用户名: 密码: 验证码:
高效利用玉米秸秆的产氢菌种及其产氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机、粮食短缺、环境污染等问题越来越严重,如何使废弃物无害化、资源化已成为世界性亟待解决的关键问题。秸秆是一种丰富的农业废弃物、因其具有充足的供应和低廉的价格,若利用微生物技术将其转化为氢气,既能降低产氢成本,又能使废弃物得到资源化,从清洁能源开发和废物利用的角度都具有极大的社会效益和经济效益。秸秆主要由纤维素、半纤维素和木质素构成,其中纤维素和半纤维素是可发酵性碳水化合物,可在微生物或酶的作用下将其转化为糖后再供微生物利用生成燃料氢气。但目前以秸秆为原料制备生物燃料研究中多数只强调对纤维素组分的转化利用,而半纤维素组分则作为废弃物处理,既造成环境污染,又造成资源浪费。同时,在纤维素物质转化过程中,纤维素酶解技术存在的主要障碍是纤维素酶活力较低、生产成本较高。针对目前制约秸秆木质纤维原料生物转化产氢研究中的主要技术瓶颈,本研究进行了戊糖发酵产氢菌和纤维素降解产氢菌的分离筛选,并分别考察了其利用半纤维素水解液和纤维素物质发酵产氢性能,同时结合预处理技术建立了玉米秸秆高效利用组合体系,论文取得主要研究成果如下:
     分离获得一株高效戊糖发酵产氢菌Thermoanaerobacterium thermosaccharolyticum W16,该菌在碳源浓度10g/L,温度60oC,初始pH 6.5条件下,利用葡萄糖和木糖的最大比产氢率和产氢速率分别为2.42mol H2/mol glucose、12.9mmol H2/L·h和2.19mol H2/mol xylose、10.7 mmol H2/L·h。同时探讨了该菌同步发酵葡萄糖木糖混合糖产氢代谢特性,研究表明菌株W16能同时利用葡萄糖和木糖发酵产氢,但葡萄糖的代谢速率快于木糖的代谢速率。预处理水解液中常见抑制物影响试验表明菌株W16具有较强的乙酸钠和酚类化合物香兰素的耐受能力,而对呋喃衍生物糠醛、羧甲基糠醛和酚类化合物紫丁香醛较敏感。
     利用响应曲面法优化玉米秸秆半纤维素稀酸水解条件,在酸浓度1.69%、处理时间117min最优水解条件下,玉米秸秆中半纤维素的脱除程度达80.5%,水解液中木糖、阿拉伯糖和葡萄糖含量分别为9.11g/L、1.85g/L和0.88g/L。半纤维素水解液产氢性能表明菌株W16能有效利用半纤维素水解液进行发酵产氢,水解液含有的乙酸糠醛等副产物没有对其产生抑制作用。
     建立了嗜热厌氧纤维素降解产氢菌的筛选方法,并获得了一株具有良好纤维素降解产氢能力的菌株Thermoanaerobacterium thermosaccharolyticum M18。该菌能有效利用微晶纤维素、木聚糖、纤维素滤纸发酵产氢,也能利用未经处理的天然木质纤维原料玉米秸秆、稻草和玉米芯产氢。在碳源浓度为5g/L的微晶纤维素粉和玉米秸秆粉培养基中其产氢能力及对底物的降解率分别为44.5mmol/L(243.7ml/g-微晶纤维素)、8.45mmol/L(80.2ml/g-玉米秸秆)和81.9%、47.2%。纤维素酶学特性分析表明菌株M18所产纤维素酶为诱导酶,只有在纤维素类物质的诱导下才能产生,不同细胞组分酶活性检测表明其所产纤维素酶主要分布在细胞外。
     借助SEM、FTIR、XRD、13C-NMR、GC-MS分析手段及纤维素、半纤维素分解酶活测定全面、系统的解析了菌株M18对玉米秸秆的降解特性,得出了菌株M18诱导产酶的过程也是秸秆降解的过程,明确了其在秸秆降解过程中对纤维素和半纤维素的降解优势,并且半纤维素的降解优先于纤维素的降解,在降解过程中,纤维素分子内氢键发生断裂,纤维素结晶区和非结晶区都遭到破坏,纤维素和半纤维素在纤维素酶和半纤维素酶的作用下被降解成小分子物质后而被菌株M18直接利用并进一步发酵产生氢气,同时也表明木质素的存在是制约秸秆生物转化的主要障碍。
     针对秸秆中木质素的存在影响了菌株M18对纤维素和半纤维素的生物转化效率针,通过比较不同预处理方法的特点及作用机理,采用氢氧化钠预处理技术对玉米秸秆进行脱木素,预处理后得到纤维素固体残渣和碱溶半纤维素糖类水溶液两部分。利用戊糖发酵菌W16和纤维素降解菌M18各自优势将碱溶半纤维素糖类的回收利用与固体残渣中纤维素和半纤维素的氢气转化进行有机整合,从而实现了玉米秸秆的高效转化。与未经处理的玉米秸秆相比,其产氢量提高了36.8%。
With the problem of energy crisis, food shortages, enviroment pollution become more and more serious, how to make the waste harmless and resources has become the urgent issue to solve worldwide. Straw is an aboudant agricultural waste, because of its sufficient supply and low price, if convert it to hydrogen by microorganisms, it can not only reduce the cost of hydrogen production, but can also reclaim waste materials, which has remarkable social and economic benefits on the aspects of energy development and waste ultization. Straw was mainly composed of cellulose, hemicellulose and lignin, cellulose and hemicellulose are fermentable carbohydrates, which can be converted to sugars by microorganisms or enzymes before their use for biohydrogen generation. But take straw as raw materials, biofuels researches in most cases are emphasis on the conversion of cellulose, hemicellulose is disposed as waste, which not only cause environmental pollution but also wastes of resources. Meanwhile, in cellulose conversion process, the major obstacles of cellulase technology are lower cellulase activity and higher production costs. Aiming at current main technical bottleneck of conversion straw to biohydrogen, the pentose fermentation bacteria and cellulose degrading bacteria for hydrogen production were isolated and the performance of hydrogen production from hemicellulose hydrolysate and cellulosic materials were investigated respectively. Simultaneously, associated with pretreatment technology, a combined system for efficient utilization of corn stover for hydrogen production was established. The main achievements obtained by this research were as follows:
     A moderately thermophilic bacterium, Thermoanaerobacterium thermosaccharolyticum W16, was isolated for efficiently producing hydrogen from pentose. Under the conditions of carbon source 10g/L, temperature 60°C, and initial pH 6.5, the maximum cumulative H2 yield and H2 production rate in glucose and xylose are 2.42mol H2/mol glucose, 12.9mmol H2/L·h and 2.19mol H2/mol xylose, 10.7mmol H2/L·h, respectively. The metabolic characteristics under mixed glucose and xylose are also discussed. It discovered that strain W16 could simultaneously uptake glucose and xylose, although, the consumption rate of glucose was faster than the consumption rate of xylose. The effect of common inhibitors derived from hydrolysate showed that strain W16 had high tolerance to acetate sodium and vanillin, however, it behaved more sensitive to furfural, hydroxymethylfurfural (HMF) and syringaldehyde.
