用户名: 密码: 验证码:
解磷根瘤菌诱变选育及抗污染菌剂制备关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长必需的主要营养元素,由于72%到90%的土壤磷会被土壤中的钙、铝、铁离子和有机化合物所固定,使土壤磷缺乏成为限制农产品产量和质量的重要因素。苜蓿和红豆草作为最重要的牧草,栽培面积超过两百万公顷,占全国近四分之三的人工草地。产量集中于西北高原干旱半干旱地区的谷物作物轮作区。土壤全磷含量随磷肥的不断施用而逐渐增加,但作物及牧草依旧由于有效磷过低而产生明显的缺磷症状。解磷微生物能够分解土壤中的难溶性无机磷供植物吸收利用,其中的解磷根瘤菌作为一种同时具备解磷和结瘤固氮作用的植物促生菌,对豆科作物的生长和产量有很好的促进作用,能够减少磷化肥的施用,并降低农业生产的成本。但目前解磷根瘤菌剂的应用受到下列因素的限制:1.菌种的选育效率较低,筛选出的菌种综合促生能力不高。2.菌种的应用范围仅限于其寄主植物。3.国内外根瘤菌剂普遍存在污染率高、功能单一、保质期短和占瘤率低的问题。由于解磷根瘤菌本身会分泌有机酸,因此更容易造成菌剂产品的酸化,引起菌体的死亡和杂菌的侵入;4.目前采用的通用泥炭载体基质为不可再生资源,其采集过程会对产地的生态环境造成破坏,而泥炭菌剂也存在一些质量上的缺陷。
     针对上述问题,本研究从以下方面进行了探讨:1.优化解磷根瘤菌的筛选方法和菌种的诱变增效;2.将能够解磷并有分泌生长素能力的根瘤菌作为根际解磷固氮促生菌在非寄主植物上应用,拓宽其应用范围;3.利用抑菌剂降低根瘤菌剂的污染率,提高根瘤菌活菌数和目标根瘤菌的占瘤率;4.以青秸秆粉浸提液作为解磷根瘤发酵培养基,降低菌剂生产成本。并以黄绵土和秸秆粉代替泥炭载体作为固体菌剂载体基质,降低根瘤菌菌剂制备的经济成本和环境成本。根据这样的指导思想和目标,本研究在逐级分离、定向选育的方法筛选出有利用潜力的解磷分泌生长素根瘤菌Rhizobium. Meliloti L-5和Rhizobium sp.RS-1菌株的基础上,通过微波诱变和验证选育得到两株原始菌株的增效耐药突变株Rhizobium. meliloti LW107和Rhizobium sp.RSW96,使菌株的解磷和分泌生长素能力得到增强,并获得对两种抗生素的抗药标记特性。经过遗传稳定性验证后,在以难溶性无机磷为唯一磷素来源的栽培条件下考察诱变选育得到的解磷根瘤菌突变株LW107和RSW96对寄主及非寄主植物的促生性能。在抗污染菌剂的试制过程中,利用突变株的耐药特性,以其耐受的氨苄青霉素作为抑菌剂,进行不同浓度氨苄青霉素对菌株和寄主植物幼苗的毒性测验,优化出液体菌剂的最适抑菌剂浓度和含药菌剂施用时的最佳稀释度。为了最大程度的降低菌剂成本并提高其质量,本研究优化出最适于解磷根瘤菌发酵培养的碳源种类,讨论了调整成份后的青秸秆粉浸提液作为解磷根瘤菌液体发酵培养基和固体培养基的可行性。随后以灭菌的玉米青秸秆粉、黄绵土以及常用的泥炭和蛭石进行载体基质的筛选,试制出含抑菌剂的解磷根瘤菌液体菌剂和固体菌剂,经不同贮存时期进行菌剂性质的测定和验证,得到性质稳定、造价低廉、污染率低、有效期长的解磷根瘤菌剂及其制备工艺的关键技术。
     研究的主要结果如下:
     1.以固氮菌-解磷固氮菌-解磷根瘤菌的逐级筛选模式可以从豆科植物根瘤内分离得到具有良好促生性能的解磷根瘤菌。以该方法筛选出的苜蓿根瘤菌Rhizobium meliloti L-5和红豆草根瘤菌Rhizobium sp. RS-1均为快生型根瘤菌,具有结瘤固氮能力较强的特点,兼备解磷和产生长素的特性,耐盐和耐酸碱能力强,可以作为高效解磷根瘤菌进一步选育的基础材料。
     2.根瘤中可溶解无机磷的解磷固氮菌株以土壤杆菌、放线菌、芽孢杆菌、氮单胞杆菌和其他固氮菌属中的菌株为主,经回接鉴定的根瘤菌仅有5株,仅占总固氮菌株数的1.78%。表明根瘤内有大量无结瘤能力的解磷固氮菌存在。
     3.采用菌株诱变的方法,可利用已有菌种资源,提高菌种选育效率,弥补野生菌种解磷能力弱的缺陷。作为一种简便、安全、清洁、廉价的辐射源,微波辐照诱变的条件更易于掌控和变更。本研究中随着诱变目的和根瘤菌株的不同,具体的最佳微波辐照参数有较大差异,但最高正突变率均出现于致死率为87%-90%之间的辐照处理。经诱变得到的部分高效突变菌株存在遗传基因不稳定、出现回复突变或产量下降的现象,需验证至少6代菌体的遗传稳定性。
     4.在仅提供难溶性无机磷的栽培条件下,所有植物都表现出明显的生长受抑,叶片生长迟缓、颜色变深,根系变细。具备产生长素能力的解磷根瘤菌对寄主和非寄主植物有良好促生效果,能有效解除寄主和非寄主植物的缺磷胁迫,促进植株生长量和生物量的增长,提高氮素和磷素的吸收。解磷根瘤菌通过溶解难溶性无机磷解除寄主或非寄主植物遭受的缺磷胁迫,使之进入相对均衡的营养环境,同时侵染寄主植株产生根瘤固氮。对非寄主植物,解磷根瘤菌具有根际解磷菌相似的特性,但接种于寄主植物时,植株的叶面积、地上及地下生物量干重、根瘤个数、根瘤直径等均优于接种的非寄主植物。
     5.在低磷条件下,普通根瘤菌依然具备侵染寄主植株并结瘤固氮的能力,但根瘤直径、鲜重和固氮酶活性明显下降。缺磷胁迫下接种普通根瘤菌12531的植株生长状况优于未接种根瘤菌也未施用可溶性磷素的处理CK1,但单叶面积仅分别为接种LW107、RSW96菌株和施用1/4量可溶性磷素处理(CK2)的65.9%、79%和67.4%。接种普通根瘤菌12531的植株生物量干重较CK1处理增加35.93%,但仅为接种解磷根瘤菌LW107和RSW96处理的73.1%和85.29%,也低于施用化学磷肥的处理17.92%。
     6.氨苄青霉素作为具有低毒性的抑菌剂,低剂量时刺激植物生长而高剂量时产生毒害效应。200mg/L以上剂量氨苄青霉素能够抑制根瘤菌诱导植株结瘤使根瘤数量减少,根瘤剖面颜色变浅,个体变小,固氮酶活性降低至其正常根瘤的1/5以下。低浓度的氨苄青霉素对结瘤和固氮酶活性无抑制作用,还能提高植株结瘤的数目。由于物种间存在差异,苜蓿和红豆草对于同一氨苄青霉素浓度的反应并不相同。
     7.保存120d、以泥炭、蛭石、秸秆粉和黄绵土为载体基质的固体菌剂中,活菌数随菌剂载体吸附菌液量的增多而升高。由于青秸杆粉疏松多孔,可吸附达自重2.7倍的菌液,并含有大量适于微生物生长的氮源、核酸、可溶性糖和几乎菌种所需的全部矿质元素。菌种进入载体后继续大量繁殖,保存120d时的最大有效菌含量达到泥炭菌剂的155.48%和138.44%,用于菌剂载体有很大潜力。但贮存1a后,由于解磷根瘤菌酸性代谢物的过量积累,使pH值显著降低,杂菌数量上升而根瘤菌数急剧下降。比较发现,黄绵土载体制备的菌剂中LW107和RSW96菌株的有效菌含量显著高于其他载体基质(P<0.05),泥炭载体次之。黄绵土和泥炭基质菌剂的主要性状都达到微生物菌剂国家标准,可以作为菌剂载体基质利用。黄绵土基质由于价格低廉,原料易得,贮存后活菌数量高而杂菌率低,性质稳定,具有良好的应用潜力。
     8.秸秆粉浸提液培养基(CSE)中的碳源和磷素营养都能被菌体很好的利用。补充葡萄糖并调整pH后的秸秆粉浸提液培养基(CSE-2,青秸秆粉与H2O的比例为1:50)适用于LW107菌株的液体发酵,在降低菌剂成本的同时加快菌液的发酵速度,优于通用的YEM培养基;CSE-2中1:100的青秸秆粉浸提液(CSE-3)加入葡萄糖和琼脂后制成的固体培养基对根瘤菌的平板培养效果等同或优于标准YMA培养基,可以作为根瘤菌平板培养的高效廉价培养基。
     9.降低温度和添加抑菌剂均能提高根瘤菌剂中的有效菌数,降低杂菌率并维持菌剂内pH值的稳定。温度对长期保藏菌剂(1a)的活菌数和污染率影响最大,抑菌剂次之,4oC低温下保存抑菌剂可以有效提高活菌数,并使杂菌的数量得到有效控制;室温下菌剂中的菌体代谢活跃,有机酸积累量高,pH值偏低,而低温保存或添加抗生素的菌剂则pH值相对稳定。解磷根瘤菌菌剂贮藏1a后的pH值大小顺序为:低温贮藏的含抗生素菌剂>常温贮藏的含抗生素菌剂>低温贮藏的普通菌剂>常温贮藏的普通菌剂。
     10.以对300mg/L氨苄青霉素和80mg/L卡那霉素的双抗药性和解无机磷特性作为解磷根瘤菌高效突变株的标记特征,获得的菌株可以通过观测解磷透明圈、含药平板甄别的方式进行示踪和检测,使菌剂中目标菌和杂菌的测定过程得以简化,也使含抑菌剂的抗污染剂型制备和目标菌的占瘤率测定得以实现。
     11.以乙炔还原法测定固氮酶活性时发现,由于缺乏厌氧环境或低氧环境对固氮酶的保护,根瘤菌纯培养物的固氮酶活性远低于其诱导植物形成的根瘤,但源于同一原始菌株的突变株纯培养物固氮酶活性和其同一寄主的根瘤固氮酶活性间,存在正相关,且苜蓿根瘤菌L-5和红豆草根瘤菌RS-1的突变株系都得到一致的结果。这一现象值得进一步研究和发掘,可对高效固氮根瘤菌突变株的快速选育提供借鉴。
Phosphorus is the main nutrient element for plant growth, whereas 72% to 90% phosphate in soil is fixated by calcium, aluminum, iron and organic compounds, which makes phosphate deficiency the main limiting factor that influences the yield and quality of agricultural products. As main forage grasses that ameliorate soil situation and increase animal products, the cultivate area of alfalfa and sainfoin has exceeded 2 million hm2, which is equivalent to 3 quarters of the artificial grassland in the country, and concentrates mainly on the grain rotation area in arid and semi-arid area of northwest plateau, China. Total P content in soil increased as the application of fertilizer, but phosphate deficiency has still been performed for crops and forage grasses due to the low content of available P. P solubilizing microorganisms are capable of solving the mentioned problem, and P solubilizing rhizobium, which is also capable of fixating N and inoculation, is found excellent in promoting growth and yield of legume forage grass, which decreases the cost of agricultural production and the side effect of P application to the environment. Currently, the phosphate-dissolving Rhizobium inoculants has not been widely used in agriculture, the main reasons are as follow: 1: the low Breeding efficiency of strains, and the low comprehensive growth promoting capability of the screened strains; 2: the application of strains was limited only to host plant; 3: the serious contamination of rhizobium inoculants and onefold effect, as well as relatively short shelf life and deficient in the ability to compete for nodulation. Because of the secreting of P dissolving organic acid, the acidification of the products was found more easily, which therefore makes the death of rhizobia and the infection of the undesired bacteria; 4: the currently widely used medium peat is a kind of nonrenewable resource, the collection of which will do harm to the local environment, and the peat itself has some qualitative defects. All the above factors make the application and development of P solubilizing rhizobium inoculants been limited.
