用户名: 密码: 验证码:
秸秆类生物质暗发酵产氢关键参数优化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能因其具有高效、清洁、无污染的特点被公认为最具发展前景的能源之一。在诸多的制氢方法中,生物制氢因其能够在常温常压下操作而备受关注。与光合制氢相比,暗发酵制氢具有产氢速率高、不依赖光照、设备简单、易操作、能够实现废弃生物质资源化等特点而最具产业化前景。目前,该技术普遍存在产氢率低、发酵底物成本高等问题,成为制约暗发酵制氢产业化的主要技术瓶颈。基于此,本文在探寻天然菌源预处理方法的基础上,从高效生物制氢反应器中分离、筛选得到一株底物利用范围广的高效兼性厌氧菌,对其产氢特性进行了研究,并从生化工程的角度对其中的NADH产氢途径进行调控;之后,从降低运行成本的角度,筛选分离在中温条件下能够直接利用未经过预处理的秸秆类生物质高效发酵产氢的微生物,进行菌种鉴定及相关的产氢特性研究。
     具体内容如下:
     1.探寻新的菌源预处理方式。
     系统考察了微波辐射预处理对混合菌源产氢性能的综合影响。结果显示:采用微波辐射对牛粪堆肥进行预处理,能够有效抑制或杀灭嗜氢菌,而保留产氢菌的活性。以20g/L酸解玉米秸秆为底物,利用微波辐射1.5min预处理的牛粪堆肥为菌源,在Na2CO3添加量800mg/L,Fe添加量400mg/L时,产氢量最大,达到144.3ml/g。与其它菌源预处理方式相比,该方法操作安全简单,能耗低,耗时少,且菌源产氢能力更高。
     通过AFM,蛋白浓度测定和PCR-DGGE技术研究了微波辐射作用机理在于:微波辐射能够对菌源中微生物细胞壁造成不同程度的损伤和破坏,进而影响微生物细胞的通透性;此外,微波还能对微生物的基因组DNA造成不同程度的损伤,由此导致对微波辐射敏感的嗜氢菌的失活或杀灭;而主要的产氢菌形成的芽孢具有极强的耐辐射和耐热能力,短时的微波辐射不会对其造成损伤,产氢菌的活性得以保持。
     2.从生物制氢反应器中分离得到一株高效兼性厌氧产氢菌。首先对其进行形态学特征及生理生化特性研究,结合菌株16S rDNA序列分析,确定该菌株的种属分类。对菌株产氢特性进行研究:菌株Bacillus sp. FS2011能利用多种碳、氮源产氢。以葡萄糖为底物时,最大产氢量为2.26mol/mol。发酵液的初始pH和培养温度对菌株产氢活性有影响,初始pH6.98、35℃为该菌种发酵产氢较为适宜的条件。在单因素实验的基础上,采用Plackett-Burman试验设计法及响应面分析法对菌株Bacillus sp. FS2011发酵产氢条件进行优化。首先采用Plackett-Burman试验设计法筛选出影响菌株产氢的主要因素:葡萄糖浓度、牛肉膏浓度和磷酸缓冲液浓度。在此基础上,利用最陡爬坡路径大致确定最大响应区域,最后利用Box-Behnken试验设计及响应面法进行回归分析。结果表明,三个主要因素的浓度变化显著影响氢气产量。通过求解回归方程,确定最优产氢条件:当葡萄糖浓度13.52g/L,牛肉膏浓度1.95g/L,磷酸缓冲液浓度19.36mmol/L时,氢气产量达到理论最大值3079.0ml/L,实际产氢量达到3081.2ml/L。
     3.对Bacillus sp. FS2011中NADH产氢途径进行强化。首先,在培养基中使用与葡萄糖结构类似,氧化还原状态不同的底物作为碳源进行发酵产氢试验,确定FS2011胞内存在NADH产氢途径。
     采用丙酮酸脱氢酶系E1抑制剂对菌源产氢过程进行干涉,以期能够充分发挥NADH产氢途径的作用。首先考察了抑制剂浓度对兼性厌氧纯菌和混合菌源发酵产氢量的影响。之后,考察了特定浓度抑制剂的添加对兼性厌氧纯菌和混合菌源产氢性能的综合影响。结果发现,添加适量的抑制剂能够有效提高发酵体系的氢气产量,同时降低体系中乙酸和丁酸等副产物的生成,降低了后续发酵废水的处理难度。
     4.从利用生玉米秸秆驯化的生物制氢反应器中分离得到一株能够在中温条件下,不经过底物预处理,高效利用生玉米秸秆发酵产氢的细菌。根据其形态学特征及生理生化特性,并结合菌株16S rDNA序列分析,确定菌株FS3的种属分类。
     菌株Clostridium sp. FS3能利用多种碳源产氢。以生玉米秸秆和酸解秸秆为底物时,产氢量分别为73.1和75.3ml/g-cornstalk,初步判断该菌株能够直接利用秸秆中的半纤维素产氢。在单因素实验的基础上,采用响应面分析法对Clostridium sp. FS3发酵产氢培养基进行优化。利用Box-Behnken试验设计及响应面分析法进行回归分析。结果表明,碳酸氢铵、磷酸二氢钾和营养液的浓度变化能够显著影响氢气产量,通过求解回归方程得到如下结论:当生玉米秸秆浓度20g/L,碳酸氢铵浓度1.76g/L,磷酸二氢钾浓度0.91g/L,营养液的添加量为10.4ml/L时,氢气产量达到理论最大值94.1ml/g,实际产氢量达到92.9ml/g。Clostridium sp. FS3作为能够在中温条件下直接利用纤维素类生物质发酵产氢的优良菌种,在生物制氢中有较好的应用前景。
Energy crisis and serious global environment pollution have been caused byexcessive use of fossil fuels. Thus, it is urgent to develop nonpolluting and renewableenergy resource. Hydrogen is deemed as the most promising alternative energy due toits high conversion efficiency, recyclability and nonpolluting nature. In all hydrogenproduction processes, biological hydrogen production stands out because it can beaccomplished at ambient temperature and pressure. In comparison withphotosynthetic fermentation, dark fermentation has many advantages such ashigh-rate of hydrogen production, simple fermentative equipment, independence oflight and bioconversion feasibility from renewable resources. However, the low yieldof hydrogen production and the high cost of the substrate are the main constraints forthe