     By using response surface methodology, the hydrolysis conditions were optimized to produce hemicellulosic hydrolysates. Under the optimal hydrolysis conditions of acid concentration 1.69%, processing time 117min, the removal efficiency of hemicellulose was up to 80.%,and the content of xylose, arobinose and glucose were 9.11g/L、1.85g/L和0.88g/L, respectively. The performance of hydrogen production from such hydrolysates by the strain W16 was also investigated. The results indicated that the strain W16 could effectively utilize hemicellulosic hydrolysates for fermentative hydrogen production; the inhibitors derived from hydrolysate such as acetate sodium, furfural didn’t have inhibitory effect on the strain W16.
     The screening method was constructed to isolate thermophilic anaerobic cellulolytic hydrogen-producing bacteria, and a good cellulytic hydrogen-producing bacteria Thermoanaerobacterium thermosaccharolyticum M18 was obtained. This strain could efficiently uptake microcrystalline cellulose, xylan, filter paper, and sodium carboxymethylcellulose for hydrogen production, as well as unpretreated corn stover , rice straw, and corn cob. While inoculated to the medium containing 5g/L microcrystalline cellulose or corn stover, the hydrogen production yield and the substrate degradation efficiency were 44.55mmol/L (243.7ml/g-microcrystalline cellulose), 8.45mmol/L (80.2ml/g-corn stover) and 81.9% , 47.2%, respectively. The cellulases characteristics analysis indicated that the cellulases produced by the strain M18 were inducible enzymes, which only be induced in the existence of cellulosic materials. The activity assays on different enzymes of respective component show that the distribution of produced cellulases is mainly outside the cell.
     By virtue of SEM, FTIR, XRD, 13C-NMR, GC-MS, and the detection of cellulase and hemicelllase activities, the cellulolytic characteristics of the strain M18 were systematically analyzed. It can be concluded that the process of induced enzyme production coupled with corn stover degradation. The strain M18 exhibited degradation superiority on cellulose and hemicellulose and the degradation of hemicellulose was priority than the degradation of cellulose. In the degradation process, the intramolecular hydrogen bonds of the cellulose molecule were ruptured and the areas of crystal and amorphous were both destroyed. Cellulose and hemicellulose were decomposed into small molecule substances under the effect of cellulases and hemicellulases, and then fermented into hydrogen. It also suggested that lignin is the main barrier to restrict bioconversion of corn stover.
     Due to the existence of lignin influenced the bioconversion of cellulose and hemicellulose, the sodium hydroxide pretreatment was used to delignify corn stover. After pretreatment, the cellulosic solid residues and alkali-soluable hemicellulose sugar were obtained. During hydrogen production from corn stover, the bioconversion of cellulose and hemicellulose in NaOH-pretreated corn stover to hydrogen by M18 and alkali-soluable hemicellulose sugar recovery by W16 could be integrated into a biorefinery scheme, thus the maximum bioconversion efficiency of corn stover was acchieved. Compared with unpretreated corn stover, the hydrogen yield increased 36.8%.
引文
1 D. H. Lee, D. J. Lee. Biofuel Economy and Hydrogen Competition. Energy Fuels , 2008, 22:177~181
    2 J. M. Bockris. The Origin of Ideas on a Hydrogen Economy and Its Solution to the Decay of the Environment. Int. J. Hydrogen Energy. 2002, 27: 731~740
    3 S. E. Oh, S. Van Ginkel and B. E. Logan. The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production. Environ. Sci. Technol. 2003, 37: 5186~5190
    4 J. Benemann. Hydrogen Biotechnology: Progress and Prospects. Nat. Biotechnol.1996, 14: 1101~1103.
    5 D. Das, V. T. Nejat. Hydrogen Production by Biological Processes: a Survey of Literature. Int. J. Hydrogen Energy. 2001, 26:13~28.