     According to the above problems, the study is going to focus on the following aspects: 1: optimizing for screening method of phosphate-dissolving Rhizobium and the increasing effect of mutant by a rapid intermittent microwave irradiation; 2: to apply the P dissolving and IAA secreting rhizobia as RGPR strains of rhizobacteria is on to other plants but host plants and widen its application range; 3: decrease the contamination and increase the number of viable cells as well as the nodulation competitiveness of the target rhizobium with bacteriostat 4: to use the leach liquor of green stalk powder as the liquid medium of P solubilizing Rhizobium to reduce the cost of production, and use loess soil and stalk powder to instead peat to be used as the carrier of solid inoculants, to lower down the economic and environmental cost of inoculants production. Based on the above goals, the study firstly screened out Rhizobium meliloti. L-5 and Rhizobium sp. RS-1 with P solubilizing and IAA secreting ability by isolation and breeding, and then to obtain the mutated antibiotic resistant muatnts Rhizobium meliloti LW107 and Rhizobium sp. RSW96 by microwave mutagenesis, to get greater P solubilizing and IAA secreting capability, and to get the antibiotic resistant characteristics of the 2 strains. After the verifying of genetic stability, the growth promoting capability of LW107 and RSN96 to cultivated host and other plants were observed with Ca3(PO4)2 as the only P source. During the process of anti-contamination inoculants, ampicillin was used as bacteriostat to observe the toxic performance of strains and seedlings to ampicillin with different concentrations to select the optimum concentration of bacteriostat, as well as the optimum diluted concentration in application. The optimum carbon sources were selected out for the culture of P solubilizing rhizobia to decrease cost product and increase the quality, and the feasibility of green stalk powder leach liquor with adjusted components as fermentated and plate media was also observed. Afterwards, the sterilized stalk powder, loess soil, peat and vermiculite were used as media to be selected, and finally the liquid and solid rhizobia inoculants with antibiotics were obtained. According to the test of inoculants in different periods, the stable, cheap P solubilizing inoculants with lower contamination and longer effective time was obtained, together with the important techniques in inoculants production.
     The main findings are listed as fellow:
     1. The gradual selection model of acid producing N-fixing and P solubilizing Rhizobium is capable of screening P solubilizing rhizobia with good growth promoting capability from nodules with less procedure. The selected Rhizobium meliloti L-5 and Rhizobium sp. RS-1 were found as fast growing rhizobia, and were found with greater nodulation and N fixing capability, together with P solubilizing and IAA secreting capability, and stronger saline and alkaline resistant capability, and can be used as breeding material of highly efficient P solubilizing rhizobia.
     2. From the single colony generated by acid secreting N-fixing microbes that isolated from nodules, the inorganic P solubilizing microbes were mainly found as Agrobacteria, Actinomycetes, Bacilli, Pseudomonas denitrificans and other N-fixing strains, but only 5 strains identified as Rhizobium strains through the inoculation test, which take up 1.78% of all N-fixing microbes, indicating lots of P solubilizing and N-fixing microbes without nodulation capability exists in plant nodules.
     3. To increase breeding effectiveness of the strains and to make up the weak P solubilizing deficiency of the wild species, according to the strains mutagenesis method with the existing strains resources. As a safe, clean and cheap radiation source, the conditions of microwave radiation can be controlled and changed more easily. Because of the difference of mutagenesis goals and strains, the concrete microwave radiation parameters varied from each other, while all the highest positive mutagenesis occurred at the lethality rate between 87% and 90%. Part of the obtained highly efficient strains were found genetically unstable, and some were found back mutation or a decrease in yield, at least 6 generations of genetic stability test is required.
     4. On condition of only inorganic P be offered, the growth of all plants were found be restrained obviously, the leaves grew retardedly, the leaf colour got darkened, and the root became thinner. The shoot height, root length and leaf area were 61-85.2%, 60.5-81.9% and 32.7-75.6% of the treatments inoculated with P solubilizing rhizobia, indicating that good growth promoting effect were found of P solubilizing rhizobia with IAA secreting capability to both host and other plants, and the P deficiency stress can be solved effectively, the assimilation of N and P, and the growth and biomass of the plants increased. The functional process of P solubilizing rhizobia was: firstly dissolve inorganic P to abate the P deficiency stress of plants, and to offer the plants a relatively balanced nutrient condition, simultaneously, to infect the host plant and generate nodules for N fixation. To other plants, P solubilizing rhizobia were found resemble the characteristics of rhizospheric P solubilizing bacteria, but the growth promoting effect on host plants was found better than on other plants.
     5. On condition of low P content, normal rhizobia were found capable of infecting host plants and nodulation to fixate nitrogen, but on condition of P deficiency, the diameter, fresh weight and nitrogenase activity of nodules were found decreased conspicuously. On condition of low P content, the growth and the accumulation of biomass of plants inoculated with 12531 rhizobia were found performed better than un-inoculated and non fertilized plants (CK1), but the leaf area was only 65.9%, 79% and 67.4% of the treatments inoculated with LW107. RSW96 and applied with 1/4 P solubilizing rhizobia (CK2), respectively. and also poorer than treatments applied with chemical fertilizer. The dry weight of plants inoculated with 12531 strain was found increased by 35.93%, compared with CK1, and only 73.1% and 85.29% of the treatments inoculated with LW107 and RSW96, and also found 17.92% lower than the treatment applied with chemical fertilizer.
     6. As bacteriostat with low toxity, ampicillin was found with stimulatory effect of low dose and toxic effect of high dose to plants. 200mg/L ampicillin could cause the decrease of nodule number, and to made the waning and lighten of nodules, simultaneously, the nitrogenase activity of nodules decreased to 1/5 or lower to that of the normal nodules. Ampicillin with low concentration has not depression effect on nodulation and nitrogenase activity, and could even the number of nodulation. Because of the difference between species, the reaction of alfalfa and sainfoin to ampicillin was found different.
     7. Among the solid inoculants with different materials as the medium, after 120d of storage, the number of viable cells increased as the increase of the absorption of bacterial liquid. Because of the loose and porous structure, green stalk powder could absorb the bacterial liquid that is 2.7 times of its weight, and the powder also contains mass of carbon source, nucleic acid, soluble sugar and almost all the mineral elements that is required of the growth of the microorganism, which will result in the fast proliferation of bacteria, within the 120d of storage, the effective bacteria content of which were found 155.48% and 138.44% times of the numbers found in peat, which was found of great potential in short time inoculant production. But after 1a storage, because of the accumulation of acidic metabolite generated by P solubilizing rhizobia, the pH value was found decreased significantly, the number of undesired bacteria increased, and the nodule numbers decreased sharply. According to the comparison of inoculants after 1a storage, the effective bacteria numbers of the two strains in inoculants with loess soil as the medium was found significantly higher than inoculants with other materials as media(P<0.05), followed by peat. Both the 2 media reached the national standard for inoculant, and could be used as inoculant carrier. Because of the low cost and the accessibility, and the high viable cells as well as the low undesired bacteria number, and the stable characteristic, loess soil was found with good potential.
     8. Both the carbon source and P in medium prepared with corn stalk leach liquor (CSE) could be used by bacteria. When replenished with glucose (with adjusted pH value) (CSE-2, the ratio of corn stalk powder and distilled water was 1:50), the CSE was found good to the fermentation of LW107, the fermentation speed was increased and the cost also decreased, and was found better than YMA medium; to CSE-3 medium (the ratio of corn stalk powder and distilled water was 1:100), when added with glucose and agar, the obtained solid medium was found with good rhizobia culture effect, equivalent to or better than standard YMA medium, and could be used as cheap medium for plate culture of rhizobia.
     9. The decrease of temperature or the addition of bacteriostat could increase the number of effective bacteria, decrease the number of undesired bacteria and maintain the pH stability in inoculants. Temperature influences most for the number of viable cells and the undesirable microbes in 1a stored inoculants, bacteriostats were secondly. Viable cell number could be maintained and the number of undesired bacteria will be controlled under the condition of addition of bacteriostat and at low temperature simultaneously, the most active metabolism and organic acid accumulation was found at room temperature, and the pH was found relatively lower, while for inoculants stored at low temperature or added with bacteriostat was found relatively stable. The pH order of the inoculants after 1a storage was: inoculants stored at low temperature and with bacteriostat > inoculants stored at room temperature and with bacteriostat > inoculants stored at low temperature > inoculants stored at room temperature.
     10.The study synthesizes the screening, mutagenesis and the further utilization, and use double antibiotic and inorganic P solubilizing as marked feature of the strains, and the finally obtained strains could be spiked and detected by observing P solubilizing circle and by plates that contain certain chemical compounds, all the above make the test procedure of target and undesired bacteria more concisely, and also make the production of antibiotic inoculation as well as the nodulation competitiveness of target bacteria more achievable.
     11.According to the determination of nitrogenase activity by ethyne reduction method, because of the lack of oxygen or the protection of low oxygen conditions to nitrogenase, the nitrogenase activity of pure cultured material was found far lower than the induced plant nodules, but positive correlation was found between the nitrogenase activity of the pure culture material and the nitrogenase activity of nodules induced by the same original strain, accordingly, the same result was found in mutant strains derived from Rhizobium meliloti L-5 and sainfoin Rhizobium sp. RS-1. This phenomenon is worth of further study and exploration, and might be a new way for the fast breeding of highly efficient nitrogen fixation mutant strains.
引文
[1] Abd-Alla MH. Use of organic phosphorus by Rhizobium leguminosarum bv. viciae phosphatases [J]. Biology and Fertility of Soils, 1994, 8: 216-218.
    [2] Abd-Alla, MH. Solubilization of rock phosphates by Rhizobium and Bradyrhizobium [J]. Folia Microbiologica. 1994, 39: 53-56.
    [3] Abelson PH. A potential phosphate crisis [J]. Science, 1999, 283: 2015.