industrialization of dark fermentative hydrogen production. In this dissertation,the effect of microwave irradiation pretreatment of compost on bio-hydrogenproduction from corn stalk was systematically investigated. The characteristics of anisolated high-efficient hydrogen-producing bacterium and another strain which coulddirectly convert raw cornstalk to hydrogen were analyzed. In addition, biochemicalengineering was applied to manipulate “NADH pathway” in Bacillus sp. FS2011.Main contents and results are follows:
     1. The effect of microwave irradiation pretreatment of compost on bio-hydrogenproduction from corn stalk was systematically investigated. The microwavepretreatment of compost was an alternative strategy to suppress the activity ofhydrogen-consuming bacteria and harvest high yield hydrogen-producingsporeforming anaerobes in fermentation producing hydrogen process for its safe andsimple operation, low energy consumption, short time-consuming and higherhydrogen yield. The maximum hydrogen yield of144.3ml/g was obtained from cornstock by the irradiated cow dung compost at fixed substrate concentration of20g/L,Na2CO3dosage of800mg/L and Fe dosage of400mg/L. The diversity and symbiosisrelations of the mixed bacteria in the pretreated compost had been observed, thedamage of microbial cell was further confirmed by AFM, determination of protein content and PCR-DGGE analysis.
     2. A new fermentative hydrogen-producing strain FS2011was isolated from aneffluent of bio-hydrogen production reactor, and identified as Bacillusamyloliquefaciens on the basis of16S rDNA gene sequence. The strain could utilizevarious carbon and nitrogen sources to produce hydrogen in a broad range of initialpH (5.29-7.38). Single factor experimental designs and RSM were applied tooptimize culture conditions for hydrogen production from glucose. The optimalparameters for the maximal Ps(3079.0ml/L)were: glucose13.52g/L, beef extract1.95g/L, initial pH6.98, phosphate buffer19.36mmol/L, and35℃, indicatingFS2011was a high-efficiency hydrogen-producing bacterium.
     3.“NADH pathway” was determined in Bacillus sp. FS2011by studying theeffect of the redox state of substrates on hydrogen production. The efficient methodsfor extraction and detection of NAD+and NADH in pure and mixed cultures wereestablished. Thereafter, the inhibitor of pyruvate dehydrogenase multienzymecomplex (PDHc) E1:4-((1-((4-amino-2-methylpyrimidin-5-yl) methyl)-5-iodo-1H-1,2,3-triazol-4-yl)methoxy)benzonitrilewas added into the medium to control thehydrogen metabolism of FS2011and mixed culture. And the effect of the inhibitor ofPDHc on hydrogen production by pure and mixed cultures was systematically studied.Results revealed that the appropriate amount of PDC inhibitor could efficientlyenhance hydrogen production and decrease the production of soluble metabolicbyproducts such as butyrate, acetate and so on by both the facultative anaerobeBacillus sp. FS2011and mix culture in batch cultivation.