    6 J. Miyake, T. Mastsunaga and A. S. Pietro. Biohydrogen II: an Approach to Environmentally Acceptable Technology. Elsevier Science Ltd. 2001:3~32
    7 J. Miyake, M. Miyake and Y. Asada. Biotechnological Hydrogen Production Research for Efficient Light Energy Conversion. J. Biotechnol. 1999, 70:89~101
    8 N. Q. Ren, B. Z. Wang and J. C. Huang. Ethanol-type Fermentation from Carbohydrate in High Rate Acidogenic Reactor. Biotechnol. Bioeng. 1997,54(5): 428~433
    9任南琪.有机废水处理生物产氢原理与工程控制对策研究.哈尔滨建筑大学博士学位论文. 1993
    10林明.高效产氢发酵新菌种的产氢机理及生态学研究.哈尔滨工业大学博士学位论文. 2002
    11 N. Kumar, D. Das. Enhancement of Hydrogen Production by Enterobacter Cloacae IIT-BT 08. Process Biochem. 2000,35:589~593
    12 Y. K. Oh, E. H. Seol, J. R. Kim and S. Park. Fermentative Biohydrogen Production by a New Chemoheterotrophic Bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy. 2003, 28: 1353~1359
    13邢德峰.产氢一产乙醇细菌群落结构与功能研究.哈尔滨工业大学博士学位论文. 2006
    14 E. W. J. van Niel, P. A. M. Claassenb and A. J. M. Stamsa. Substrate and Product Inhibition of Hydrogen Production by the Extreme Thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 2003,81:255~262
    15 H. H. P. Fang, T. Zhang and H. Liu. Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. J. Environ. Manag. 2003, 69:149~156
    16 S. O-Thong, P. Prasertsan, N. Intrasungkha, S. Dhamwichukorn and N. K. Birkeland. Improvement of Biohydrogen Production and Treatment Efficiency on Palm Oil Mill Effluent with Nutrient Supplementation at Thermophilic Condition Using an Anaerobic Sequencing Batch Reactor. Enzyme Microbl. Technol., 2007,41:583~590
    17 H. H. P. Fang, T. Zhang and H. Liu. Effect of pH on Hydrogen Production from Glucose by a Mixed Culture. Bioresour. Technol. 2002,82: 87~93
    18 S. K. Khanal, W. H. Chen and L. Li. Biological Hydrogen Production: Effects of pH and Intermediate Products. Int. J. Hydrogen Energy. 2004,29:1123~ 1131
    19 C. Y. Lin, R. C. Chang. Hydrogen Production During the Anaerobic Acidogenic Conversion of Glucose. J. Chem. Technol. Biotechnol. 1999,74: 498~500
    20王勇.微生物最佳产氢发酵类型控制及高效产氢细菌研究.哈尔滨工业大学博士位论文. 2002
    21 M. Watanabe, H. Inomata. Catalytic Hydrogen Generation from Biomass (Glucose and Cellulose) with ZrO2 in Supercritical Water. Biomass and Bioenergy. 2002,22:405~410
    22 H. Yokoi, T. Ohkawara and J. Hirose. J Ferment. Bioeng. 1997,83:481~484
    23 J. Z. Li, N. Q. Ren, B. K. Li, Z. Qin and J. G. He. Anaerobic Biohydrogen Production from Monosaccharides by a Mixed Microbial Community Culture. Bioresour. Technol. 2008,99: 6528~6537
    24 D.F. Xing, N. Q. Ren, A. J. Wang, Q. B. Li, Y. J. Feng and F. Ma. Continuous Hydrogen Production of Auto-aggregative Ethanoligenens harbinense YUAN-3 under Non-sterile Condition. Int. J. Hydrogen Energy. 2008,33:1489~1495
    25 H. J. Yang, J. Q. Shen. Effect of Ferrous Iron Concentration on Anaerobic bio-hydrogen Production from Soluble Starch. Int. J. Hydrogen Energy. 2006,31:2137~2146
    26 S. D. Chen, K. S. Lee, Y. C. Lo, W. M. Chen, J. F. Wu, C. Y. Lin and J. S. Chang. Batch and Continuous Biohydrogen Production from Starch Hydrolysate by Clostridium Species. Int. J. Hydrogen Energy. 2008,33:1803~1812
    27 Y. Z. Tao, Y. Chen, Y. Q. Wu, Y. L. He and Z. H. Zhou. High hydrogen Yield from a Two-step Process of Dark-and Photo-fermentation of Sucrose. Int. J. Hydrogen Energy. 2007,32:200~206
    28 D. Evvyernie. Conversion of Chitinous Wastes to Hydrogen Gas by Clostridium Paraputrificum M-21. Biosci. Bioeng. 2001,91(4):339~343
    29 H. Yokoi, R. Maki, J. Hirose, Hayashi. Microbial Production of H2 from Starch Manufacturing Wastes. Biomass Bioenerg. 2002,22:389~395
    30卢怡,张无敌,宋洪川.稻草发酵产氢潜力的研究.能源工程. 2003,2:26~28
    31樊耀亭,侯红卫,张高生.一种由农作物秸秆及酒糟生产氢气的有效方法
    32 T. D. Brock, H. Freeze. Thermus aquaticus gen. n. and sp. n., a Non-sporulating Extreme Thermophile. J. Bactriol. 1969, 98: 289~297
    33曹井国,赵树欣,程丽娟,梁慧珍.高温菌及其在有机废液处理中的应用.工业水处理. 2006,26(1):9~12
    34 R. I. Mackie, M. P. Bryant. Anaerobic Digestion of Cattle Waste at Mesophilic and Thermophilic Temperatures. Appl. Microbiol. Biotechnol. 1995,43:346~350
    35 M. Talabardon, J. P. Schwitzguebel, P. Peringer. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Permeate. J. Biotechnol. 2000,76:83~92
    36 H. Q. Yu,. H. H. P. Fang. Thermophilic Acidification of Dairy Wastewater. Appl. Microbiol. Biotechnol. 2000,54:439~444
    37 J. Zabranska, J. Stepova, R. Wachtl, P. Jenicek and M. Dohanyos. The Activity of Anaerobic Biomass in Thermophilic and Mesophilic Digesters at Different Loading Rates. Water Sci. Technol. 2000,42:49~56
    38 P. N. Dugba, R. Zhang. Dairy Wastewater with Two-stage Anaerobic Sequencing Batch Reactor System-thermophilic Versus Mesophilic Operations. Bioresour. Technol. 1999,68:225~233
    39 D. Y. Cheong, C. L. Hansen. Feasibility of Hydrogen Production in Thermophilic Mixed Fermentation by Natural Anaerobes. Bioresour. Technol. 2007,98:2229~2239