    [4] Abril, A., J.L. Zurdo-Pineiro, A. Peix, et al. Solubilization of hosphate by a strain of Rhizobium leguminosarum bv. Trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina) [J]. 2003, p.135-138. In E. Velázquez (ed) First International Meeting on icrobial Phosphate Solubilization, 16-19 July 2002, Salamanca, Spain.
    [5] Ahmed ZI, Ansar M, Tariq M, et al. Effect of different Rhizobium inoculation methods on performance of lentil in pothowar region [J]. International Journal of Agriculture & Biology, 2008, 10: 81-84.
    [6] Aidoo KE, Hendry R, Wood JB. Solid substrate fermentation [J]. Adv. Appl. Microbiol. 1982, 28: 201-237.
    [7] Albareda M, Rodríguez-Navarro DN, Camacho M, et al. Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations [J]. Soil Biology and Biochemistry, 2008, 40(11): 2771-2779.
    [8] Albou-Zeid AZ, Salem HM, Eissa AE. Production of gentamicins by Micromonospora purpurea [J]. Zentralbl Bakteriol Naturwiss, 1978, 133: 261-275.
    [9] Alikhani HA, Seleh-Rastin N, Antoun A. Phosphate solubilisation activity of rhizobia native to Iranian soils [J]. Plant Soil, 2006, 287: 35-41.
    [10] AndréM. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements [J]. Nature. 1983, 303(23): 685-687.
    [11] Antoun, HA, Beauchamp CJ, Goussard N, et al. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.) [J]. Plant Soil, 1998, 204: 57-67.
    [12] Arrighi JF, Godfroy O, Billy F De, et al. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection [J]. Proceedings of the National Academy of Sciences of the United States of America (PANS), 2008, 105: 9817-9822.
    [13] Arun, AB, Sridhar KR. Growth tolerance of rhizobia isolated from sand dune legumes of the southwest coast of India [J]. Engineering in Life Sciences, 2005, 5: 134-138.
    [14] Bajpai PD, Sundrara Rao WVB. Phosphate solubilizing bacteria, Part 2. Extracellular p roduction of organic acids by selected bacteria solubilizing insoluble phosphate [J]. Soil Sci. Plant Nutr., 1971, 17(2): 44-45.
    [15] Bal MA, Bal EBB. Interrelationship between nutrient and microbial constituents of ensiledwhole-plant maize as affected by morphological parts [J]. Int. J. Agric. Biol., 2009, 11: 631-634.
    [16] Báscones E, Imperial J, Ruiz-Argüeso T, et al. Generation of New Hydrogen-Recycling Rhizobiaceae Strains by Introduction of a Novel hup Minitransposon [J]. Applied and Environmental Microbiology, 2000, 66(10): 4292-4299.
    [17] Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture [J]. Biotechnology Advances, 1998, 16(4): 729-770.
    [18] Bassamboo A, Juneja S, ZeeviA J. On the inefficiency of state independent importance sampling in the presence of heavy tails [J]. Operation Res. Lett., 2007, 35(2): 251-260.
    [19] Beckie HJ, Schlechte D, Moulin AP, et al. Response of alfalfa to inoculation with Penicillium. bilaji [J]. Can. J. Plant Sci, 1998, 78: 91-102.
    [20] Beijerinck MW. Die bacterien der Papilionaceen-Knollchen [J]. Botanische Zeitung, 1888, 46: 725-804.
    [21] Ben Rebah F, Prévost D, Yezza A, et al. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review [J]. Bioresource Technology, 2007, 98: 3535-3546.
    [22] Bergersen FJ, Turner GL, Amarger N., et al. Strain of Rhizobium lupini determines natural abundance of 15N in root nodules of Lupinus spp [J]. Soil Biology and Biochemistry, 1986, 18: 97-101.
    [23] Bernaerts MJ, De Ley J. A biochemical test for crown gall bacteria [J]. Nature, 1963, 197: 406-407.
    [24] Bieleski RL. Phosphate pools, phosphate transport and phosphate availability [J]. Annual Review of Plant Physiology, 1973, 24: 225-252.
    [25] Bordeleau LM, Prevost D. Quality of commercial legume inoculants in Canada [R]. In Proceeding of the 8th North American Rhizobium Conference, Clark KW. and Stephens JHG. (eds.). University of Manitoba, Winnipeg, Canada. 1981, 562-565.
    [26] Bowman RA. A rapid method to determine total phosphorus in soils [J]. Soil Sci. Soc. Am. J., 1988, 52:1301-1304.
    [27] Brockwell J, Gault RR, Herridge DF, et al. Studies on alternative means of legume inoculation: microbiological and agronomic appraisals of commercial producers for inoculating soybeans with Bradyrhizobium japonicum [J]. Aust. J. Agric. Res., 1988, 39: 965-972.
    [28] Brundrett M, Bougher N, Dell B, et al. Working with Mycorrhizas in Forestry and Agriculture [J]. ACIAR Monograph Series, Canberra, Australia, 1996: 374.
    [29] Buchanan RE, Gibbons NE. Bergey’s Manual of Determinative Bacteriology, 8th edn [M]. Baltimore: Williams & Wilkins. 1974.
    [30] Burton JC. New developments in inoculating legumes [R]. In Recent Advances in Biological Nitrogen Fixation Oxford & IBH Publishing Co, New Delhi. 1979, 380-405.
    [31] Busman L, Lamb J, Randall G, et al. The nature of phosphorus in soils [R]. University of Minnesota Extension Service, 2002.
    [32] Button JC. Methods of inoculating seeds and their effect on survival of rhizobia [R]. In Symbiotic Nitrogen Fixation in Plants, P.S. Nutman (ed.), 1976, 175-189, Cambrige University Press, London.
    [33] Cabrera ML, Beare MH. Alkaline Persulfate Oxidation for Determining Total Nitrogen in Microbial Biomass Extracts [J]. Soil Sci. Soc. Am. J., 1993, 57: 1007-1012.
    [34] Campanoni P, Blatt MR. Membrane trafficking and polar growth in root hairs and pollen tubes [J]. J. Exp. Bot., 2007, 58: 65-74.
    [35] Cannel E, Moo-Young M. Solid-state fermentation systems [J]. Process Biochem, 1980, 15: 24-28.
    [36] Capone DG. Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure [R]. Handbook of methods in aquatic microbial ecology, IN Kemp PF, Sherr BF, Sherr EB, Cole JJ. (eds): Boca Raton, Lewis Press, 1993: 621-631.
    [37] Catroux G, Hartmann A, Revellin C. Trends in rhizobial inoculant production and use [J]. Plant and Soil, 2001, 230(1): 21-30.
    [38] Catroux G. Inoculant quality standards and controls in France [R]. In Report of the expert consultation on legume inoculant production and quality control, J. A.Thompson (edit.), Food and Agriculture Organization of the United Nations, Rome, 1991: 113-120.
    [39] Cerezine DC, Nahas E, Banzatto DA. Soluble phosphate accumulation by Aspergillus niger form fluorapatite [J]. Appl. Microbiol. Biotechnol., 1988, 29: 501-505.
    [40] Chabot R, Antoun H, Cescas MP. Growth promotion of Maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli [J]. Plant soil, 1996, 184: 311-321.
    [41] Chabot R, Antoun H, Kloepper JW, et al. Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli [J]. Appl. Enviro. Microbiol., 1996, 62: 2767-2772.
    [42] Chaiharn M, Lumyong S. Screening and Optimization of Indole-3-Acetic Acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth [J]. Current Microbiology, 2011, 62: 173-181.
    [43] Chandra R, Pareek RP. Role of host genotype in effectiveness and competitiveness of chickpea (Cicer arietenum L.) Rhizobium [J]. Tropical Agriculture, 1985, 62: 90-94.
    [44] Chao WL, Alexander M. Mineral soils as carriers for Rhizobium inoculants [J]. Appl. Environ. Microbiol., 1984, 47: 94-97.
    [45] Claire M., Anthony F, et al. The conundrum of marine N2 fixation. American Journal of Science, 2005, 305: 546-595.
    [46] Cordell D, Drangert J-O, White S. The story of phosphorus: Global food security and food for thought [J]. Global Environmental Change, 2009, 19: 292-305.
    [47] Cunningham J, Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii [J]. Appl. Environ. Microbiol., 1992, 58: 1451-1458.
    [48] De Felipe MR, Fernández-Pascual MM, Pozuelo JM. Effects of herbicides Lindex and Simazine on chloroplasts and nodule development, nodule activity and grain yield in Lupinus albus L. cv. Multolupa [J]. Plant Soil, 1987, 101: 99-105.
    [49] De Freitas JR, Banerjee MR, Germida JJ. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.) [J]. Biology and Fertility of Soils, 1997, 24: 358-364.
    [50] Dighton J. Boddy L. Role of fungi in nitrogen, phosphorus and sulfur cycling in temperate forest ecosystems [R]. In Nitrogen, Phosphorus and Sulfur Ultilization by Fungi. (Boddy L, Marchant R, Read D. (edit.). Cambridge University Press, Cambridge. 1989: 269-298.
    [51] D?bereiner J, Day JM. Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites [R]. In Proceedings of the first International Symposium on Nitrogen Fixation. Washington State University Press, Pullman, USA. 1976, 2: 518-538.
    [52] Dreyfuss MS, Chipley JR. Comparison of Effects of Sublethal Microwave Radiation and Conventional Heating on the Metabolic Activity of Staphylococcus aureus [J]. Applied and Environmental Microbiology, 1980, 39: 13-16.
    [53] El-Azouni, IM. Effect of phosphate solubilising fungi on growth and nutrient uptake of soybean (Glycine max L.) plants [J]. Journal of Applied Sciences Research, 2008, 4: 592-598.
    [54] Elliott JM, Mathre DE, Sands DC. Identification and characterization of rhizosphere-comportent bacteria of wheat [J]. Environ. Microbiol., 1987, 55: 2793-2799.
    [55] Eric G, Yves D. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria [J]. Applied and Environmental Microbioligy, 1995, 2: 793-796.
    [56] Fages J. An industrial view of Azospirillum inoculants: formulation and application technology [J]. Symbiosis, 1992, 13: 15-26.
    [57] Fages J. An optimized process for manufactering an Azospirillum inoculant for crops [J]. Applied and Environmental Microbiology, 1990, 32: 473-478.
    [58] Fernandez LA, Zalba P, Gomez MA, et al. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions [J]. Biol. Fertil. Soils, 2007, 43: 805-809.
    [59] Fincham JRS, Day P, Radford A, et a1. Mechanism of mutation in fungal genetics [J]. Blackwell Scientific Publications, 1979, 254-281.
    [60] Foth HD. Fundamentals of Soil Science [M]. 8th John Wiley and Sons, New York, NY. 1990.
    [61] Fox JE, Gulledge J, Engelhaupt E, et al. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants [R]. Proceedings of the National Academy of Sciences of United States of America (PNAS), 2007, 104(24): 10282-10287.
    [62] Fox R, Comerford NB, McFee WW. Phosphorus and aluminum release from a spodic horizon mediated by organic acids [J]. Soil Sci. Soc. Amer. J., 1990, 54: 1763-1767.
    [63] Fujikawa H, Ushioda H, Kudo Y. Kinetics of Escherichia coli destruction by microwave irradiation [J]. Applied and Environmental Microbiology, 1992, 58: 920-924.