     4. A new hydrogen-producing strain Clostridium sp. FS3was successfullyisolated and identified, which could directly convert raw cornstalk to hydrogenwithout substrate pretreatment in moderate temperature. The strain could utilizevarious carbon sources to produce hydrogen. According to the results of RSMexperiment,20g/L raw corn stalk,1.76g/L NH4HCO3,0.91g/L KH2PO4and10.4ml/L nutrient solution were established to be the most favorable for hydrogenproduction. The maximal hydrogen yield of92.9ml/g-corn stalk was observed underthe optimal conditions. Clostridium sp. FS3was considered an ideal bacterium forhydrogen production from raw cellulosic biomass.
引文
[1]中国机经网.王瑞祥会长出席“2013能源年会暨第五届中国能源企业高层论坛”并致辞[EB/OL].2013. http://www.mei.net.cn/jxgy/201312/530702.html
    [2]汪珺.今年我国石油需求或增4%成为天然气第三大消费[EB/OL].2014.http://www.nea.gov.cn/2014-01/16/c_133049882.htm
    [3]中国网.国际能源署:2020年中国将成最大石油进口国[EB/OL].2013.http://finance.china.com.cn/industry/energy/20131128/2006289.shtml
    [4]Bockris JóM. The origin of ideas on a hydrogen economy and its solution to the decay of theenvironment [J]. Int J Hydrogen Energy,2002,27(7):731-740.
    [5]Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practicalapplication [J]. Int J Hydrogen Energy,2004,29(2):173-185.
    [6]环资处.河南省发展和改革委员会河南省农业厅关于印发《河南省十二五农作物秸秆综合利用规划》的通知[EB/OL].2013. http://www.hndrc.gov.cn/zyjy/4161.jhtml
    [7]Das D, Veziroglu TN. Advances in biological hydrogen production processes [J]. Int JHydrogen Energy,2008,33(21):6046-6057.
    [8]Ramachandran R, Menon KR. An overview of industrial uses of hydrogen [J]. Int J HydrogenEnergy,1998,23(7):593-598.
    [9]朱核光,史家梁.生物产氢技术研究进展[J].应用和环境生物学报,2002,8:98-104.
    [10] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials [J]. Enzyme andMicrobial Technology,2006,38(5):569-582.
    [11] Kalamaras CM, Efstathiou AM. Hydrogen Production Technologies: Current State andFuture Developments [J]. Hindawi Publishing Corporation, Conference Papers in Energy.2013. http://dx.doi.org/10.1155/2013/690627
    [12] Hema Krishna DR. Review of research on production methods of hydrogen: future fuel [J].European Journal of Biotechnology and Bioscience,2013;1(2):84-93.
    [13] Bundhoo ZMA, Mudhoo A, Mohee R. Biological Processes for Hydrogen Production fromBiomass [J]. Journal of Environmental Science and Sustainability (JESS),2013,1(1):1-12.
    [14] Omneya E, Hisham H, George N, et al. A critical literature review on biohydrogenproduction by pure cultures [J]. Int J Hydrogen Energy,2013,38(12):4945-4966.
    [15] Lee DJ, Show KY, Su A. Dark fermentation on biohydrogen production: Pure culture [J].Bioresource Technology,2011,102(18):8393-8402.
    [16] Benemann J. Hydrogen biotechnology: progress and prospects [J]. Nat Biotechnol,1996,14(9):1101-1103.
    [17] Nandi R, Sengupta S. Microbial production of hydrogen: an overview [J]. Crit RevMicrobiol,1998,24(1):61-84.
    [18] Chen WH, Chen SY, Khanal SK, et al. Kinetic study of biological hydrogen production byanaerobic fermentation [J]. Int J Hydrogen Energy,2006,31(15):2170-2178.
    [19] Ni M, Leung DYC, Leung MKH, et al. An overview of hydrogen production from biomass[J]. Fuel Processing Technology,2006,87(5):461-472.
    [20] Masset J, Hiligsmann S, Hamilton C, et al. Effect of pH on glucose and starch fermentationin batch and sequenced-batch mode with a recently isolated strain of hydrogen-producingClostridium butyricum CWBI1009[J]. Int J of Hydrogen Energy,2010,35(8):3371-3378.
    [21] Roy S, Vishnuvardhan M, Das D. Improvement of hydrogen production by newly isolatedThermoanaerobacterium thermosaccharolyticum IIT BT-ST1[J]. Int J Hydrogen Energy,2014,39(14):7541-7552.
    [22] Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT08[J]. Process Biochem,2000,35(6):589-593.
    [23] Kan E. Effects of pretreatments of anaerobic sludge and culture conditions on hydrogenproductivity in dark anaerobic fermentation [J]. Renewable Energy,2013,49:227-231.
    [24] Chang S, Li JZ, Liu F. Evaluation of different pretreatment methods for preparinghydrogen-producing seed inocula from waste activated sludge [J]. Renewable Energy,2011,36(5):1517-1522.