    40 R. J. Lamed, J. H. Lobos, T. M. Su. Effect of Stirring and Hydrogen on Fermentation Products of Clostridium Thermocellum. Appl. Environ. Microbiol. 1988,54:1216~1220
    41 Y. Ueno, S. Otsuka, M. Morimoto. Continuous Production of Hydrogen from Industrial Wastewater by Anaerobic Microflora in Chemostat Culture. J. Ferment Bioeng. 1996,82:194~197
    42 Y. Ueno, S. Haruta, M. Ishii and Y. Igarashi. Microbial Community in Anaerobic Hydrogen-producing Microflora Enriched from Sludge Compost. Appl. Microbiol. Biotechnol. 2001,57:555~562
    43 Y. Ueno, S. Haruta, M. Ishii and Y. Igarashi. Characterization of a Microorganism Isolated from the Effluent of Hydrogen Fermentation by Microflora. J. Biosci. Bioeng. 2001b, 92:397~400
    44 J. W. Van Groenestijn, J. H. O. Hazewinkel, M. Nienoord and P. J. T. Bussmann. Energy Aspects of Biological Hydrogen Productionin High Rate Bioreactors Operated in the Thermophilic Temperature Range. Int. J. Hydrogen Energy. 2002, 27:1141~1147
    45 H. Yokoi, S. Mori and J. Hirose. H2 Production from Starch by a Mixed Culture of Clostridiium Butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 1998, 20:890~895
    46 V. V. Krivenko, R. M. Vadachloriya, N. A. Chermykh, L. L. Mityushina and E. N. Krasilnikova. Clostridium Uzonii sp. nov., an Anaerobic Thermophilic Glycolytic Bacterium Isolated from Hot Springs in the Kamchatka Peninsula. Mikrobiologia. 1990,59:1058~1066
    47 M. Seyfried, D. Lyon, F. A. Rainey and J. Wiegel. Caloramator Viterbensis sp. nov., a Novel Thermophilic, Glycerol-fermenting Bacterium Isolated from a Hot Spring in Italy. Int. J. Evol. Microbiol. 2002,52:1177~1184
    48 J. W. Van Groenestijn, J. H. O. Hazewinkel, M. Nienoord and P. J. T. Bussmann. Energy Aspects of Biological Hydrogen Productionin High Rate Bioreactors Operated in the Thermophilic Temperature Range. Int. J. Hydrogen Energy. 2002,27:1141~1147
    49 E. N. Kondratieva, E. V. Zacharova, V. I. Duda and V. V. Krivenko. Thermoanaerobium lactoethylicum spec. nov., a New Anaerobic Bacterium from a Hot Spring of Kamchatka. Arch. Microbiol. 1989,151:117~122
    50 T. Hoaki, M. Nishijima, M. Kato, K. Adachi, S. Mizobuchi, N. Hanzawa and T. Maruyama. Growth Requirements of Hyperthermophilic Sulfur Dependent Heterotrophic Archaea Isolated from a Shallow Submarine Geothermal System with Reference to their Essential Amino Acids. Appl. Environ. Microbiol. 1994,60: 2898~2904
    51 J. Wiegel and L. G. Ljungdahl. Thermoanaerobacter Ethanolicus gen. Sp. nov, a new, Extreme Thermophilic, Anaerobic Bacterium. Arch. Microbiol. 1981, 128: 343~348
    52 S. Y. Liu, F. A. Rainey, H. W. Morgan, F. Mayer and J. Wiegel. Thermoanaerobacterium aotearoense sp. nov, a slightly Acidophilic, Anaerobic Thermophile Isolated from Various Hot Springs in New Zealand, and Emendation of the Genus Thermoanaerobacterium. Int. J.Syst. Bacteriol. 1996,46:388~396
    53 T. de Vrije, G. G. de Haas, G. B. Tan, E. R. P. Keijsers and P. A. M. Claassen. Pretreatment of Miscanthus for Hydrogen Production by Thermotoga elfii. Int. J. Hydrgen Energy. 2002,27:1381~1390
    54 S. E. Childers, M. Vargas and K. M. Noll. Improved Methods for Cultivation ofthe Extremely Thermophilic Bacterium Thermotoga Neapolitana. Appl. Environ. Microbiol. 1992,58 :3949~3953
    55 S. A. Van Ooteghem, A. Jones, D. van der Lelie, B, Dong and D. Mahajan. H2 Production and Carbon Utilization by Thermotoga Neapolitana under Anaerobic and Microaerobic Growth Conditions. Biotechnological Lett. 2004,26:1223~1232
    56 M. Schr?der, M. Selig and P. Sch?nheit. Glucose Fermenatation to Acetate, CO2 and H2 in the Anaerobic Hyperthermophilic Eubacterium Thermotoga Maritima. Arch. Microbiol. 1994,161:460~470
    57 J. Blamey, M. Chiong, C. Lopez and E. Smith. Optimization of the Growth Condition of Extremely Thermophilic Microorganisms Thermococcus Celer and Pyrococcus woesei. J. Microbiologcial Methods. 1999,38:169~175
    58 T. Hoaki, M. Nishijima, M. Kato, K. Adachi, S. Mizobuchi, N. Hanzawa and T. Maruyama. Growth Requirements of Hyperthermophilic Sulfur Dependent Heterotrophic Archaea Isolated from a Shallow Submarine Geothermal System with Reference to their Essential Amino Acids. Appl. Environ. Microbiol. 1994,60: 2898~2904
    59 O. Johann, R. B. B. Teinar. Phylogenetic and Pysiological studies of Four Hydrogen-producing Thermoanareobes from Icelandic Geothermal areas. Icelandic Agri. Sci. 2007, 20: 93~105
    60李日强.纤维素类废弃物的综合利用.中国环境科学. 2002,22(1):24~27
    61 W. Madison. Wood Handbook-Wood as an Engineering Material. U.S. Department of agriculture, Forest Service, Forest Products Laboratory. 1999,1~463
    62 H. Zhao, J. H. Kwak and Z. C. Zhang. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis. Carbohydrate Polymers. 2007,68(2):235~241
    63 J. Pérez, J. Muňoz-Dorado, T. Rubia. Biodegradation and Biological Treatments of cellulose, Hemicellulose and Lignin: an Overview. Int. Microbiol. 2002,5:53~63