    [64] Fukuhara H, Minakawa Y, Akao S, et al. The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation [J]. Plant Cell Physiology, 1994, 35: 1261-1265.
    [65] Gadagi RS, Tongmin S. New isolation method for microorganisms solubilizing iron and aluminum phosphates using dye [J]. Soil Sci. Plant Nutr., 2002, 48: 615-618.
    [66] Gaind S, Gaur AC. Thermotolerant phosphate solubilizing microorganisms and their interactionwith mung bean [J]. Plant and Soil, 1991, 133(1), 141-149.
    [67] Garbaye J. Use of Mycorhizas in Forestry [R]. In: Les Mycorhizes des Arbres et Plantes Cultivées, D.G. Strullu (Ed.), Lavoisier, Paris, France, 1990: 197-248 (in French).
    [68] George MG, Julia AB, Timothy G. L. Bergey’s Manual of Determinative Bacteriology [M]. Springer, 1986, 355-397.
    [69] Gerke J, R?mer W, Jungk A. The excretion of citric and malic acid by proteoid roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol [J]. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1994, 157: 289-294.
    [70] Gerke J. Phosphate, aluminum, and iron in the soil solution of three different soils in relation to varying concentration of citric acid [J]. Z. Pflanzenernahr. Bodenk, 1992, 55: 339-343.
    [71] Golding AL, Dong ZM. Hydrogen productions by nitrogenase as a potential crop rotation benefit [J]. Environmental Chemistry Letters, 2010, 8:101-121.
    [72] Goldstein, AH. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria [J]. Biological Agriculture and Horticulture, 1995, 12: 185-193.
    [73] Gomez M., Silva N, Hartmann A, et al. Evaluation of commercial soybean inoculants from Argentina [J]. World Journal of Microbiology and Biotechnology, 1997, 13: 167-173.
    [74] Gos P, Eicher B, Kohli J, et al. Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells [J]. Bioelectro magnetics, 1997, 18: 142-155.
    [75] Gupta R, Singal R, Shankar A, et al. A modified plate assay for screening phosphate solubilizing microorganisms [J]. J. Gen. Appl. Microbiol., 1994, 40: 255-260.
    [76] Gupta RD, Bhardwaj KR, Marwah BB, et al. Occurrence of phosphate dissolving bacteria in soils of Northwest Himalayas under varying biosequence and climosequence [J]. Indian Soc. Soil. Sci., 1986, 34(3): 498-504.
    [77] Gyaneshwar P, Kumar GN, Parekh LJ, et al. Role of soil microorganisms in improving P nutrient of plants [J]. Plant Soil, 2002, 245: 83-93.
    [78] Halda-Alija L. Identification of Indole-3-acetic Acid Producing Freshwater Wetland Rhizosphere Bacteria Associated with Juncus Effusus L [J]. Can. J. Microbiol., 2003, 49: 781-787.
    [79] Halder AK, Chakrabartty PK. Solubilization of inorganic phosphate by Rhizobium [J]. Folia Microbiologica, 1993, 38: 325-330.
    [80] Halder AK, Mishra AK, Bhattacharya P, et al. Solubilization of inorganic phosphate by Rhizobium [J]. Indian Journal of Microbiology, 1990, 30: 311-314.
    [81] Halvorson HO, Keynan A, Kornberg HL. Utilization of calcium phosphates for microbial growth at alkaline pH [J]. Soil Biol. Biochem., 1990, 22: 887-890.
    [82] Hara S, Hashidoko Y, Desyatkin RV, et al. High rate of N2 fixation by east Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified withgellan gum [J]. Applied and Environmental Microbiology, 2009, 75: 2811-2819.
    [83] Hardy RWF, Holsten RD, Jackson EK, et al. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation [J]. Plant Physiol., 1968, 43: 1185-1207.
    [84] Hashidoko Y, Tada M, Osaki M, et al. Soft gel medium solidified with gellan gum for preliminary screening for root-associating, free-living nitrogen-fixing bacteria inhabiting the rhizoplane of plants [J]. Biosci. Biotechnol. Biochem., 2002, 66: 2259-2263.
    [85] Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: a review [J]. Annals of Microbiology, 2010, 60: 579-598.
    [86] Haygarth PM, Jarvis SC. Transfer of Phosphorus from Agricultural Soil [J]. Advances in Agronomy, 1999, 66: 195-249.
    [87] Hernandez BS, Focht DD. Invalidity of the concept of slow growth and alkali production in cowpea rhizobia [J]. Applied and Environmental Microbiology, 1984, 48: 206-210.
    [88] Hilda R, Fraga R. Phosphate solubilising bacteria and their role in plant growth promotion [J]. Biotechnological Advances, 1999, 17: 319-359.
    [89] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes [J]. Plant Soil, 2001, 237: 173-195.
    [90] Hoagland D, Arnon DI. The water culture method for growing plants without soil [J]. California Agricultural Experiment Station Bulletin, 1938, 347: 1-39.
    [91] Holford ICR. Soil phosphorus: its measurement, and its uptake by plants [J]. Australian Journal of Soil Research, 1997, 35: 227-239.
    [92] Huber DM, El-Nasshar L, Moore HW, et al. Interaction between a peat carrier and bacterial seed treatments evaluated for biological control of the take all diseases of wheat (Triticum aestivum L.) [J]. Biol. Fertil. Soils, 1989, 8: 166-171.
    [93] Hurse LS, Date RA. Competitiveness of indigenous strains of Bradyrhizobium on Desmodium intortum CV Greenleaf in three soils of South East Queensland Soil Biology and Biochemistry, Vo. 24, Issue 1 Vol. 24(1992), pp. 41-50
    [94] Hurtado MD, Carmona S, Delgado A. Automated Modification of the Molybdenum Blue Colorimetric Method for Phosphorus Determination in Soil Extracts [J]. Communications in Soil Science and Plant Analysis, 2008, 39: 2250-2257.
    [95] Illmer P, Schinner F. Solubilization of inorganic calcium phosphates-solubilization mechanisms soil [J]. Soil Biol. Biochem., 1995, 27: 257-263.
    [96] Illmer P, Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soils [J]. Soil Biology and Biochemistry, 1992, 24: 389-395.
    [97] Islam MS, Kawasaki H, Nakagawa Y, et al. Labrys okinawensis sp. nov. and Labrys miyagiensis sp. nov., budding bacteria isolated from rhizosphere habitats in Japan, emended descriptions of the genus Labrys and Labrys monachus [J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 552-557.
    [98] Iyamuremye F, Dick RP. Organic Amendments and Phosphorus Sorption by Soils [J]. Advances inAgronomy, 1996, 56: 139-185.
    [99] Jean-Jacques D, Ueli AH. Phosphorus deficiency increases the argon-induced decline of nodule nitrogenase activity in soybean and alfalfa [J]. Planta, 1997, 201(4): 463-469.
    [100] Jennifer MP, Gilbert RJ. Studies on the heat resistance of Bacillus cereus spores and growth of the organism in boiled rice [J]. Journal of Hygiene, 1980, 84: 77-82.
    [101] Jiang JP, Xiong YC, Jia Y, et al. Soil quality dynamics under successional alfalfa field in the semi-arid Loess Plateau of Northwestern China [J]. Arid Land Research and Management, 2007, 21: 287-303.
    [102] Jiao RZ, Peng YH. Preliminary study on phosphate solubilizing and L-releasing abilities of Rhizobium tropici Martinez-Romero et al. strains from woody legumes [R]. In: Proceedings of the 19th World Congress of Soil Science,‘Solutions for a Changing World’, 1-6 August 2010, Brisbane, Australia.
    [103] Jones DL. Organic acids in the rhizosphere- a critical review [J]. Plant and Soil, 1998, 205: 25-44.
    [104] Jordan DC. Genus I. Rhizobium [J]. In: Bergey's Manual of Systematic Bacteriology ed. Holt, JG & Krieg, NR. London: Williams & Wilkins Co. 1984, 1: 235-242.
    [105] Josey DP, Beynon JL, Johnston AWB et al. Strain identification in Rhizobium using intrinsic antibiotic resistance [J]. Journal of Applied Bacteriology, 1979, 46: 343-350.
    [106] Jung G, Mugnier J, Diem HG, et al. Polymer-entrapped rhizobium as an inoculant for legumes [J]. Plant and Soil, 1982, 65(2): 219-231.
    [107] Júnior PIF, Rohr TG, de Oliveira PJ, et al. Polymers as carriers for rhizobial inoculant formulations [J]. Pesq. agropec. bras., Brasília, 2009, 44(9): 1184-1190.
    [108] Junk G, Svec HJ. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources [J]. Geochimica et Cosmochimica Acta, 1958, 14(3):234-243.
    [109] Karlowsky JA, Hoban DJ, Zelenitsky SA, et al. Altered denA and anr gene expression in aminoglycoside adaptive resistance in Pseudo-monas aeruginosa [J]. Jounal Antimicrob Chemother, 1997, 40(4): 71-79.
    [110] Kaur S, Vohra RM, Kapoor M, et al. Enhanced production and characterization of highly thermostable alkaline protease from Bacillus sp. P-2 [J]. World J. Microbiol. Biotechnol., 2001, 17: 125-129.
    [111] Kenney DS. Commercialization of biological control products in the chemical pesticide world [R]. In Plant Growth-Promoting Rhizobacteria-present status and future prospects, A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo and S. Akino (eds.), 1997, pp. 120-127, Faculty of Agriculture, University, Sapporo, Japan.
    [112] Kingsley MT, Bohlool BB. Characterization of Rhizobium spp. (Cicer arietinum L.) by immunodiffusion and intrinsic antibiotic resistance [J]. Canadian Journal of Microbiology, 1983, 29: 518-526.
    [113] Kirsschvink J. Microwave absorption by magnetite: A possible mecbanism for coupling nonthermal levels of radiation to biological systems [J]. Bioelectromagnetic, 1996, 17(3): 187-194.
    [114] Kosslak RM, BohlooL BB. Influence of environmental factors on interstrain competition in Rhizobium japonicum [J]. Appl Environ Microbiol, 1985, 49: 1128-1133.
    [115] Kucey RMN, Janzon HH, Legett ME. Microbiallymediated increases in plant-available phosphorus [J]. Adv. Agron., 1989, 42: 199-228.
    [116] Kucey RMN, Leggett ME. Increased yields and phosphorus uptake by westar canola (Brassica napus L.) inoculated with a phosphate-solubilizing isolate of Penicillium bilaji [J]. Can. J. soil Sci., 1989, 69: 425-432.
    [117] Kucey RMN, Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils [J]. Can. J. Soil Sci., 1983, 63: 671-678.
    [118] Kucey RMN. Phosphate solubilizing bacteria and fungi in various cultivated and virgin alberta soils [J]. Soil Sci., 1983, 63: 671-678.
    [119] Kulkarni S, Surange S, Nautiyal CS. Crossing the limits of Rhizobium existence in extreme conditions [J]. Current Microbiology, 2000, 41: 402-409.
    [120] Kumar R, Chandra R. Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae Strain Competition and Symbiotic Performance in Lentil [J]. World Journal of Agricultural Sciences, 2008, 4(3): 297-301.