    [25] Venkata MS, Lalit BV, Sarma PN. Effect of various pretreatment methods on anaerobicmixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate[J]. Bioresource Technology,2008,99(1):59-67.
    [26] Rossi DM, da Costa JB, de Souza EA, et al. Comparison of different pretreatment methodsfor hydrogen production using environmental microbial consortia on residual glycerol frombiodiesel [J]. Int J Hydrogen Energy,2011,36(8):4814-4819.
    [27] Yin YN, Hu J, Wang JL. Enriching hydrogen-producing bacteria from digested sludge bydifferent pretreatment methods [J]. Int J Hydrogen Energy,2014. http://dx.doi.org/10.1016/j.ijhydene.2014.01.145
    [28] Bao MD, Su HJ, Tan TW. Dark fermentative bio-hydrogen production: Effects of substratepre-treatment and addition of metal ions or L-cysteine [J]. Fuel,2013,112:38-44.
    [29] Rajhi H, Díaz EE, Rojas P, et al. Microbial Consortia for Hydrogen Production Enhancement[J]. Curr Microbiol,2013,67(1):30-35.
    [30] Panagiotopoulos IA, Bakker RR, de Vrije T, et al. Integration of first and second generationbiofuels: Fermentative hydrogen production from wheat grain and straw [J]. BioresourceTechnology,2013,28(1):345-350.
    [31] Bala-Amutha K, Murugesan AG. Biohydrogen production using corn stalk employingBacillus licheniformis MSU AGM2strain [J]. Renewable Energy,2013,50(2):621-627.
    [32] Zhao L, Cao GL, Wang AJ, et al. Fungal pretreatment of cornstalk with Phanerochaetechrysosporium for enhancing enzymatic saccharification and hydrogen production [J].Bioresoure Technology,2012,114(6):365-369.
    [33] Gadow SI, Li YY, Liu YY. Effect of temperature on continuous hydrogen production ofcellulose [J]. Int J Hydrogen Energy,2012,37(20):15465-15472.
    [34] Islam R, zmih i S, Cicek N, et al. Enhanced cellulose fermentation and end-productsynthesis by Clostridium thermocellum with varied nutrient compositions undercarbon-excess conditions [J]. Biomass and Bioenergy,2013,48(1):213-223.
    [35] Fan YT, Zhang GS. Guo XY, et al. Biohydrogen-production from beer lees biomass by cowdung compost [J]. Biomass Bioenergy,2006,30(5):493-496.
    [36] Fan YT, Zhang YH, Zhang SF, et al. Efficient conversion of wheat straw wastes intobiohydrogen gas by cow dung compost [J]. Bioresoure Technology,2006,97(3):500-505.
    [37]樊耀亭,侯红卫,张高生.用农业固体废弃物生产氢气的方法[P].中国专利,03126344.5,2005-7-27.
    [38] Kumar S, Aditya B, Rajesh VS, et al. Decentralized Thermophilic Biohydrogen: A moreefficient and cost-effective process [J].“Thermophilic biohydrogen: Editorial,” Bioresources,2012,7(1):1-2.
    [39] Chen CC, Chuang YS, Lin CY, et al. Thermophilic dark fermentation of untreated rice strawusing mixed cultures for hydrogen production [J]. Int J Hydrogen Energy,2012,37(20):15540-15546.
    [40] Tolvanen KES, Karp MT. Molecular methods for characterizing mixed microbialcommunities in hydrogen fermenting systems [J]. Int J Hydrogen Energy,2011,36(9):5280-5288.
    [41] Li RY, Zhang T, Fang HHP. Application of molecular techniques on heterotrophic hydrogenproduction research [J]. Bioresoure Technology,2011,102(18):8445-8456.
    [42]张翀.产气肠杆菌荧光定量追踪及其NADH产氢途径机理研究[D].[博士学位论文].北京:清华大学,2007.
    [43] Nielsen J. It is all about metabolic fluxes [J]. J Bacteriol,2003,185(24):7031-7035.
    [44] Tanisho S, Kamiya N, Wakao N. Hydrogen evolution of Enterobacter aerogenes dependingon culture pH: mechanism of hydrogen evolution from NADH by means ofmembrane-bound hydrogenase [J]. Biochimicaet Biophysica Acta (BBA)-Bioenergetics,1989,973(1):1-6.
    [45] Sun JX, Yuan XZ, Shi XS, et al. Fermentation of Chlorella sp. for anaerobic bio-hydrogenproduction: Influences of inoculum-substrate ratio, volatile fatty acids and NADH [J].Bioresource Technology,2011,102(22):10480-10485.
    [46]秦义,董志姚,刘立明.工业微生物中NADH的代谢调控[J].生物工程学报,2009,25(2):161-169.