    64 T. Goswami, C. N. Saikia, R. K. Baruah. Characterization of Pulp Obtained from Populus Deltoides Plants of Different Ages using IR, XRD and SEM. Bioresour.Technol.1996,57(2):209~214
    65 Y. Sun, J. Cheng. Hydrolysis of Lignocellulosic Materials for Ethanol Production: a Review. Bioresour. Technol. 2002,83(1):1~11
    66 M. L. Chong, S. Vikineswary, S. Yoshihito and A. H. Mohd. Biohydrogen Production from Biomass and Industrial Wastes by Dark Fermentation. Int. J.Hydrogen Energy. 2009,34:3277~3287
    67 G. Wallace, A. Chesson, J. A. Lomax. Lignin-carbohydrate Complexes in Graminaceous Cell Walls in Relation to Digestibility. Animal Feed Sci.Technol.1991,32(1-3):193~199
    68张雪松.生物质秸秆利用化学-活性污泥法制取氢气的初步研究.南京工业大学.硕士学位论文. 2005
    69 J. G. Zeikus, P. J. Weimer. Fermentation of Cellulose and Cellobiose by Clostridium Thermocellum in the Absence of Methanobacterium Thermoautotrophicum. Appl. Environ. Microbiol. 1977,33:289~297
    70 B. E. Wood, L. O. Ingram. Ethanol Production from Cellobiose, Amorphous Cellulose,and Crystalline Cellulose by Recombinant Klebsiella Oxytoca Containing Chromosomally Integrated Zymononas Mobilis Genes for Ethanol Production and Plasmids Expressing Thermostable Cellulase Genes from Clostridium thermocellum. Appl. Envir. Microbiol. 1992,58:2103~2110
    71 Z. Mladenovska, L. M. Mathrani and B. K. Ahring. Isolation and Characterization of Caldocellulosiruptor lactoaceticus sp. nov., an extremely Thermophilic, Cellulolytic, Anaerobic Bacterium. Arch. Microbiol.1995,163:223~230
    72 C. Y. Huang, B. K. Patel, R. A. Mah and L. Baresi. Caldocellulosiruptor owensensis sp. nov., an Anaerobic, Extremely thermophilic, Xylanolytic Bacterium. Int. J.Syst.Bacteriol,1998,48:91~97
    73张毅,赵海,刘克鑫.嗜热厌氧纤维素降解产乙醇细菌的选育及发酵因子研究.四川教育学院学报. 1998, 14
    74韩如,陈美慈,闵航,赵宇华,马晓航.嗜热厌氧细菌Clostridium sp.EVA4菌株直接转化纤维素产乙醇的研究. 1999,5:170~174
    75吕福英,阂航,陈美慈,刘颖.一个高温厌氧直接转化纤维素为乙醇的高纯富集物.浙江大学学报. 2000,26(1):56~60
    76刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展.现代化工. 2005:19~24
    77 J. B. Duff Sheldon, D. Murray William. Bioconversion of Forest Products Industry Waste Cellulosics to Fuel Ethanol: a review. Bioresour. Technol. 1996,55(1): 1~33
    78 S. Margareta von, GuidZacchi. A Techno-economical Comparison of three Processes for the Production of Ethanol from Pine. Bioresour. Technol. 1995,51(1): 43~52
    79刘远洋,申德超.关于纤维素原料生产燃料酒精预处理工艺的一些探讨.酿酒. 2005,(3):41~42
    80 V. S.Chang, M. Nagwani, C.H. Kim, M. T. Holtzapple. Oxidative Lime Pretreatment of High-lignin Biomass. Appl. Biochem.Biotechnol. 2001, 94: 1~28
    81 D. Rohit, J. Huang, P. C. Maness, M. Ali, C. Stefan and C. Esteban. Hydrogen Production from the Fermentation of Corn Stover Biomass Pretreated with a Steam-explosion Process. Int. J. Hydrogen Energy. 2007,32:932~ 939
    82 Y. T. Fan, Y. H. Zhang, S. F. Zhang, H. W. Hou and B. Z .Ren. Efficient Conversion of Wheat Straw Wastes into Biohydrogen Gas by Cow Dung Compost. Bioresour. Technol. 2006a,97: 500~505
    83 Y. T. Fan, G. S. Zhang, X. Y. Guo, Y. Xing, M. H. Fan. Biohydrogen-production from Beer Lees Biomass by Cow Dung Compost. Biomass Bioenergy. 2006b, 30: 493~496
    84 T. de Vrije, G. G. de, G. B. Haas Tan, E. R. P. Keijsers and P.A.M. Claassen. Pretreatment of Miscanthus for Hydrogen Production by Thermotoga eliff. Int. J. Hydrogen Energy. 2002,27:1381~1390
    85周俊虎,戚峰,程军.秸秆发酵产氢的碱性预处理方法研究.太阳能学报, 2008,38(3):229~333
    86 D. Das. Advances in Biohydrogen Production Processes: An Approach Towards Commercialization. Int. J. hydrogen energy. 2009,34:7349~ 7357
    87 D. F. Xing, N. Q. Ren, A. J. Wang, Q. B. Li, Y. J. Feng and F. Ma. Continuous Hydrogen Production of Auto-aggregative Ethanoligenens Harbinense YUAN-3 under Non-sterile Condition. Int. J. Hydrogen Energy. 2008,33:1489~1495
    88路鹏,江滔,李国学.木质纤维素乙醇发酵研究中的关键点及解决方案.农业工程学报, 2006,26(6):237~242
    89 Y.C. Lo, W.M. Chen, J.S. Chang. Dark H2 Fermentation from Sucrose and Xylose using H2-producing Indigenous Bacteria: Feasibility and Kinetic Studies. Water Res, 2008, 42:827~842
    90 Z. Kadar, T. D. Vrije, G. E. van Noorden, M. A. W. Budde, Z. Szengyel, K. Reczey and P. A. M. Claassen. Yields from Glucose, Xylose, and Paper Sludge Hydrolysate during Hydrogen Production by the Extreme Thermophile Caldicellulosiruptor Saccharolyticus. Appl. Biochem. Biotechnol. 2004,(113-116):497-508
    91 R.F.H. Dekker. Kinetic, inhibition, and stability properties of a commercialβ-D-glucosidase (cellobiase) preparation from Aspergillus niger and its suitability in the hydrolysis of lignocellulose. Biotechnol. Bioeng. 1986,28:1438~1442
    92 J. Hong, M.R. Ladisch, C.S. Cong, P.C. Wankat, G.T. Tsao. Combined product and substrate inhibition equation for cellobiase. Biotechnol. Bioeng. 1981, 24:2779~2788
    93 F. Alfani, L. Cantarella, A. Gallifuoco. Membrane reactors for the investigation of product inhibition on enzyme activity. J. Membr. Sci. 1990, 52:339–350.