    [121] Kumar R, Chandra R. Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae Strain Competition and Symbiotic Performance in Lentil [J]. World Journal of Agricultural Sciences, 2008, 4: 297-301.
    [122] Leach WM. Genetic, growth, and reproductive effects ofmicrowave radiation [J]. Bull NY Academic Medicine, 1980, 56(2): 249-257.
    [123] Lethbridge G. An industrial view of microbial inoculants for crop plants [R]. In Microbial inoculation of crop plants, Campbell R, Macdonald RM. (eds.), 1989, 25: 11-28. Special publication of the society of general microbiology, IRL Press, Oxford, New York.
    [124] Li JF, Zhang SQ, Shi SL, Huo PH. Chen LY. Effect of Ampicillin as bacteriostats on the performance of P dissolving Rhizobium sp. inoculants [J]. Advanced Materials Research, 2011a, 201-203: 1023-1032.
    [125] Li JF, Zhang SQ, Shi SL, Huo PH. Four materials as carriers for phosphate dissolving Rhizobium sp. inoculants [J]. Advanced Materials Research, 2011b, 156-157: 919-928.
    [126] Li JF, Zhang SQ, Shi SL, Huo PH. Mutational approach for N 2-fixing and P-solubilizing mutant strains of Klebsiella pneumoniae RSN19 by microwave mutagenesis [J]. World Journal of Microbiology and Biotechnology, 2011c, 27(6): 1481-1489.
    [127] Li M, Alexander M. Co-inoculation with antibiotic producing bacteria to increase colonization and nodulation by rhizobia [J]. Plant Soil, 1988, 108: 211-219.
    [128] Li R, Volenec JJ, Joern BC, et al. Seasonal Changes in Nonstructural Carbohydrates, Protein, and Macronutrients in Roots of Alfalfa, Red Clover, Sweetciover, and Birdsfoot Trefoil [J]. Crop Sci., 1996, 36: 617-623.
    [129] Li XL, Su DR, Yuan QH. Ridge-furrow planting of alfalfa (Medicago sativa L.) for improvedrainwater harvest in rain fed semiarid areas [J]. Soil and Tillage Research, 2007, 93: 117-125.
    [130] Long SR. Rhizobium symbiosis: Nod factors in perspective [J]. Plant Cell, 1996, 8: 1885-1898.
    [131] Lopez-Bucio J, Hemandez-Abreu E, Sánchez-Calderón L, et al. Phosphate availability alters architecture and causes changes in hormone sensitivity in the arabidopsis root system [J]. Plant Physiology, 2002, 129: 244-256.
    [132] Ltaief B, Sifi B, Gtari M, et al. Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia [J]. Canadian Journal of Microbiology, 2007, 53(3): 427-434.
    [133] Lu WJ, He ZL, Xu JP. Microbial conversion and using of undissolved phosphorus in lime soil [J]. Plant Nutrition and Fertilizer Science, 1999, 5: 377-383.
    [134] Luo AC, Sun X. Effect of organic manure on the biological activities associated with insoluble phosphorus release in a blue purple paddy soil [J]. Commun. Soil Sci. Plant Anal., 1994, 25: 13-14.
    [135] Lupwayi NZ, Clayton GW, Rice WA. Rhizobial inoculants for legume crops [J]. Journal of Crop Improvement, 2006, 15: 289-321.
    [136] Lupwayi NZ, Olsen PE, Sande ES, et al. Inoculant quality and its evaluation [J]. Field Crops Research, 2000, 65: 259-270.
    [137] MacFaddin, JF. Biochemical tests for Identification of Medical bacteria [M]. Second Edition. Williams and Wilkins, Baltimore, USA. 1980.
    [138] Malik KA, Bilal R. Association of Nitrogen-Fixing Plant Growth Promoting Rhizobateria (PGPR) with Kallar Grass and Rice [J]. Plant and Soil, 1997, 194: 37-44.
    [139] Marschner P, Solaiman Z, Rengel Z. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions [J]. Soil Biology and Biochemistry, 2007, 39: 87-98.
    [140] Marufu L, Karanja N, Ryder M. Legume inoculant production and use in East and Southern Africa [J]. Soil Biology and Biochemistry, 1995, 27: 735-738.
    [141] Marx DH, Kenney DS. Production of ectomycorrhizal fungus inoculum [J]. In Methods and Principles of Mycorrhizal Research, Schenck N.C. eds., 1982, 131-146, The American Phytopathological Society, St. Paul, Minn.
    [142] Mary P, Ochin D, Tailliez, R. Rates of drying and survival of Rhizobium meliloti during storage at different relative humidities [J]. Appl. Environ. Microbiol., 1985, 50: 207-211.
    [143] Masoero F, Rossi F, Pulimeno AM. Chemical composition and in vitro digestibility of stalks, leaves and cobs of four corn hybrids at different phenological stages [J]. Ital. J. Anim. Sci., 2006, 5: 215-227.
    [144] Miles AA, Misra SS. The estimation of the bacterial power of the blood [J]. Journal of Hygiene, 1938, 38: 732-749.
    [145] Minchin FR, Witty JF, Sheehy JE, et al. A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions [J]. J. Exp. Bot., 1983, 34: 641-649.
    [146] MJ Polsenski, RI Leavitt. 2006. Coatings with enhanced microbial performance. U.S. Patent10,617,177, filed Jully 11, 2003, and issued May 9, 2006.
    [147] Molero G, Díez-Orejas R, Navarro-García F, et al. Candida albicans: genetics, dimorphism and pathogenicity [J]. Internatl. microbiol., 1998, 1: 95-106.
    [148] Molla MAZ, Chowdhury AA, Islam A, et al. Microbial mineralization of organic phosphate in soil [J]. Plant and Soil, 1984, 78(3): 393-399.
    [149] Muhammad Z, Asif T, Zahid AZ, et al. Weed-crop competition effects on growth and yield of sugarcane planted using two methods [J]. Pak. J. Bot., 2010, 42(2): 815-823.
    [150] Muller JC, Skipper HD, Shipe ER, et al. Intrinsic antibiotic resistance in Bradyrhizobium japonicum [J]. Soil Biology and Biochemistry, 1988, 20: 879-882.
    [151] Nahas E. Phosphate solubilizing microorganisms: Effect of carbon, nitrogen, and phosphorus sources [R]. First International Meeting on Microbial Phosphate Solubilization, IN E. Velázquez (eds), 16-19 July 2002, Salamanca, Spain. 2007, p.111-115.
    [152] Nameem FI, Ashraf MM, Malik KA, et al. Competitiveness of introduced Rhizobium strains for nodulation in forage legumes [J]. Pakistan Journal of Botany, 2004, 36: 159-166.
    [153] Narsian V, Patel HH. Aspergillus aculeatus as a rock phosphate solubilizer [J]. Biol. Fertil. Soils, 2000, 32: 559-565.
    [154] Nautiyal C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms [J]. FEMS Microbiol. Letters. 1999, 170: 265-270.
    [155] Nautiyal CS, Bhadauria S, Kumar P, et al. Stress induced phosphate solubilization in bacteria isolated from alkaline soils [J]. FEMS Microbiology Letters, 2000, 182: 291-296.
    [156] Nazir R, Boersma FGH, Warmink JA, et al. Lyophyllum sp. strain Karsten alleviates pH pressure in acid soil and enhances the survival of Variovorax paradoxus HB44 and other bacteria in the mycosphere [J]. Soil Biology and Biochemistry, 2010, 42: 2146-2152.
    [157] Neeraj T, Sachin SS, Gaurav, et al. Tn5 tagging biomonitoring of Rhizobium inoculants [J]. Journal of Plant Breeding and Crop Science, 2010, 2(6): 134-138.
    [158] Oberson A, Friesen DK, Rao IM, et al. Phosphorus transformations in an oxisol under contrasting land-use system: The role of the soil microbial biomass [J]. Plant Soil, 2001, 237: 197-210.
    [159] Oehl F, Oberson M, Probst A, et al. Kinetics of microbial phosphorus uptake in cultivated soils [J]. Biol. Fertil. Soil, 2001, 34: 31-41.
    [160] Oelkers EH, Valsami-Jones E. Phosphate mineral reactivity and global sustainability [J]. Elements, 2008, 4(2): 83-87.
    [161] Oke V, Long SR. Bacteroid formation in the Rhizobium-legume symbiosis [J]. Current Opinion in Microbiology, 1999, 2: 641-646.
    [162] Okon Y. Root Associative Azosprillum Species Can Stimulate Plants [J]. ASM news, 1997, 63(7): 366-370.
    [163] Olsen PE, Rice WA, Bordeleau LM, et al. Analysis and regulation of legume inoculants in Canada: the need for an increase in standards [J]. Plant Soil, 1994a, 161: 127-134.
    [164] Olsen PE, Rice WA, Collins MM. Biological contaminants in North American legume inoculants[J]. Soil Biol. Biochem., 1994b, 27: 699-701.
    [165] Paau AS. Formulations useful in applying beneficial microorganisms to seeds [J]. Trends Biotechnol, 1988, 6: 276-279.
    [166] Parks EJ, Olson GJ, Brinckman FE, et al. Characterization by high performance liquid chromatography (HPLC) of solubilization of phosphorus in iron ore by a fungus [J]. J. Ind. Microbiol., 1990, 5: 183-190.
    [167] Paul E, Fages J, Blanc P, et al. Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties [J]. Applied and Environmental Microbiology, 1993, 40: 34-39.
    [168] Paul NB, Sundara Rao WV. Phosphate-dissolving bacteria in the rhizosphere of some cultivated hegumes [J]. Plant and Soil, 1971, 35: 127-132.
    [169] Pessenda LCR, Aravena R, Melfi AJ. The use of Carbon isotopes (13C, 14C) in soil to evaluate vegetation changes during the Holocene in central Brazil [J]. Radiocarbon, 1996, 38: 19l-201.
    [170] Pessenda LCR, Valencia EPE, Camargo PB. Natural radiocarbon measurements in Brasilian soils developed on basic rocks [J]. Radiocarbon, 1996, 38: 203-208.
    [171] Pii Y, Crimi R, Cremonese G, et al. Auxin and nitric oxide control indeterminate nodule formation [J]. BMC Plant Biology, 2007, 7: 21-32.
    [172] Pikovskaya RE. Mobilization of phosphorus in soil in connection with vital activity of some microbial species [J]. Mikrobiologiya, 1948, 17: 362-370.
    [173] Pilet PE, Chollet R. Sur le dosage colorimetrique de l'acide indolylacetique [J]. CR. Acad. Sci. Ser. D., 1970, 271: 1675-1678.
    [174] Pradhan N, Sukla LB. Solubilization of inorganic phosphates by fungi isolated from agriculture soil [J]. African J. Biotechnol., 2005, 5: 850-854.
    [175] Rachewad SN, RautR S, Malewar GU, et al. Effect on phosphate solubilizing biofertilizer on biomass production and uptake of phosphorus by sunflower [J]. J. Maharashtra Agric Univ., 1992, 17(3): 480-481.
    [176] Raghothama KG. Phosphate acquisition [J]. Annu. Rev. Plant physiol. Plant Mol. Biol., 1999, 50: 665-693.
