising reservoir for adult stem cell populations. Med Hypotheses. 2004; 62:683–688.
    159. De Bari C, Dell'Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44:1928–1942.
    160. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003; 18:696–704.
    161. Bieback K, Kern S, Kluter H, et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004; 22:625–634.
    162. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003; 102:1548–1549.
    163. Li CD, Zhang WY, Li HL, et al. Isolation and Identification of a Multilineage Potential Mesenchymal Cell from Human Placenta. Placenta. 2005,Sep 17.
    164. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143–147.
    165. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci. 2000; 113(7):1161–1166.
    166. Christine Esau, Xiaolin Kang, Eigen Peralta, et al. MicroRNA-143 Regulates Adipocyte Differentiation. 2004; Vol. 279: 52361–52365.
    167. K. Kajimoto, H. Naraba, N. Iwai. MicroRNA and 3T3-L1 preadipocyte differentiation. RNA. 2006; 12 (9):1626–1632.
    168. H. Hackl, T.R. Burkard, A. Sturn, et al. Molecular processes during fat cell development revealed by gene expression profiling and functional annotation, Genome Biol. 2005; 6 (13):R108.
    169. Bernard R. Wilfred, Wang-Xia Wang, Peter T. Nelson. Energizing miRNA research: A review of the role of miRNA in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular Genetics and Metabolism. 2007; 91:209–217.
    170. Lin EA, Kong L, Bai XH, et al. miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 2009, Apr 24; 284(17):11326-35.
    171. Lee Tuddenham , Guy Wheeler , Sofia Ntounia-Fousara, et al. Thecartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells。FEBS Letters. 2006; 580:4214–4217.
    172. S.W.Jones, G.Watkins, N.Le Good, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-αand MMP13. Osteoarthritis Cartilage. 2009 Apr; 17(4):464-72.
    173. Yamasaki K, Nakasa T, Miyaki S, et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 2009 Apr; 60(4):1035-41.
    174. Salla Suomi, Hanna Taipaleenm?ki, Anne Sepp?nen, et al. MicroRNAs Regulate Osteogenesis and Chondrogenesis of Mouse Bone Marrow Stromal Cells. Gene Regulation and Systems Biology. 2008; 2:177–191.
    175. Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation. Pron Natl Acad Sci USA. 2009 Nov; 20.
    176. Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009 Jun 5; 284(23):15676-84.
    177. Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem. 2009 Jul 17; 284(29):19272-9.
    178. Mizuno Y, Yagi K, Tokuzawa Y, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun. 2008 Apr 4; 368(2):267-72.
    179. Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Biol Chem. 2009 Sep 1; 108(1):216-24.
    180. Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009 Dec; 119(12):3666-77.
    181. Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010 Feb; 28(2):357-64.
    182.孙喜庆主编.航空航天生物动力学.西安:第四军医大学出版社. 2005, 209-215.
    183. Schmitt DA, Schaffar L, Taylor GR, et al. Use of bed rest and head-down tilt to simulate spaceflight-induce immune system changes. J Interferon Cytokine Res. 1996 Feb; 16(2):151-7.
    184. Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol. 2000 Aug; 89(2):823-39.
    185. Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol. 2001, 204(18): 3201-3208.
    186. Relley DA, Ellis S. Musclesarcomere lesions and thrombosis after spaceflight and suspension unloading. J Appl hysiol, 1992, 73(2): 33-43.
    187. Walther I, Pippia P, Meloni MA, et al. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett. 1998; 436:115–118.
    188. Cooper D, Pellis NR. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J Leukoc Biol. 1998; 63:550–562.
    189. Buckey JC Jr, Gaffney FA, Lane LD, et al. Central venous pressure in space. J Appl Physiol. 1996 Jul; 81(1):19-25.
    190. D’Amelio F, Fox RA, Wu LC, et al. Effects of microgravity on muscle and cerebral cortex: a suggested interaction. Adv Space Res. 1998; 22: 235–244.
    191. Collet P, Uebelhart D, Vico L, et al. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone. 1997 Jun; 20(6):547-51.
    192. Caillot-Augusseau A, Vico L, Heer M, et al. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts. Clin Chem. 2000 Aug; 46(8 Pt 1):1136-43.
    193. Parfitt AM. Bone effects of space flight: analysis by quantum concept of bone remodelling. Acta Astronaut. 1981 Sep-Oct; 8(9-10):1083-90.
    194. Hammond TG, Hammond JM. Optimized suspension culture: the rotating-wall vessel. Am J Renal Physiol. 2001 Jul; 281(1):F12-25.
    195. Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nat Med. 1998 Aug; 4(8):901-7.