    94 Y.C. Lo, G.D. Saratale, W.M. Chen. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production, Enzyme Microb. Technol, 2009, 44: 417~425
    95 Y.C. Lo, M.D. Bai, W.M. Chen. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy,Bioresour. Technol. 2009, 99: 8299~8303
    96 Y.L. Qi, J. Du, H.J. Xu, M.N.Long. Biohydrogen Production from Rice Straw by Simultaneous Saccharification and Fermentation Using Klebsiella oxytoca HP1. J Xiamen University (Natural Science), 2007, 46(5):707~710
    97 A. Geng, Y.L. He, C.L. Qian. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour. Technol. 2010, 101:4029~4033.
    98 L.Magnusson, R. Islam, R. Sparling. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrogen Energy, 2008, 33:5398~5403
    99 D.B. Levin, R. Islam, N. Cicek. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy. 2006, 31:1496~1503
    100 Y. Liu, P. Yu, X. Song. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int. J. Hydrogen Energy. 2008, 33:2927~2933
    101 R. E. Hungate. Methods in Microbiology. New York: Academic Press Inc, 1969
    102东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社. 2001,349-418
    103 N. Saitou, M. Nei. The Neighbor-joining Method: a New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987,4:406~425
    104 S. Kumar, K. Tamura and M. Nei. MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief Bioinform. 2004,5:150~163
    105 J. Felsenstein. Confidence Limits on Phylogenies: an Approach Using the Bootstrap. Evol. 1985,39:783~791
    106 M. M. Bradford. A Rapid and Sensitive Method for the Quantitation ofMicrogram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal Biochem. 1976,72:248~54
    107 H. K. Goering, P. J. Van Soest. Forage Fiber Analysis (apparatus, reagents, procedures, and some applications). Agricultural handbook No. 379. Washington, DC: Agricultural Research Service, United States Department of Agriculture 1970:1~20.
    108 S. Kim, M. T. Holtzapple. Effect of Structures on Enzyme Digestibility of Corn Stover. Bioresour. Technol. 2006,97:583~591
    109 N. K. Fry, S. Warwick, N. A. Saunders. The use of 16Sribosomal RNA Analyses to Investigate the Phylogeny of the Family Legiomellaceae. J. Gen. Microbiol. 1991,137:1215~1222
    110 R. Devereux, S. H. He and C. L. Doyle. Diversity and Origin of Desulfovibrio species: Phylogenetic Definition of a Family. J. Bacteriol. 1990,172:3609~3619
    111 H. H. P. Fang, T. Zhang and H. Liu. Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. J. Environ. Manag. 2003, 69:149~156
    112 H. S. Shin, J. H. Youn and S. H. Kim. Hydrogen Production from Food Waste in Anaerobic Mesophilic and Thermophilic Acidogenesis. Int. J. Hydrogen Energy. 2004,29: 1355~1363
    113 S. O-Thong, P. Prasertsan, D. Karakashev, I. Angelidaki. Thermophilic Fermentative Hydrogen Production by the newly Isolated Thermoanaerobacterium Thermosaccharolyticum PSU-2. Int. J. Hydrogen Energy. 2008,33:1204~1214
    114 Y. Ahn, E. J. Park, Y. K. Oh, S. Park, G. Webster and A. J. Weightman. Biofilm microbial Community of a Thermophilic Trickling Biofilter used for Continuous Biohydrogen Production. FEMS Microbiol Lett. 2005,249:31~38
    115 H. S. Shin, J. H. Youn. Conversion of Foodwaste into Hydrogen by Thermophilic acidogenesis. Biodegradation. 2005,16:33~44