    [177] Rao AV, Venkateswarelu B, Icaul P. Isolation of a phosphate dissolving soil actinomycete [J]. Curr Sci (Bangalore), 1982, 51(23): 1117-1118.
    [178] Rebah BF, Prévost D, Yezza A, et al. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production [J]. Bioresource Technology, 2007, 98: 3535-3546.
    [179] Redmond JW, Batley M, Djordjevic MA, et al. Flavones induce expression of nodulation genes in Rhizobium [J]. Nature, 1986, 323: 632-635.
    [180] Redondo FJ, De La Pe?a TC, Morcillo CN, et al. Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules [J]. American Society of Plant Biologists, 2009, 149: 1166-1178.
    [181] Redondo-Gómez S, Mateos-Naranjo E, CambrolléJ, et al. Carry-over of Differential Salt Tolerancein Plants Grown from Dimorphic Seeds of Suaeda splendens [J]. Annals of Botany, 2008, 102: 103-112.
    [182] Remans R, Ramaekers L, Schelkens S, et al. Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba [J]. Plant Soil, 2008, 312: 25-37.
    [183] Reyes I, Bernier L, Antoun H. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum [J]. Microbial Ecology, 2002, 44(1): 39-48.
    [184] Reyes I, Bernier L, Simard RR, et al. Effect of nitrogen source on solubilization of different inorganic phosphate by an isolate of pencillium rugulosum and two UV-induced mutants [J]. FEMS Microbiol. Ecol., 1999, 28: 281-290.
    [185] Ribaudo C, Krumpholz E, Cassán F, et al. Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene [J]. J. Plant Growth Regul., 2006, 24: 175-185.
    [186] Rice WA, lupwayi NZ. Field evaluation of dual inoculation of alfalfa with Sinorhizobium and Pencillium billium bilaji [J]. Canadian Journal of plant science, 2000, 80: 303-308.
    [187] Richardson AE, Barea J-M, McNeill AM, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms [J]. Plant Soil, 2009, 321: 305-339.
    [188] Richardson, A.E. Making microorganisms mobilize soil phosphorus [J]. Developments in plant and soil sciences, In First International Meeting on Microbial Phosphate Solubilization, Salamanca, Spain, 2003, 102: 85-90.
    [189] Rodriguez H, Fraga R, Gobzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria [J]. Plant and Soil, 2006, 287: 15-21.
    [190] Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion [J]. Biotechnol. Adv., 1999, 17: 319-339.
    [191] Rodriguez J, Jardim Freire JR, Schrank I. Isolation and characterization of variants of Rhizobium leguminosarum bv phaseoli [J]. MIRCEN Journal, 1987, 3: 289-295.
    [192] Rodriguez-Navarro DN, Temprano F, Orive R. Survival of Rhizobium sp. (Hedysarum coronarium L.) on peat-based inoculants and inoculated seeds [J]. Soil Biol. Biochem., 1991, 23: 375-379.
    [193] Rosaspina S, Salvatorelli G, Anzanel D. Effect of microwave radiation on Candida albicans [J]. Microbiology, 1994, 78(314): 187-194.
    [194] Rossi MJ, Agenor FJ, Oliveira VL. Inoculant Production of Ectomycorrhizal Fungi by Solid and Submerged Fermentations [J]. Food Technol. Biotechnol., 2007, 45(3): 277-286.
    [195] Sadowsky MJ, Keyser HH, Bohlool BB. Biochemical characterization of fast- and slow-growing Rhizobia that nodulate soybean [J]. International Journal of Systematic Bacteriology, 1983, 33: 716-722.
    [196] Safarnejad A. Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.) [J]. Pak. J. Bot., 2008, 40(2): 735-746.
    [197] Sakaguchi T, Kato M, Kuriyama N, Niiyama H, Hamada S, Morita Y, Tamiya E. Conjugal Transformation and Transposon and Chemical Mutagenesis of Gram-Negative Selenate-Respiring Citrobacter sp. Strain JSA [J]. Current Microbiology, 2009, 59: 88-94.
    [198] Sarig S, Okon Y, Blum A. Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots [J]. Plant Nutrion, 1992, 15: 805-819.
    [199] Sawyer J, Creswell J. Integrated crop management [M]. In Phosphorus basics. Aug. 2000, Iowa State University, Ames, Iowa. 2000, 182-183.
    [200] Scaglia JA. Production and quality control of inoculants in Rwanda [R]. In Report of the Expert Consultation on Legume Inoculant Production and Quality Control, Thompson JA. (ed.), Food and Agriculture Organization of the United Nations, Rome. 1991, 61-69.
    [201] Schahtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: From soil to cell [J]. Plant Physiology, 1998, 116: 447-453.
    [202] Schwartz MW, Hoeksema JD, Gehring CA, et al. The promise and the potential consequences of the global transport of mycorrhizal fungal inoculant [J]. Ecol. Lett., 2006, 9: 501-515.
    [203] Scott JR, Bumgarner HR. Inoculation of legumes. US patent 3168796. Filing date: Mar 19, 1962. Issue date: Feb 1965.
    [204] Selvakumar G, Kundu S, Gupta AD, et al. Isolation and characterization of non-rhizobial plant growth promoting bacteria from nodules of kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth [J]. Current Microbiology, 2008, 56: 134-139.
    [205] Sessitsch A, Patrick KJ, Gudnl H, et al. Measurement of the Competitive Index of Rhizobium Tropici Strain CIAT899 Derivatives Marked with the GusA Gene [J]. Soil Biochem, 1998, 39: 1099-1110.
    [206] Shah-Smith DA, Burns RG. Shelf -life of a biocontrol Pseudomonas putida applied to sugar beet seeds using commercial coatings [J]. Biocontrol Sci. Technol., 1997, 7: 65-74.
    [207] Sharpley A. Agricultural Phosphate Management: Protecting Production and Water Quality Lesson 34. USDA-Agricultural Research Service [R]. Mid West Plant Service. Iowa State University, Ames, Iowa. At. 2006.
    [208] Sharpley AN. Soil phosphorus dynamics: agronomic and environmental impacts [J]. Ecological Engineering, 1995, 5: 261-279.
    [209] Singh J, Vohra RM, Sahoo DK. Enhanced production of alkaline protease by bacillus sphaericus using fed batch culture [J]. Process Biochem., 2004, 39: 1093-1101.
    [210] Singleton P, Keyser H, Sande E. Development and evaluation of liquid inoculants [R]. In: Inoculants and nitrogen fixation of legumes in Vietnam, ACIAR Proceeding 109e, Herridge D (ed), Australian Centre for International Agricultural Research, Canberra, Australia. 2002, 52-66.
    [211] Singleton P, Keyser H, Shade E. Development and Evaluation of Liquid Inoculants, Inoculants a Nitrogen fixation of legumes in Vietnam Edited by Herridge [J]. ACIAR Proceedings, 2002, 35(1): 104-109.
    [212] Smith RS, Ellis MA, Smith RE. Effect of Rhizobium japonicum inoculant rates on soybeannodulation in a tropical soil [J]. Agron. J., 1981, 73: 505-508.
    [213] Smith RS. Inoculant formulations and applications to meet changing needs [R]. In Nitrogen fixation: fundamentals and applications, Tikhonovich IA, Provorov NA, Romanov VI, Newton WE. (eds), Kluwer Academic Publishers, Dordrecht, The Netherlands. 1995, 653-657.
    [214] Smith RS. Legume inoculant formulation and application [J]. Can. J. Microbiol. 1992, 38: 485-492.
    [215] Smith RS. Production and quality of inoculants [R]. In Symbiotic nitrogen fixation technology, Elkan GH. (ed.), Marcel Dekker, New York. 1987, 391-411.
    [216] Somasegaran P. Inoculant production with diluted liquid cultures of Rhizobium spp. And authoclaved peat: Evaluation of diluents, Rhizobium spp., peats, sterility requirements, storage, and plant effectiveness [J]. Appl. Environ. Microbiol., 1985, 50: 398-405.
    [217] Son HJ, Park GT, Cha MX, et al., Solubilization of insoluble inorganic phosphate by a novel salt and Ph-tolerant Pantoeaagglom erans R-42 isolated from soybean rhizosphere [J]. Ioresource Technol., 2006, 97(2): 204-210.
    [218] Sparrow SD. Survival of Rhizobium phaseoli in Six Carrier Materials [J]. Agronomy Journal, 1983, 75: 181-184.
    [219] Sperber JI. Solution ofminera phosphates by soil bacteria [J]. Nature, 1957, 180: 994-995.
    [220] State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of the People's Republic of China: Microbial inoculants in agriculture, Standards Press of China, 2006, 15-18.
    [221] Steele KW, Bonish PM, Daniel RM. et al. Effect of Rhizobial Strain and Host Plant on Nitrogen Isotopic Fractionation in Legumes [J]. Plant Physiology,1983, 72: 1001-1004.
    [222] Stewart JBW, Hedley MJ, Chauhan BS. The immobilization, mineralization and distribution of phosphorous in soils [R]. In Western Canada phosphate symposium-Proc. Alberta Soil Science Workshop, Edmonton, AB. 1980, 276-306.
    [223] Sundara Rao WVB, Sinha MK. Phosphate dissolving microorganisms in the soil and rhizosphere [J]. Indian Journal of Agricultural Science, 1963, 33(4): 272-278.
    [224] Thakuria D, Talukdar NC, Goswami C, et al. Characterization and Screening of Bacteria from Rhizosphere of Rice Grown in Acidic Soils of Assam [J]. Current Science, 2004, 86: 978-985.
    [225] Thomas GV, Shantaram MV, Saraswathy N. Occurrence and activity of phosphate-solubilizing fung from coconut p lantation soils [J]. Plant and Soil, 1995, 87(3): 357-364.
    [226] Thompson JA. Australian quality control and standards [R]. In Report of the Expert Consultation on Legume Inoculant Production and Quality Control, Thompson JA. (ed.), Food and Agriculture Organization of the United Nations, Rome. 1991, 107-11.
    [227] Thompson JA. Production and quality control of legume inoculants [R]. In Methods for Evaluating Biological Nitrogen Fixation, Begerson FJ. (ed.), John Wiley and Sons, New York. 1980, 489-533.
    [228] Thompson LM, Troch FR. Soils and soil fertility 4th ed. [J]. Mc Graw-Hill Inc., New York, NY. 1978.
    [229] Tilman D, Cassman KG, Matson PA, et al. Agricultural sustainability and intensive productionpractice [J]. Nature, 2002, 418: 671-677.
    [230] Timmers AC, Auriac MC, Truchet G. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements [J]. Development, 1999, 126: 3617-3628.
    [231] Trolldenier WD. Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi [J]. Plant Soil, 2000, 218: 249-256.
    [232] Turan M, Atao?lu N, Sahin F. Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture [J]. Journal of Sustainable Agriculture, 2006, 28: 99-108.
    [233] Uexküll HR, Mutert E. Global extent, development and economic impact of acid soils [J]. Plant Soil, 1995, 171: 1-15.
    [234] Van Elsas JD, Heijnen CE. Methods for the in troduction of bacteria into soil: a review [J]. Biol. Fertil. Soils, 1990, 10: 127-133.
    [235] Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003, 157: 423-447.