    196. Hejnowicz Z, Sondag C, Alt W, Sievers A. Temporal course of graviperception in intermittently stimulated cress roots. Plant Cell Environ. 1998; 21(12):1293-300.
    197. Nishikawa M, Ohgushi H, Tamai N, et al. The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering. Cell Transplant. 2005; 14(10):829-35.
    198. Yuge L, Hide I, Kumagai T, et al. Cell differentiation and p38(MAPK) cascade are inhibited in human osteoblasts cultured in a three-dimensional clinostat. In Vitro Cell Dev Bio Anim. 2003 Jan-Feb; 39(1-2):89-97.
    199.陈杰,马进,丁兆平,等.一种模拟失重影响的大鼠尾部悬吊模型.空间科学学报, 1993, 13(2):161.
    200. Lafage-Proust MH, Collet P, Dubost JM, et al. Space-related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats. Am J Physiol. 1998 Feb; 274(2 Pt 2):R324-34.
    201. Guo R, Hu M, Sun ZY, Xue JW. Effects of simulated weightlessness on rats mandible, lumbar vertebra and femur. Space Med Med Eng(Beijing)2005 Jun; 18(3):165-9.
    202. LeBlanc A. Summary of research issues in human studies. Bone. 1998 May; 22(5 Suppl):117S-118S.
    203. Leblanc AD, Schneider VS, Evans HJ, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990 Aug; 5(8):843-50.
    204. Zayzafoon M, Gathings WE, McDonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology. 2004 May; 145(5):2421-32.
    205. Patel MJ, Liu W, Sykes MC, et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J Cell Biochem. 2007 Jun 1; 101(3):587-99.
    206. Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp Cell Res. 1996 Apr 10; 224(1):103-9.
    207. Dai ZQ, Wang R, Ling SK, Wan YM, Li YH. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif. 2007 Oct; 40(5):671-84.
    208.王攀,张舒,王冰,孙喜庆,耿捷,高原.模拟失重对MG-63细胞形态、增殖及周期的影响.航天医学与医学工程2007; 20(6): 406-9.
    209. Bucaro MA, Fertala J, Adams CS, Steinbeck M, Ayyaswamy P, Mukundakrishnan K, Shapiro IM, Risbud MV. Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann N Y Acad Sci. 2004 Nov; 1027:64-73.
    210. Sarkar D, Nagaya T, Koga K, Nomura Y, Gruener R, Seo H. Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J Bone Miner Res. 2000 Mar; 15(3):489-98.
    211. Nakamura H, Kumei Y, Morita S, Shimokawa H, Ohya K, Shinomiya K. Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. Ann N Y Acad Sci. 2003 Dec; 1010:143-7.
    212. Zayzafoon M, Gathings WE, McDonald JM. Modeled microgravityinhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology. 2004 May; 145(5):2421-32.
    213. Pardo SJ, Patel MJ, Sykes MC, Platt MO, Boyd NL, Sorescu GP, Xu M, van Loon JJ, Wang MD, Jo H. Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am J Physiol Cell Physiol. 2005 Jun; 288(6):C1211-21.
    214. Ontiveros C, McCabe LR. Simulated microgravity suppresses osteoblast phenotype, Runx2 levels and AP-1 transactivation. J Cell Biochem. 2003 Feb 15; 88(3):427-37.
    215. Ingber DE. Mechanosensation through integrins: cells act locally but think globally. Proc Natl Acad Sci U S A. 2003 Feb 18; 100(4):1472-1474.
    216. Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003 Apr 1; 116(Pt 7):1157-73.
    217. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003 Apr 15; 116(Pt 8):1397-408.
    218.杨志,王冰,李莹辉,聂婕霖,孙喜庆,张舒.模拟失重对成骨细胞整合素亚单位表达的影响.第四军医大学学报2006; 27(12):1140-3.
    219. Guignandon A, Lafage-Proust MH, Usson Y, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L. Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB J. 2001 Sep; 15(11):2036-8.
    220. Guignandon A, Usson Y, Laroche N, Lafage-Proust MH, Sabido O, Alexandre C, Vico L. Effects of intermittent or continuous gravitational stresses on cell-matrix adhesion: quantitative analysis of focal contacts in osteoblastic ROS 17/2.8 cells. 1: Exp Cell Res. 1997 Oct 10;236(1):66-75.
    221. Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp Cell Res. 1996 Apr 10;224(1):103-9.
    222. Hughes-Fulford M, Gilbertson V. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity. FASEB J. 1999;13 Suppl:S121-7.
    223.王攀,张舒,王冰,孙喜庆,耿捷,高原.模拟失重对MG-63细胞形态、增殖及周期的影响.航天医学与医学工程2007;20(6): 406-9.