    [47] Lu Y, Zhao H, Zhang C, et al. Alteration of hydrogen metabolisms of ldh-deletedEnterobacter aerogenes by overexpression of NAD(+)-dependent formate dehydrogenase [J].Appl Microbiol Biotechnol,2010,86(1):255-262.
    [48]徐方成.暗发酵产氢细菌的产氢机理与产氢代谢调控[D].[博士学位论文].厦门:厦门大学,2007.
    [49] Zhang C, Ma K, Xing XH. Regulation of hydrogen production by Enterobacter aerogenes byexternal NADH and NAD+[J]. Int J Hydrogen Energy,2009,34(3):1226-1232.
    [50] Thong SO, Prasertsan P, Karakashev D, et al. Thermophilic fermentative hydrogenproduction by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2[J].Int J Hydrogen Energy,2008,33(4):1204-1214.
    [51]卢怡,张无敌,宋洪川等.稻草发酵产氢潜力的研究[J].能源工程,2003,2:26-28.
    [52] Wang AJ, Sun D, Cao GL, et al. Integrated hydrogen production process from cellulose bycombining dark fermentation, microbial fuel cells, and a microbial electrolysis cell [J].Bioresource Technology,2011,102(5):4137-4143.
    [1] Pérez-Serradilla JA, Luque de Castro MD. Microwave-assisted extraction of phenoliccompounds from wine lees and spray-drying of the extract [J]. Food Chem,2011,124(4):1652-1659.
    [2] Liu CZ, Cheng XY. Improved hydrogen production via thermophilic fermentation ofcorn stover by microwave-assisted acid pretreatment [J]. Int J Hydrogen Energy,2010,35(17):8945-8952.
    [3] Thungklin P, Reungsang A, Sittijund S. Hydrogen production from sludge of poultryslaughterhouse wastewater treatment plant pretreated with microwave [J]. Int JHydrogen Energy,2011,36(14):8751-8757.
    [4] Banik S, Bandyopadhyay S, Ganguly S, et al. Effect of microwave irradiatedMethanosarcina barkeri DSM-804on biomethanation [J]. Bioresoure Technology,2006,97(6):819-823.
    [5] Singhal Y, Singh R. Effect of microwave pretreatment of mixed culture on biohydrogenproduction from waste of sweet produced from Benincasa hispida [J]. Int J HydrogenEnergy,2014,39(14):7534-7540.
    [6] Logan BE, Oh SE, Kim IS, et al. Biological hydrogen production measured in batchanaerobic respirometers [J].Eniron Sci Technol,2002;36(11):2530-2535.
    [7] Fan YT, Zhang YH. Efficient conversion of wheat straw wastes into biohydrogen gas bycow dung compost [J]. Bioresoure Technology,2006,97(3):500-505.
    [8] Lay JJ, Li YY, Noike T. A mathematical model for methane production from landfillbioreactor [J]. J Environ Eng,1998,124(8):730-736.
    [9] Miyake J, Miyake M, Asada Y. Biotechnological hydrogen production: research forefficient light energy conversion [J]. J Biotechnol,1999,70(1-3):89-101.
    [10]Sullivan CJ, Morrell JL, Allisona DP, et al. Mounting of Escherichia coli spheroplastsfor AFM imaging [J]. Ultramicroscopy,2005,105(1-4):96-102.
    [11]Sambrook J, Russell DW. Molecular cloning: a laboratory manual.3rd ed [M]. NewYork: Cold Spring Harbor Laboratory Press,2001.
    [12]刘玉春,周志刚,石鹏君等.网箱养殖青石斑鱼Epinephelus awoara鳃及体表粘附菌群的PCR-DGGE比较分析[J].中国农业科技导报,2008,10(1):81-86.
    [13]Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J].Anal Chem,1959,31(3):426-428.
    [14]Andras E, Kennedy KJ, Richardson DA. Test for characterizing settle ability ofanaerobic sludge [J]. Env Technol Lett,1989,10(5):463-470.
    [15]Fan YT, Li CL, Lay JJ, et al. Optimization of initial substrate and pH levels forgermination of sporing hydrogen-producing anaerobes in cow dung compost [J].Bioresource Technology,2004,91(2):189-193.
    [16]Cheong DY, Bansen CL.Bacterial stress enrichment enhances anaerobic hydrogenproduction in cattle manure sludge [J].Applied Microbiology Biotechnology,2006,72(4):635-643.
    [17]Rossi DM, da Costa JB, de Souza EA, et al. Comparison of different pretreatmentmethods for hydrogen production using environmental microbial consortia on residualglycerol from biodiesel [J]. Int J Hydrogen Energy,2011,36(8):4814-4819.