    116 J. Stülke and W. Hillen. Carbon Catabolite Repression in Bacteria. Curr. Opin. Microbiol. 1999,2:195~201
    117 H. P. Goorissen and A. J. M. Stams. Biological Hydrogen Production by Moderately Thermophilic anaerobic bacteria.
    118 G. M. Cook, P. H. Janssen and H. W. Morgan. Simultaneous Uptake and Utilisation of Glucose and Xylose by Clostridium thermohydrosulfuricum. FEMS Microbiol. Lett. 1993,109:55~62
    119 G. M. Cook, P. H. Janssen, J. B. Russell and H. W. Morgan. Dual Mechanisms of Xylose Uptake in the Thermophilic Bacterium Thermoanaerobacterthermohydrosulfuricus. FEMS Microbiol. Lett. 1994,116:257~262
    120 C. Y. Lin and C. H. Cheng. Fermentative Hydrogen Production from Xylose using Anaerobic Mixed Microflora. Int. J. Hydrogen Energy. 2006,31:832~840
    121 S. Y. Wu, C. Y. Lin, K. S. Lee, C. H. Hung, J. S. Chang, P. J. Lin and F. Y. Chang. Dark Fermentative Hydrogen Production from Xylose in Different Bioreactors Using Sewage Sludge Microflora. Energy Fuels. 2008, 22:113~119
    122 F. Taguchi, N. Mizukami, T. Saito-Taki and K. Hasegawa. Hydrogen Production from Continuous Fermentation of Xylose during Growth of Clostridium sp. strain No. 2. Can. J. Microbiol. 1995,41: 536~540
    123 Y. Zhu, S. T. Yang. Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium tyrobutyricum. J. Biotechnol. 2004,110:143~157
    124 H. Yokoyama, N. Moriya, H. Ohmori, M. Waki, A. Ogino and Y. Tanaka. Community Analysis of Hydrogen-producing Extreme Thermophilic Anaerobic Microflora Enriched from Cow Manure with Five Substrates. Appl. Microbiol. Biotechnol. 2007,77(1): 213~222
    125 C.Y. Lin, C. C. Wu, C. H. Hung. Temperature Effects on Fermentative Hydrogen Production from Xylose using Mixed Anaerobic Cultures. Int. J. Hydrogen Energy. 2008,33: 43~50
    126 B. Calli, K. Schoenmaekers, K. Vanbroekhoven, L. Diels. Dark Fermentative H2 Production from Xylose and Lactose-Effects of on-line pH Control. Int. J. Hydrogen Energy. 2008,33:522~530
    127 E Palmqvist, B.Hahn-H?agerdal. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresource Technol. 2000, 74, 17~24
    128 T. Modig , G. Liden, T. M.J aherzadeh. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002, 363:769~776
    129 S.I.Mussatto, I.C.Roberto. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour. Technol. 2004, 93: 1~10
    130 B. E. Logan, S. E. Oh, I. S. Kim, G. S. Van. Biological H2 Production Measured in Batch Anaerobic Respirometers. Environ. Sci. Technol. 2002,36: 2530~2535
    131 J. J. Lay. Biohydrogen Generation by Mesophilic Anaerobic Fermentation of Microcrystalline Cellulose. Biotechnol. Bioeng. 2001,74:280~287
    132 H. Liu, T. Zhang, H. H. P. Fang. Thermophilic H2 Production from a Cellulose-containing Wastewater. Biotechnol. Letters. 2003,25: 365~369
    133 Y. E. Lee, M. K. Jain, C. Y. Lee, S. E. Lowe and J. G. Zeikus. Taxonomic Distinction of Saccharolytic Thermophilic Anaerobes: Description ofThermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; Reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and Rransfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 1993, 43:41~51 134 I. V. Kublanov, M. I. Prokofeva, N. A Kostrikina, T. V. Kolganova, T. P. Tourova, J. Wiegel and E. A. Bonch-osmolovskaya. Thermoanaerobacterium aciditolerans sp. nov., a moderate thermoacidophile from a Kamchatka Hot Spring. Int. J. Syst. Evol. Microbiol. 2007, 57:260~264
    135 S. Y. Liu, F. A. Rainey, H. W. Morgan, F. Mayer and J. Wiegel. Thermoanaerobacterium aotearoense sp. nov., a slightly Acidophilic, Anaerobic Thermophile Isolated from Various Hot Springs in New Zealand, and Emendation of the genus Thermoanaerobacterium. Int. J. Syst. Bacteriol. 1996, 46: 388~396
    136 M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-garayzabal, P. Garcia, J. Cai, H. Hippe and J. A. E. Farrow. The Phylogeny of the Genus Clostridium: Proposal of five new Genera and Eleven new Species Combinations. Int. J. Syst. Bacteriol.1994, 44: 812~826
    137 I. K. O. Cann, P. G. Stroot, K. R. Mackie, B. A. White and R. I. Mackie. Characterization of two Novel Saccharolytic, Anaerobic Thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int. J. Syst. Evol. Microbiol. 2001, 51: 293~302
    138 H. Liu, T. Zhang and H. P. Herbert. Thermophilic H2 Production from a Cellulose-containing Wastewater. Biotechnology Letters. 2003,25: 365~369
    139 F. A. Rainey, A. M. Donnison, P. N. Jansscn. Description of Caldicellulosiruptor Saccharolyticus gen .nov. , sp. nov: Anobligately anaerobic, extremely Thermophilic, Cellulolytic Bacterium. FEMS Microbiol lett. 1994, 120:263~266
    140 M. Taya, H. Sota, H. Honda, S. Ii jima and T. Kobayashi. Diversity of Cellulases Produced by a Thermophilic Anaerobe Strain NA10. J. Ferment. Bioeng.1989, 68:183~187
    141 S. Bredholt, J. Sonne-Hansen, P. Nielsen, I. Mathrani, B. K. Ahring. Caldice11u1oszrup for Krist Janssonli sp. nov. , a Cellulolytic, Extremely Thermophilic, Anaerobic Bacterium. Int.J. Syst. Bacteriol.1999,49:991~996
    142 Z. Mladenovska, I. M. Mathrani, B. K. Ahring. Isolation and Characterization ofCaldicellulosiruptor Lactoaceticus sp. nov. , an Extremely Thermophilic, Cellulolytic, Anaerobic Bacterium. Arch. Microbio1. 1995,163:223~230
    143 C. Y. Huang, B. K. Patel, R. A. Mah, L. Baresi. Caldicellu1osirup forowensensis sp. nov.,an anaerobic, extremely thermophilic, xylanolytic bacterium. Int. J. Syst. Bacteriol. 1998,48: 91~97
    144韩如畅,阂航,陈美慈,赵宇华. Isolation, Indetification and Phylogenetic Analysis of a Thermophilic Cellulolytic Anaerobic Bacterium. Acta Microbiology sinica (微生物学报). 2002, 42 (2):138~144