    224. Papaseit C, Pochon N, Tabony J. Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8364-8.
    225. Carmeliet G, Vico L, Bouillon R. Space flight: a challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr. 2001; 11(1-3):131-44.
    226. Wronski TJ, Morey-Holton ER, Doty SB, et al. Histomorphometric analysis of rat skeleton following spaceflight. Am J Physiol. 1987 Feb; 252(2 Pt 2):R252-5.
    227. Wronski TJ, Li M, Shen Y, et al. Lack of effect of spaceflight on bone mass and bone formation in group-housed rats. J Appl Physiol. 1998 Jul; 85(1):279-85.
    228. Morey-Holton ER, Halloran BP, Garetto LP, Doty SB. Animal housing influences the response of bone to spaceflight in juvenile rats. J Appl Physiol. 2000 Apr; 88(4):1303-9.
    229. Robert WE, Fielder PJ, Rosenoer LM, et al. Nuclear morphometric analysis of osteoblast precursor cells in periodontal ligament, SL-3 rats. Am J Physiol. 1987 Feb; 252(2 Pt 2):R247-51.
    230. Takenobu Katagiri, Akira Yamaguchi, Motohiro Komaki, et al. Bone Morphogenetic Protein-2 Converts the Differentiation Pathway of C2C12 Myoblasts into the Osteoblast Lineage. The Journal of Cell Biology. 1994,Dec; (127)6: 1755-1766.
    231. Zernicke R, MacKay C, Lorincz C. Mechanisms of bone remodeling during weight-bearing exercise. Appl Physiol Nutr Metab. 2006; 31: 655–660.
    232. Skerry TM. The response of bone to mechanical loading and disuse:fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008; 473:117–123.
    233. Ziambaras K, Civitelli R, Papavasiliou SS. Weightlessness and skeleton homeostasis. Hormones (Athens). 2005; 4: 18–27.
    234. LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact. 2007; 7: 33–47.
    235. Malmud LS, Charkes ND. Bone scanning: principles,technique and interpretation. Clin Orthop Relat Res. 1975; 107:112–122.
    236. Riccabona G. Nuclear medicine in diagnosis and therapy of bone and joint diseases. Nucl Med Rev Cent East Eur. 1999; 2:42–52.
    237. Ferreira RI, de Almeida SM, Boscolo FN, Santos AO,Camargo EE. Bone scintigraphy as an adjunct for the diagnosis of oral diseases. J Dent Educ. 2002; 66: 1381–1387.
    238. Buckley O, O Keeffe S, Geoghegan T, Lyburn ID, Munk PL, Worsley D, Torreggiani WC. 99mTc bone scintigraphy superscans: a review. Nucl Med Commun. 2007; 28: 521–527.
    239. Basso N, Jia Y, Bellows CG, Heersche JN. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats. Bone. 2005 Sep; 37(3):370-8.
    240. Hiroyuki Inosea, Hiroki Ochi, Ayako Kimuraa, et al. A microRNA regulatory mechanism of osteoblast differentiation。PNAS. 2009,Dec8,;vol.106:20794–20799.
    241. Zhao JJ, Yang J, Lin J, et al. Identification of miRNA associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009 Jan; 25(1):13-20.
    242 Duan H, Jiang Y, Zhang H, Wu Y. MiR-320 and miR-494 affect cell cycles of primary murine bronchial epithelialcells exposed to benzo[a]pyrene. Toxicol In Vitro. 2010 Apr; 24(3):928-35.
    243. Liu L, Jiang Y, Zhang H, et al. Overexpressed miR-494 down-regulates PTEN gene expression in cells transformed by anti-benzo(a)pyrene-trans-7,8-dihydrodiol- 9,10-epoxide. Life Sci. 2010 Jan 30; 86(5-6):192-8.
    244. Wang XH, Qian RZ, Zhang W, et al. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol. 2009 Feb;36(2):181-8.
    245. Zhang J, Zhang F, Didelot X, et al. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics. 2009 Oct 16; 10:478.
    246. Greco S, De Simone M, Colussi C, et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009 Oct; 23(10):3335-46.
    247. Palmieri A, Pezzetti F, Brunelli G, et al. Anorganic bovine bone (Bio-Oss) regulates miRNA of osteoblast-like cells. Int J Periodontics Restorative Dent. 2010 Feb;30(1):83-7.
    248. Rodriguez A, Griffiths-Jones S, Ashurst JL,et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004 Oct; 14(10A):1902-10.
    249. Hobaviy HB, Dennis L, Jaenisch R, Sharp PA. Characterization of a highly variable eutherian microRNA gene. RNA. 2005 Aug; 11(8):1245-57.
    250. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006 Dec; 13(12):1097-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700