    [18]Ren NQ,Guo WQ,Wang XJ,et a1.Effects of different pretreatment methods onfermentation types and dominant bacteria for hydrogen production [J].Int J HydrogenEnergy,2008,33(16):4318-4324.
    [19]HU B. Chen SL.Pretreatment of methanogenic granules for immobilized hydrogenfermentation [J]. Int J Hydrogen Energy,2007,32(15):3266-3273.
    [20]Thong SO, Prasertsan P, Birkeland NK. Evaluation of methods for preparinghydrogen-producing seed inocula under thermophilic condition by process performanceand microbial community analysis [J].Bioresource Technology,2009,100(2):909-918.
    [21]Yin YN, Hu J, Wang JL. Enriching hydrogen-producing bacteria from digested sludgeby different pretreatment methods [J]. Int J Hydrogen Energy,2014.http://dx.doi.org/10.1016/j. ijhydene.2014.01.145
    [22]Fan YT, Xing Y, Ma HC, et al. Enhanced cellulose-hydrogen production from cornstalkby lesser panda manure [J]. Int J Hydrogen Energy,2008,33(21):6058-6065.
    [23]Zhang T, Fang HHP. Digitization of DGGE (denaturant gradient gel electrophoresis)profile and cluster analysis of microbial communities [J]. Biotechnol Lett,2000,22(5):399-405.
    [24]丁杰,任南琪,刘敏等. Fe和Fe2+对混合细菌产氢发酵的影响[J].环境科学,2004,25(4):48-53.
    [25]Yang HJ, Shen JQ. Effect of ferrous iron concentration on anaerobic bio-hydrogenproduction from soluble starch [J].Int J Hydrogen Energy,2006,31(15):2137-2146.
    [26]Kim DH, Kim SH, Shin HS. Sodium inhibition of fermentative hydrogen production [J].Int J Hydrogen Energy,2009,34(8):3295-3304.
    [27]郝小龙,周明华,俞汉青等.钠盐浓度对厌氧产氢颗粒污泥从蔗糖中产氢的影响[J].中国化学工程学报,2006,14(4):511-517.
    [28]洪天求,郝小龙,俞汉青.钠离子浓度对厌氧发酵产氢的实验研究[J].水处理技术,2004,30(5):270-275.
    [29]杏艳,马红翠,樊耀亭.秸秆类生物质发酵法生物产氢的研究[J].科学通报,2009,54(1):1-7.
    [1] Das D, Veziroglu TN. Hydrogen production by biological processes: a survey of literature[J]. Int J Hydrogen Energy,2001,26(1):13-28.
    [2] Yu L, Li WW, Lam MH, et al. Isolation and characterization of a Klebsiella oxytoca strainfor simultaneous azo-dye anaerobic reduction and bio-hydrogen production [J]. ApplMicrobiol Biotechnol,2012,95(1):255-262.
    [3] Li CL, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes bymixed cultures [J]. Crit Rev Environ Sci Technol,2007,37(1):1-39.
    [4] Omneya E, Hisham H, George N, et al. A critical literature review on biohydrogenproduction by pure cultures [J]. Int J Hydrogen Energy,2013,38(12):4945-4966.
    [5] Lee DJ, Show KY, Su A. Dark fermentation on biohydrogen production: Pure culture [J].Bioresource Technology,2011,102(18):8393-8402.
    [6]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [7] RE布坎南, NE吉本斯.伯杰氏细菌鉴定手册(第八版)[M].北京:科学出版社,1984.
    [8] Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual.3rd ed [M]. ColdSpring Harbor: Cold Spring Harbor Laboratory Press,2001.
    [9]宋朝霞,张颖,堵国成等.一株产聚乙烯醇降解酶的紫色杆菌的发酵条件研究[J].高校化学工程学报,2006,20(5):769-774.
    [10] Tanisho S, Kamiya N, Wakao N. Hydrogen evolution of Enterobacter aerogenesdepending on culture pH: mechanism of hydrogen evolution from NADH by means ofmembrane-bound hydrogenase [J]. Biochimicaet Biophysica Acta,1989,973(1):1-6.
    [11] Chittibabu G, Nath K, Das D. Feasibility studies on the fermentative hydrogen productionby recombinant Escherichia coli BL21[J]. Process Biochem,2006,41(3):682-688.
    [12] Large PJ. Degradation of organic nitrogen compound s by yeasts [J]. Yeast,1986,2(1):1-34.
    [13] Ferchichi M, Crabbe E, Hintz W, et al. Influence of culture parameters on biologicalhydrogen production by Clostridium saccharoperbutylacetonicum ATCC27021[J]. WorldJ Microbiol Biotechnol,2005,21(6-7):855-862.