    145 Y. F. Xue, X. Yi, H. Ying, Y. H. Ma, P. J. Zhou. Thermoanae.robacter tengcongensi sp. nov., a Novel Anaerobic, Saccharolytic, Thermophilic Bacterium Isolated from a Hot Spring in Tengcong, China. Int. J. Syst. 2001,51:1335~1341
    146 M. L. Rabinovieh, M. S. Melnik and A. V. Bolobova. Microbial Cellulases. Appl.Biochem. Microbiol. 2002,38:355~373
    147 Z. Ren, T.E. Ward, B.E. Logan, J.M. Regan. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J. Appl. Microbiol. 2007; 103(6): 2258~2266
    148 U. Ramachandran, N. Wrana, N. Cicek, R. Sparling and D. B. Levina. Hydrogen Production and End-product Synthesis Patterns by Clostridium termitidis strain CT1112 in Batch Fermentation Cultures with Cellobiose or a-cellulose. Int. J. Hydrogen Energy. 2008,33:7006~7012
    149 N. Q. Ren, A. J. Wang, L. F. Gao, L. Xin and D. J. Lee. Bioaugmented Hydrogen Production from Carboxymethyl Cellulose and Partially Delignified Corn Stalks using Isolated Cultures. Int. J. Hydrogen Energy. 2008,33:5250~5255
    150 A. J. Wang, N. Q. Ren, Y. J. Shi, D. J. Lee. Bioaugmented Hydrogen Production from Microcrystalline Cellulose using Co-culture Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int. J. Hydrogen Energy. 2008,33:912~917
    151 D. M. Li, H. Z. Chen. Biological Hydrogen Production from Steam-exploded Straw by Simultaneous Saccharification and Fermentation. Int. J. Hydrogen Energy. 2007
    152 I. Ntaikou, H. N. Gavalaa, M. Kornaros and G. Lyberatosa. Hydrogen Production from Sugars and Sweet Sorghum Biomass using Ruminococcus albus. Int. J. Hydrogen Energy. 2008,33:1153~1163
    153 J. J. Lay. Biohydrogen Generation by Mesophilic Anaerobic Fermentation of Microcrystalline Cellulose. Biotechnol. Bioeng. 2001,74:280~287
    154 L. Magnusson, R. Islam, R. Sparling, D. Levin and N. Cicek. Direct Hydrogen Production from Cellulosic Waste Materials with a Single-step Dark Fermentation Process. Int. J. Hydrogen Energy. 2008,33: 5398~5403
    155 G. Ivanova, G. Rákhely, K.L. Kovács. Thermophilic Biohydrogen Production from Energy Plants by Caldicellulosiruptor Saccharolyticus and Comparison with Related Studies. Int. J. Hydrogen Energy. 2009, 34: 3659-3670
    156 Y. Ueno, T. Kawai, S. Sato, S. Otsuka and M. Morimoto. Biological Production of Hydrogen from Cellulose by Natural Anaerobic Microflora. J. Fermentation Bioeng. 1995,79: 395~397
    157 N. M. Stark, L. M. Matuana. Characterization of Weathered Wood-plastic Composite Surfaces using FTIR Spectroscopy, Contact Angle , and XPS. Polymer Degradation and Stability. 2007,92(10):1883~1890
    158 K. K. Pandey, A. J. Pitman. FTIR Studies of the Changes in Wood Chemistry Following Decay by Brown-rot and White-rot fungi. Int. Biodeterioration Biodegradation. 2003,52(3):151~160
    159 X. F. Sun, R. C. Sun, Y. Q. Su and J. X. Sun. Comparative Study of Crude and Purified Cellulose from Wheat Straw. J. Agric. Food Chem. 2004, 52:839~847
    160 M. Bardet, M. F. Foray, Q. K. Tran. High Resolution Solid State CPMAS NMR Study of Archaeological Woods. Anal Chem. 2002, 74:4386
    161 S. T. Chang, H. T. Chang. Comparisons of the Photostability of Esterified Wood. Polym. Degrad Stabil. 2001,71:261
    162 G. Gilardi, L. Abis, A. E. G. Cass. Carbon 13CP/MAS solidstate NMR and FTIR Spectroscopy of Wood Cell Wall Biodegradation. Enzyme Microb. Tech. 1995,17:268
    163 G. D. Love, C. E. Snape and M. C. Jarvis. Comparison of Leaf and Stem Cell Wall Components in Barley Straw by solidstate 13C NMR. Phytochemistry. 1998, 49:1191
    164刘传富,孙润仓,叶君.固体核磁CP/ MAS 13C-NMR在植物纤维原料研究中的应用.中国造纸学报. 2005, 20 (2):184~188
    165 G. Almendros, A. T. Martlnez, A. E. Gonzdlez, F. J. Gonzdlez-Vila, R. Frund and H. D. LUdemann. CPMAS 13C-NMR Study of Lignin Preparations from Wheat Straw Transformed by Five Lignocellulose-degrading fungi. J. Agric. Food Chem. 1992,40:1297~1302
    166 G. R. Gamble, A. Sethuraman, D. E Akin and K. E. L. Eriksson. Biodegradation of Lignocellulose in Bermuda Grass by White Rot Fungi Analyzed by Solid-state
    13C Nuclear Magnetic Resonance. Appl. Environ. Microbiol. 1994,60:3138~3144
    167 J. B. Reeves, W. F Schmidt. Solid-state 13C NMR Analysis of Forage andByproduct-derived Fiber and Lignin Residues. Resolution of some Discrepancies among Chemical, Infrared, and Pyrolysis-gas Chromatography-mass Spectroscopic Analyses. J. Agric. Food Chem. 1994,42:1462~1468
    168 D. Robert, C. L. Chen. Biodegradation of Lignin in Spruce Wood by Phanerochaete Chrysosporium: Quantitative Analysis of Degraded Spruce Lignins by 13C NMR Spectroscopy. Holzforschung. 1989,43: 323~332
    169 M. Dabo, C. M. Taliaferro and S. W. Coleman. Anatomical and Histological Factors Affecting the Ruminal Degradation of Stem Tissues in Bothriochloa species. Animal Feed Scinece Technology. 1997,67(4):299~309
    170 P. A. M. Claassen, J. B. Van Lier and A. M. Lopez Contreras. Utilization of Biomass for the Supply of Energy Carriers. Appl. Microbiol. Biotechnol. 1999,52(6):741~755
    171 S. I. Mussatto. Effect of Hemicelluiose and Lignin on Enzymatic Hydrolysis of Cellulose from Brewer’s Spent Grain. Enzyme Microb. Technol. 2008, 43(2): 124~129
    172 G. Lissens, A. B. Thomsen, L. D. Baere. Thermal Wet Oxidation Improves Anaerobic Biodegradability of Raw and Digested Biowaste. Environ. Sci. Technol. 2004,38(12):3418~3424
    173 N.Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2005, 96: 673~686
    174 V.S.Chang, M.T. Holtzapple. Fundamental Factors Affecting Biomass Enzymatic Reactivity. Appl. Biochem. Biotechnol. 2000, 84: 5~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700