    [236] Vanlauwe B, Nwoke OC, Diels J, et al. Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucunaprunes, lablab purpureus and maize [J]. Soil Biol Biochem, 2000, 32: 2063-2077.
    [237] Vassilev N, Vassileva M, Azcon R. Solubilization of rock phosphate by immobilized Aspergillus niger [J]. Bioresource Technol., 1997, 59: 1-4.
    [238] Vedder-Weiss D, Jurkevitch E, Burdman S, et al. Root growth, respiration and beta-glucosidase activity in maize (Zea mays) and common bean (Phaseolus vulgaris) inoculated with Azospirillum brasilense [J]. Symbiosis, 1999, 26: 363-377.
    [239] Vertucci CW, Roos EE, Crane J. Theoretical Basis of Protocols foe Seed StorageΙΙΙ. Optimum Moisture Contents for Pea Seeds Stored at Different Temperatures [J]. Annals of Botany, 1994, 74: 531-540.
    [240] Vessey JK, Heisinger KG. Effect of Penicillium bilaii inoculation and phosphorus fertilization on root and shoot parameters of field-grown pea [J]. Canadian Journal of Plant Science, 2001, 3: 361-366.
    [241] Vincent JM. A manual for the practical study of root-nodule bacteria [M]. IBP Handbook 15, Blackwell, Oxford, 1970, pp. 164.
    [242] Vincent JM. Root-Nudule Symbiosis with Rhizobium. In: The Biology of Nitrogen Fixation Quispel A ed. [M]. North Holland Publishing Co, Amsterdam, 1974, 266-341.
    [243] Wahyudi AT, Purnawijaya A, Nurdiani D, et al. Characterization of Acid-Aluminium Sensitive Mutants of Soybean Symbiont Bradyrhizobium japonicum Generated by Transposon Mutagenesis [J]. Microbiology Indonesia, 2007, 1(2):81-85.
    [244] Wakelin SA, Gupta VVSR, Harvey PR, et al. The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia [J]. Can. J. Microbiol.,2007, 53: 106-117.
    [245] Wanek W, Arndt SK. Difference in {delta} 15N signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N2 fixation to plant [J]. N. J. Exp. Bot., 2002, 53: 1109-1118.
    [246] Wang D. Dynamics of Soil Water and Temperature in Aboveground Sand Cultures Used for Screening Plant Salt Tolerance [J]. Soil Science Society of America Journal, 2002, 66: 1484-1491.
    [247] Welt BA, Tong CH, Rossen JL, et al. Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores [J]. Applied and Environmental Microbiology, 1994, 60: 482-488.
    [248] Whitelaw MA. Growth promotion of plants inoculated with phosphate-solubilizing fungi [J]. Advances in Agronomy, 1999, 69: 99-151.
    [249] Willems AF, Doignon-Bourcier J, Goris R, et al. DNA-DNA hybridization study of Bradyrhizobium strains [J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51: 1315-1322.
    [250] Williams PM. Current use of inoculant technology [R]. In Biological nitrogen fixation ecology, technology and physiology, Alexander M. (ed.), Plenum Press, London. 1984, 173-200.
    [251] Woodmansee RG, Duncan DA. Nitrogen and phosphorus dynamics and budgets in annual grasslands [J]. Ecology, 1980, 61: 893-904.
    [252] Xie J. Screening for Calcium Phosphate Solubilizing Rhizobium Leguminosarum [D]. Department of Soil Science, University of Saskatchewan, Saskatoon, SK. 2008, 16-19.
    [253] Yadav K, Singh T. Phosphorus solubilization by microbial isolate from a Calcifluvent [J]. Indian Soc. Soil Sci., 1991, 39(1): 89-93.
    [254] Yoneyama T, Fujita K, Yoshida T, et al. Variation in natural abundance of 15N among plant parts and in 15N/14N fractionation during N2 fixation in the legume-rhizobia symbiotic system [J]. Plant and Cell Physiology, 1986, 27: 791-799.
    [255] Younis MAM, Hezayen FF, Nour-Eldein MA, et al. Optimization of Cultivation Medium and Growth Conditions for Bacillus subtilis KO Strain Isolated from Sugar Cane Molasses [J]. American Eurasian J. Agric and Environ. Sci., 2010, 7(1): 31-37.
    [256] Yu-peng L, Pu Z, Zhi-Hao S, et al. Economical scccinic acid production from cane molasses by Actinobacillus sunccinogenes [J]. 2008, 99(6): 1736-1742.
    [257] Zaied KA, Kosba ZA, Nassef MA, et al. Induction of Rhizobium Inoculants Harboring Salicylic Acid Gene. Australian Journal of Basic and Applied Sciences [J]. 2009, 3(2): 1386-1411.
    [258] Zhang WF, Ma WQ, Ji YX, et al. Efficiency, economics and environmental implications of phosphorus resource use and the fertilizer industry in China [J]. Nutrient Cycling in Agroecosystems, 2008, 80: 131-144.
    [259]曹燕珍,李阜棣.紫云英根瘤菌的诱变[J].微生物学通报, 1979, 6(4): 7-9.
    [260]常玮,王炜,屈新兰.苜蓿根瘤菌菌剂的研究[J].新疆农业科学, 2004, 41(2): 103-104.
    [261]陈今朝,张红,顾素芳,等.三种根瘤菌诱变菌株的形态特征及其与抗性的关系[J].中国微生态学杂志, 2000, 12(1): 36-39.
    [262]陈今朝,张红,顾素芳,等.紫外线诱变根瘤菌耐酸耐碱突变株的筛选[J].四川大学学报(自然科学版), 1998(增刊): 54-58.
    [263]陈力力,鲁迎新.微波诱变育种井冈霉素高产菌[J].生物技术, 2003, 13(5): 14-15.
    [264]陈利云,张丽静,周志宇.耐盐根瘤菌对紫花苜蓿接种效果的研究[J].草业学报, 2008, 17(5): 43-47.
    [265]陈明,姚允寅,张希忠.不同形态氮素对15N同位素稀释法估测苜蓿固氮的影响[J].核农学通报, 1997, 18(1): 30-33.
    [266]陈廷伟.解磷巨大芽孢杆菌分类名称、形态特征及解磷性能评述[J].土壤肥料, 2005, l: 7-9.
    [267]陈廷伟.微生物对不溶性无机磷化合物的分解能力及其接种效果[J].微生物学报, 1995, 2 (5): 210-205.
    [268]陈欣,姜曙千,张克中,等.红壤坡地磷素流失规律及其营养因素[J].土壤侵蚀与水土保持学报, 1999, 5(3): 38-41.
    [269]陈怡平,崔瑛,任兆玉.微波处理菘蓝种子的子叶发育与生物光子辐射的相关性[J].红外与毫米波学报, 2006, 25(4): 275-278.
    [270]丁希泉编著.新型高效生物菌肥:肥力高[M].北京:中国计量出版社, 1998.
    [271]董立,孟庆芳,刘大群.农用抗生素高产育种技术研究进展[J].河北农业大学学报, 2002, 25(增刊): 180-183.
    [272]范丙全,金继运,葛诚.溶磷真菌促进磷素吸收和作物生长的作用研究[J].植物营养与肥料学报, 2004, 10 (6): 620-624.
    [273]高扬帆,陈军,张莉.青霉素和Ca2+对小白菜老化种子发芽及幼苗生长的影响[J].北方园艺, 2006, 2: 9-11.
    [274]葛均青,于贤昌,王竹红.微生物肥料效应及其应用展望[J].中国生态农业学报, 2003, 11(3): 11-12.
    [275]国家环境保护局.化学农药环境安全评价实验准则(续)[J].农药科学与管理, 1990, 11(4): 429.
    [276]韩宝隆.谈谈预防酵母菌种的退化[J].酿酒科技, 1999, 2: 24-28.
    [277]黄宝灵,吕成群.罗汉松根瘤内生细菌的分离和特性[J].微生物学报, 2002, 42(5): 620-623.
    [278]黄德盈,吴士筠,何冬兰,等.氯化钇对质粒pBR322转化的影响[J].中南民族学院学报(自然科学版), 2000, 19(1): 47-50.
    [279]黄东风,翁伯琦,罗涛.豆科植物固氮能力的主要测定方法比较[J].江西农业大学学报, 2003, 25(S1): 17-20.
    [280]霍春芳,刘进荣,张冬艳.稀土抑菌剂的研究现状[J].内蒙古工业大学学报, 2000, 19(2): 145-147.
    [281]霍春芳,张冬艳,刘进荣,等.稀土对芽孢菌的抑菌机理研究[J].化学学报, 2002, 60(6): 1065-1071.
    [282]李阜棣,胡正嘉.微生物学(第五版)[M].北京:中国农业出版社, 2000, 222-223.
    [283]李海航,潘瑞炽.青霉素在高等植物中的作用[J].植物生理学通讯, 1987, 5: 347-35.
    [284]李宏宇,鲁国东,王明海.稻瘟病菌微波诱发突变体的分析[J].菌物系统, 2003, 22(4): 639-644.
    [285]李剑峰,师尚礼,张淑卿.不同Ca3(PO4)2含量及菌种保存温度下SL01菌株的解磷及生长能力[J].中国生态农业学报, 2010a, 18(1): 94-97.
    [286]李剑峰,师尚礼,张淑卿.酸性环境中亚铁离子对紫花苜蓿WL525早期生长和生理的影响[J].草业学报, 2009a, 18(5): 10-17.
    [287]李剑峰,张淑卿,师尚礼,等.解磷根瘤菌液体培养基类型,浓度及透气条件的比较[J].草原与草坪, 2010b, 30(1): 28-32.
    [288]李剑峰,张淑卿,师尚礼,等.微波诱变选育耐药高效溶磷苜蓿根瘤菌[J].原子能科学技术,2009b, 43(12): 1071-1076.
    [289]李剑峰,张淑卿,师尚礼.微波诱变选育高产生长素及耐药性根瘤菌株[J].核农学报, 2009c, 23(6): 981-985.
    [290]李剑峰.紫花苜蓿在酸铁胁迫下的适应性研究[D].兰州:甘肃农业大学, 2007: 34-36.
    [291]李荣杰.微生物诱变育种方法研究进展[J].河北农业科学, 2009, 13(10): 73-76.
    [292]李先海,李新民, Seth K. A. Danso.应用15N稀释法筛选高固氮能力的大豆品种[J].核农学报, 1998, 12(5): 299-303.
    [293]李旭军,贾小红,王克武.紫花苜蓿专用根瘤菌剂使用技术研究[J].草业科学, 2005, 22(5): 28-31.
    [294]梁锦峰,姜培坤,陈欣.基质有效磷丰度对磷细菌生长和解磷效果的影响[J].中国农学通报, 2006, 22(11): 211-213.
    [295]梁连登,庄敏玉,翁霭珍.花生根瘤菌诱变育种的研究[J].微生物学通报, 1984, 11(5): 203-206.
    [296]梁绍芬,姜瑞波.解磷微生物肥料的作用和应用[J].土壤肥料, 1994, 2: 46-48.
    [297]梁新乐,陈敏,张虹. 60Coγ射线诱变筛选阿维拉霉素高产菌株及培养基优化[J].核农学报, 2007, 21(5): 451-455.