    [14] Mizuno O, Dinsdale R, Hawkes FR, et al. Enhancement of hydrogen production fromglucose by nitrogen gas sparging [J]. Bioresoure Technology,2000,73(1):59-65.
    [15] Dabrock B, Bahl H, Gottschalk G. Parameters affecting solvent production by Clostridiumpasteurianum [J]. Appl Environ Microbiol,1992,58(4):1233-1239
    [16] Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch tohydrogen [J]. Biotechno Bioeng,2000,68(3):269-278.
    [17] Tang GL, Huang J, Sun ZJ, et al. Biohydrogen production from cattle wastewater byenriched anaerobic mixed consortia: influence of fermentation temperature and pH [J]. JBiosci Bioeng,2008,106(1):80-87.
    [18] Ding J, Liu BF, Ren NQ, et al. Hydrogen production from glucose by co-culture ofClostridium Butyricum and immobilized Rhodopseudomonas faecalis RLD-53[J]. Int JHydrogen Energy,2009,34(9):3647-3652.
    [19] Long MN, Hu JL, Wu XB, et al. Isolation and characterization of a high H2-producingstrain Klebsiella oxytoca HP1from a hot spring [J]. Res Microbiol,2005,156(1):76-81.
    [20] Kotay SM, Das D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1isolated from anaerobic sewage sludge [J]. Bioresoure Technology,2007,98(6):1183-1190.
    [21] Li C, Bai JH, Cai ZL. Optimization of a cultural medium for bacteriocin production byLactococcus lactis using response surface methodology [J]. Journal of Biotechnology,2002,93(1):27-34.
    [22]刘青芝,李霞,苏移山等.响应面法优化γ-聚谷氨酸发酵条件[J].中国生化药物杂志,2011,32(2):99-102.
    [23] Kalia VC, Jain SR, Kumar A, et al. Fermentation of bio-waste to H2by Bacilluslicheniformis [J]. World J Microbiol Biotechnol,1994;10(2):224-227.
    [24]Sung S, Raskin L, Duangmanee T, et al. Hydrogen production by anaerobic microbialcommunities exposed to repeated heat treatments. In: Proceedings of the2002US DOEHydrogen Program Review, NREL/CP-610-32405.
    [25] Manikkandan TR, Dhanasekar R, Thirumavalavan K. Microbial Production of Hydrogenfrom Sugarcane Bagasse using Bacillus sp.[J]. Int J ChemTech Research,2009,1(2):344-348.
    [26] Patel SKS, Purohit HJ, Kalia VC. Dark fermentative hydrogen production by definedmixed microbial cultures immobilized on lignocellulosic waste materials [J]. Int JHydrogen Energy,2010,35(19):10674-10681.
    [27] Liu HY, Wang GC. Hydrogen production of a salt tolerant strain Bacillus sp. B2frommarine intertidal sludge [J]. World J Microbiol Biotechnol,2012,28(1):31-37.
    [28] Patel SKS, Singh M, Kalia VC. Hydrogen and polyhydroxybutyrate producing abilities ofBacillus spp. from glucose in two stage system [J]. Indian J Microbiol,2011,51(4):418-423.
    [29] Bala AK, Murugesan AG. Biohydrogen production using corn stalk employing Bacilluslicheniformis MSU AGM2strain [J]. Renewable Energy,2013,50(2):621-627.
    [30] Sinha P, Pandey A. Biohydrogen production from various feedstocks by Bacillus firmusNMBL-03[J]. Int J Hydrogen Energy,2014,39(14):7518-7525.
    [1] Zhang QH, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH[J]. Science,2002,295(5561):1895-1897.
    [2] Rigoulet M, Aguilaniu H, Avret N, et al. Organization and regulation of the cytosolic NADHmetabolism in the yeast Saccharomyces cerevisiae [J]. Mol Cell Biochem,2004,256-257(1-2):73-81.
    [3] Tanisho S, Kamiya N, Wakao N. Hydrogen evolution of Enterobacter aerogenesdepending on culture pH: mechanism of hydrogen evolution from NADH by means ofmembrane-bound hydrogenase [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1989,973(1):1-6.
    [4] de Kok S, Meijer J, van Loosdrecht MCM, et al. Impact of dissolved hydrogen partialpressure on mixed culture fermentations [J]. Appl Microbiol Biotechnol,2013,97(6):2617-2625.
    [5]李骆冰,王永红,庄英萍等.乙醇发酵中酿酒酵母辅酶NAD+及NADH测定方法[J].食品与生物技术学报,2011,30(2):287-294.
    [6] Theobald U, Mailinger W, Baltes M, et al. Invivo analysis of metabolic dynamics inSaccharomy cescerevisiae: I. experimental observations [J]. Biotechnol Bioeng,1997,55(2):305-316.
    [7] Du CY, Zhang YP, Li Y, et al. Use oxidoreduction potential as an indicator to regulate1,3-propanediol fermentation by Klebsiella pneumoniae [J]. Appl Microbiol Biotechnol,2006,69(5):554-563.
    [8] Menzel K, Ahrens K, Zeng A, et al. Kinetic, dynamic, and pathway studies of glycerolmetabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes andfluxes of pyruvate metabolism [J]. Biotechnol Bioeng,1998,60(5):617-626.
    [9] Mailinger W, Baumeister A, Reuss M, et al. Rapid and highly automated determination ofadenine and pyridine nucleotides in extracts of Saccharomyces cerevisiae using a microrobotic sample preparation-HPLC system [J]. J Biotechnol,1998,63(2):155-157.
    [10] Nakashimada Y, Rachman MA, Kakizono T, et al. Hydrogen production of Enterobacteraerogenes altered by extracellular and intracellular redox states [J]. Int J Hydrogen Energy,2002,27(11-12):1399-1405.
    [11]张翀.产气肠杆菌荧光定量追踪及其NADH产氢途径机理研究[D].[博士学位论文].北京:清华大学,2007.
    [1]张淑芳,潘春梅,樊耀亭等.玉米芯发酵法生物制氢[J].生物工程学报,2008,24(6):1085-1090.
    [2] Panagiotopoulos IA, Bakker RR, de Vrije T, et al. Effect of pretreatment severity on theconversion of barley straw to fermentable substrates and the release of inhibitory compounds[J]. Bioresoure Technology,2011,102(24):11204-11211.
    [3] Panagiotopoulos IA, Bakker RR, de Vrije T, et al. Integration of first and second generationbiofuels: Fermentative hydrogen production from wheat grain and straw [J]. BioresoureTechnology,2013,128(1):345-350.
    [4] Cheng XY, Liu CZ. Enhanced coproduction of hydrogen and methane from cornstalks by athree-stage anaerobic fermentation process integrated with alkaline hydrolysis [J].Bioresoure Technology,2012,104(1):373-379.
    [5] Zhao L, Cao GL, Wang AJ, et al. Fungal pretreatment of cornstalk with Phanerochaetechrysosporium for enhancing enzymatic saccharification and hydrogen production [J].Bioresoure Technology,2012,114:365-369.
    [6] Gadow SI, Li YY, Liu YY. Effect of temperature on continuous hydrogen production ofcellulose [J]. Int J Hydrogen Energy,2012,37(20):15465-15472.
    [7] Islam R, zmih i S, Cicek N, et al. Enhanced cellulose fermentation and end-productsynthesis by Clostridium thermocellum with varied nutrient compositions undercarbon-excess conditions [J]. Biomass and Bioenergy,2013,48(1):213-223.
    [8] Siles JA, Brekelmans J, Martin MA, et al. Impact of ammonia and sulphate concentration onthermophilic anaerobic digestion [J]. Bioresoure Technology,2010,101(23):9040-9048.
    [9] Kang JH, Kim D, Lee TJ. Hydrogen production and microbial diversity in sewage sludgefermentation preceded by heat and alkaline treatment [J]. Bioresoure Technology,2012,109:239-243.
    [10] Rajhi H, Díaz EE, Rojas P, et al. Microbial consortia for hydrogen production enhancement[J]. Current Microbiology,2013,67(1):30-35.
    [11] Ferchichi M, Crabbe E, Hintz W, et al. Influence of culture parameters on biologicalhydrogen production by Clostridium saccharoperbutylacetonicum ATCC27021[J].WorldJournal of Microbiology&Bioteehnology,2005,21(67):855-862.
    [12] Das D, Dutta T, Nath K, et al. Role of Fe-hydrogenase in biological hydrogen production [J].Current Science,2006,90(12):1627-1637.
    [13] Cao GL, Xia XF, Zhao L, et al. Development of AFEX-based consolidated bioprocessing onwheat straw for biohydrogen production using anaerobic microflora [J]. Int J HydrogenEnergy,2013,38(35):15653-15659.
    [14] Cui MJ, Shen JQ. Effects of acid and alkaline pretreatments on the biohydrogen productionfrom grass by anaerobic dark fermentation [J]. Int J Hydrogen Energy,2012,37(1):1120-1124.
    [15] Chen WM, Laevens S, Lee TM, et al. Ralstonia taiwanensis sp. nov., isolated from rootnodules of Mimosa species and sputum of a cystic fibrosis patient [J]. Int J Syst EvolMicrobiol,2001,51(5):1729-1735.
    [16] Cheng XY, Liu CZ. Fungal pretreatment enhances hydrogen production via thermophilicfermentation of cornstalk [J]. Applied Energy,2012,91(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700