    [298]林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报, 2001, 28(2): 26-30.
    [299]刘保平,周俊初.根瘤菌菌剂研究[J].湖北农业科学, 2006, 45(1): 57-61.
    [300]刘长霞,谭天伟,翟洪杰.盐碱条件对真菌解磷能力的影响[J].微生物学通报, 2003, 30(5): 69-73.
    [301]刘锋,应光国,周启星,等.抗生素类药物对土壤微生物呼吸的影响[J].环境科学, 2009, 30(5): 1280-1285.
    [302]刘海英,董月香,周廷斌,等.食用菌菌种的退化及复壮[J].食用菌, 2003, 6: 16-17.
    [303]刘建,李俊,葛诚.微生物肥料作用机理的研究新进展[J].微生物学杂志, 2001, 21(1): 33-36.
    [304]刘进元.英日汉生物工程学辞典[M].清华大学出版社, 2001: 12-14.
    [305]刘明芳,黄树君.微生物肥料在农业上的应用及其展望[J].攀枝花科技与信息, 2001, 26(1): 19-21.
    [306]刘彦江,胡汉民,罗军平,等.紫花苜蓿应用根瘤菌剂和稀土肥料效果试验[J].草业科学, 2005, 22(7): 27-28.
    [307]吕学斌,孙亚凯,张毅民.几株高效溶磷菌株对不同磷源溶磷活力的比较[J].农业工程学报,2007, 23(5): 195-197.
    [308]倪嘉缵.稀土生物无机化学[M].北京:科学出版社, 1995.
    [309]牛彦波,吴皓琼,李智.载体、灭菌方式及pH对生物肥料产品活菌数及保存期的影响[J].黑龙江八一农垦大学学报, 2003, 15(3): 36-39.
    [310]潘明,周永进.微波技术选育啤酒酵母菌种的探讨[J].中国酿造, 2008, 11: 78-80.
    [311]蒲小明,林壁润,胡美英.星形孢菌素产生菌的选育研究[J].核农学报, 2008, 22(3): 276-279.
    [312]祁娟,师尚礼.不同品种紫花苜蓿种子内生根瘤菌溶磷和分泌生长素能力[J].草原与草坪, 2006, 5: 18-25.
    [313]祁娟.苜蓿种子根瘤菌筛选及其促生能力研究[D].兰州:甘肃农业大学, 2006.
    [314]屈宝香.农业中的化肥使用与环境污染[J].环境保护, 1994, 8: 41-44.
    [315]师尚礼,曹致中,刘建荣.苜蓿根瘤菌溶磷和分泌植物生长素能力研究[J].草业学报, 2007, 16(1): 105-111.
    [316]师尚礼.甘肃寒旱区苜蓿根瘤菌促生能力影响因子分析及高效促生菌株筛选研究[D].甘肃农业大学, 2005.
    [317]斯普朗特著(英);刘永定译.固氮生物生物学北京[M].农业出版社, 1997, 63(7): 366-370.
    [318]宋丽,刘晓风,刘培.微波诱变选育耐酸高效厌氧产氢菌[J].应用与环境生物学报, 2008, 14(3): 427-43.
    [319]苏波,韩兴国,黄建辉. 15N自然丰度法在生态系统氮素循环研究中的应用[J].生态学报, 1999, 19(3): 408-416.
    [320]孙延忠,曾洪梅,石义萍,等.武夷菌素对番茄灰霉菌的作用方式[J].植物病理学报, 2003, 33(5): 434-438.
    [321]谭一波.叶面积指数的主要测定方法[J].林业调查规划, 2008, 3: 47-49.
    [322]汤晖,隋新华,陈文新.一株耐碱根瘤菌的筛选与鉴定[J].农业生物技术科学, 2006, 22(8): 74-76.
    [323]汤菊香,冯艳芳. KH2PO4和青霉素对小麦老化种子发芽及幼苗生长的影响[J].种子, 2001, 4: 19-21.
    [324]汤树德,石景波,高强俊.高效溶磷霉菌(AN227)菌株筛选溶磷机制及其条件的研究[J].黑龙江八一农垦大学学报, 1981, 1: 3-13.
    [325]唐勇,陆玲,杨启银,等.解磷微生物及其应用的研究进展[J].天津农业科学, 2001, 7(2): 1-4.
    [326]万曦, Vleghels I., Franssen H., et.al.克隆植物早期结瘤素基因ENOD40的受体基因[J].农业生物技术学报, 2001, 9(3): 293-296.
    [327]王富民,刘桂芝,张彦.高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究[J].生物技术, 1992, 2(6): 34– 37.
    [328]王富民,张彦,吴皓琼,等.解磷固氮菌剂的研制及其对小麦的增产效应[J].生物技术, 1994, 4(4): 15-18.
    [329]王光华,赵英,周德瑞,等.解磷微生物的研究现状与展望[J].生态环境, 2003, 12(1): 96-101.
    [330]王卫卫,胡正海,关桂兰,等.甘肃,宁夏部分地区根瘤菌资源及其共生固氮特性[J].自然资源学报, 2002, 1: 48-54.
    [331]王友保,张莉,刘惠.铜对狗牙根生长及活性氧清除系统的影响[J].草业学报, 2007, 16(1): 52-57.
    [332]王忠.植物生理学[M].北京:中国农业出版社, 2000.
    [333]吴皓琼,牛彦波,田洁萍,等.保护剂与抑菌剂对生物肥料保存期的影响[J].微生物学杂志, 2004, 24(5): 50-53.
    [334]吴红慧,周俊初.根瘤菌培养基的优化和剂型的比较研究[J].微生物学通报, 2004, 31(2): 14-19.
    [335]吴红慧.大豆根瘤菌培养基的优化和剂型的比较研究[D].武汉:华中农业大学, 2003.
    [336]吴鹏飞,张冬明,郝丽虹,等.解磷微生物研究现状及展望[J].中国农业科技导报, 2008, 10(3): 40-46.
    [337]吴薇,葛诚.我国微生物肥料生产和应用现状的调查研究[J].微生物学通报, 1995, 22(2): 104-106.
    [338]吴旭红,冯晶,常志敏.青霉素对老化香瓜种子萌发和酶活性的影响[J].生物技术, 2003, 13(1): 28-29.
    [339]席琳乔,姚拓,杨俊基,等.联合固氮菌株分泌能力及其对燕麦的促生效应测定[J].草原与草坪, 2005, 4: 25-29.
    [340]谢从鸣. 580株细菌对氨苄青霉素耐药性分析[J].福建医药杂志, 2001, 23(4): 176-177.
    [341]熊炳昆,陈蓬,郭伯生,等.稀土农林研究与应用[M].北京:冶金工业出版社, 2000.
    [342]徐光宪.稀土[M].北京:冶金工业出版社, 1995.
    [343]徐俊兵.扬州市土壤有机质和速效磷钾的分布研究[J].土壤, 2004, 36(1): 99-103.
    [344]颜贤存,余莉莉,张凤英.微波对枯草芽孢杆菌诱变效应的研究[J].江西农业大学学报, 2005, 27(6): 857-860.
    [345]杨军,张赫,王甲辰,等.稀土抑菌作用研究[J].稀土, 2009, 30(1): 35-39.
    [346]杨秋忠,张芝贤,陈立夫,等.台湾土生固氮溶铁磷细菌特性之研究[J].中国农业化学会志, 1998, 36(2): 201-270.
    [347]杨胜利,王金宇,杨海麟.超声波对红曲菌的诱变筛选及发酵过程在线处理[J].微生物学通报, 2004, 31(1): 46-49.
    [348]杨一心,赵天成,张泉珍,等.稀土氯化物与咪唑配合物的合成、表征及抑菌作用[J].西北农业大学学报, 1998, 26(1): 94-98.
    [349]姚拓,蒲小鹏,张德罡,李金花.高寒地区燕麦根际联合固氮菌研究Ⅲ固氮菌对燕麦生长的影响及其固氮量测定[J].草业学报, 2004, 13(5): 101-105.
    [350]姚允寅,陈明,马昌,等. 15N天然丰度法测量豆科牧草共生固氮的评估[J].核农学报, 1991, 5(3): 139-145.
    [351]叶小梅,何加骏,王小妹.一株土生克雷伯氏菌接种对黑麦草生长及磷吸收的影响[J].江苏农业科学, 2008, 2: 162-166.
    [352]尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤, 1988, 20(5): 243-246.
    [353]袁保红,杜青平,邓祖军.小连翘内生真菌种群分布及其抗菌性研究[J].广东药学院校报, 2007, 23(3): 307-311.
    [354]臧威,孙剑秋,王鹏,等.东北地区四种农作物根际磷细菌的分布[J]. 2009, 17(6): 1206-1210.
    [355]张昊,杨清香,朱孔方,等.抗生素对小麦根际优势微生物生长的影响[J].河南师范大学学报(自然科学版), 2008, 36(5): 114-118.
    [356]张红缨,王书锦,张宪武.四株快生型大豆根瘤菌的形态特征和生理生化特性的研究[J].微生物学报, 1987, 27(1): 92-94.
    [357]张会春.细菌肥料的研究与生产现状[J].细菌肥料的研究与生产现状, 1999, 19(6): 39-40.
    [358]张淑卿,李剑峰,师尚礼,等.内生根瘤菌在种子内的数量及优势度[J].中国草地学报, 2009, 31(5): 90-95.
    [359]张淑卿,李剑峰,师尚礼,霍平慧.内生根瘤菌在苜蓿芽苗与种子内的数量及优势度[J].中国草地学报, 2009, 17(5): 90-95.
    [360]张希涛,康丽华,马海宾.具有解磷能力的相思根瘤菌的筛选[J].林业科学研究, 2008, 21(5): 619-62.
    [361]张晓勇,林壁润,高向阳.氮离子束注入诱变筛选万隆霉素高产菌株的研究[J].核农学报, 2008, 22(6): 766-769.
    [362]赵川,罗建军,陈少华,等.微生物菌种改良筛选新技术研究进展[J].生物技术通报, 2009(增刊): 118-121.
    [363]赵小蓉,林启美,孙焱鑫,等.细菌解磷能力测定方法的研究[J].微生物学通报, 2001, 28(1): 1-4.
    [364]浙江农业大学.植物营养与肥料[M].北京:中国农业出版社, 2007, 206-207.
    [365]钟传表,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报, 2005, 142(12): 286-290.
    [366]周建琴,高荣梅.康乐霉素C产生菌的微波诱变[J].生物学杂志, 2002, 19(4): 12-13.
    [367]周克瑜,施书莲,杜丽娟,等.豆科固氮植物植株茎叶、根和根瘤的δ15N值变异[J].核农学报, 1998, 12(2): 105-111.
    [368]朱传合,贺亚男,路福平,等.微波对阿维拉霉素产生菌诱变效应的研究[J].现代生物医学进展, 2006, 6(4): 32-34.
    [369]朱建华,富新华.青霉素对几种作物种子发芽率和幼苗生长的影响[J].植物生理学通讯, 1995, 31(5): 344-346.
    [370]左玉萍,贾敬肖,杨一心.混合稀土抗菌活性测定及与抗生素联用效果[J].稀土, 1996, 17(4): 34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700