用户名: 密码: 验证码:
黑腹果蝇对甲醇的解毒代谢及行为反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在生长发育和腐烂过程中均产生大量甲醇。植食性的昆虫势必会受到甲醇的潜在毒害。因此,这些昆虫在进化过程中应该建立了对甲醇的解毒代谢机制及行为逃避机制。然而迄今为止,在昆虫中仅报道了亚洲玉米螟对甲醇的解毒代谢。
     本论文中,我们初步探讨了黑腹果蝇(Drosophila melanogaster)对甲醇的解毒代谢途径、以及包括醉酒行为、雄蝇同性求偶行为和产卵选择行为在内的多种行为反应机制。研究结果可为昆虫进化的研究和害虫治理措施的开发提供借鉴。
     1.细胞色素P450单加氧酶参与幼虫对甲醇的解毒代谢
     以黑腹果蝇2龄幼虫为试虫,分别测定了细胞色素P450单加氧酶(CYP)、过氧化氢酶、醇脱氢酶(ADHs)、谷胱甘肽-S-转移酶和酯酶的抑制剂增效醚(PBO)、3-氨基-1,2,4-三氮唑(3-AT)、4-甲基吡唑(4-MP)、顺丁烯二酸二乙酯(DEM)和磷酸三苯酯(TPP)对甲醇和甲醛的增效作用。发现TPP、DEM、3-AT和4-MP与甲醇的联合作用为1.02、0.98、0.98和1.00,与甲醛的联合作用为1.15、1.05、1.08和1.14。表明甲醇或甲醛与这4种酶抑制剂是相加作用。甲醇或甲醛与PBO混用时的联合作用分别为0.28和0.18,显著低于1,表明甲醇或甲醛与PBO之间是增效作用,CYP参与了黑腹果蝇幼虫对甲醇的解毒代谢。2龄幼虫取食含有浓度为22.6、27.9和34.5mg/g甲醇的饲料后,多功能氧化酶系的活力分别提高了3.0、3.9和2.7倍,甲醇处理也显著上调了cyp304a1、cyp9f2、cyp28a5、cyp4d2和cyp4e2基因的表达水平。表明这些基因编码的CYP可能参与了幼虫对甲醇的解毒代谢。
     2.黑腹果蝇成虫对甲醇的解毒代谢
     分别测定了甲醇和5种酶抑制剂对果蝇雌虫和雄虫的联合作用CI。发现PBO和3-AT对甲醇增效作用十分明显;TPP和4-MP对甲醇24h之内为相加作用,48h和72h后表现出显著的增效作用;而DEM与甲醇混合使用是相加作用。甲醇处理诱导了成虫多功能氧化酶系的活力,上调了数个cyp基因mRNA表达。测定了几个黑腹果蝇突变品系对甲醇的耐受能力,结果表明,ADH、α-Est7编码基因被突变后,黑腹果蝇对甲醇耐受性下降;细胞色素P450单加氧酶基因cyp4e2、cyp9f2或cyp318a1分别被突变后,并不显著影响黑腹果蝇成虫对甲醇的敏感性。醛脱氢酶/辛醇脱氢酶突变品系接触甲醇最初24h之内,对甲醇的耐受能力明显增加。随后则与CS野生品系的耐受能力相似。以上结果表明,雌蝇和雄蝇对甲醇的解毒代谢过程相似,细胞色素P450单加氧酶和过氧化氢酶在甲醇的解毒过程中发挥了重要的作用;羧酸酯酶和羟脱氢酶需经甲醇长时间持续诱导才发挥其最大的解毒能力;谷胱甘肽S-转移酶不参与甲醇的解毒代谢。醛脱氢酶/辛醇脱氢酶降解甲醇的活性仍需进一步研究。
     3.甲醇多代筛选对黑腹果蝇的影响
     黑腹果蝇CS品系累代饲养于含有浓度为25mg/g甲醇的饲料上。经40代长期筛选,果蝇对甲醇的LC50值从27.93增加至(?)40.71mg/g。现实遗传力(h2)值在筛选的前2代、3-10代和11-40代分别为0.4956、0.0315和0.0087。黑腹果蝇从卵到成虫的发育历期随筛选代数的增加而延长,筛选0、2、10和40代后,在无甲醇饲料上的发育历期分别为8.33d、9.78d、12.01d和12.51d;在有甲醇饲料上的发育历期分别为12.59d、14.08d、17.37d和18.10d。其中胚胎和幼虫发育期的延长尤为显著,而蛹的发育历期没有显著变化。长期的甲醇筛选导致果蝇幼虫和成虫中数个编码细胞色素P450单加氧酶和酯酶的基因表达量明显升高。同时,这两种酶的活力也显著上升。以上结果表明,甲醇耐受性的提高具有一定的适合度代价。
     4.甲醇对黑腹果蝇醉酒行为的研究
     当缓慢接触气体甲醇时,果蝇表现出一系列的行为变化:放入的最初几分钟,黑腹果蝇过度兴奋,运动显著增加;接着出现定向困难,协调能力下降,行动迟缓,失去平衡能力,表现出人类相似的醉酒状态;并最终背部朝天,进入完全静止的醉倒状态。每天1次接受甲醇熏蒸,可诱导雄蝇对甲醇的醉倒抗性,但不诱导雌蝇的抗性。酶抑制剂(?)TPP、DEM、3-AT、4-MP和PB0预处理后,可缩短雄蝇和雌蝇对甲醇的平均醉倒时间,但对平均醉倒时间随筛选天数的变化趋势无影响。可见,代谢酶本身不是醉酒抗性形成的机制,而仅仅微调抗性的幅度。取食含酶抑制剂的黑腹果蝇雌蝇和雄蝇若每天接受甲醇熏蒸处理,死亡率显著提高。雄蝇死亡率从空白对照和取食含丙酮饲料的约2%提高到10%以上,雌蝇死亡率也从对照的约5%提高到10%以上。据此我们推论,甲醇代谢酶也可能存在于神经系统周边组织甚至神经系统内,移除甲醇,从而降低甲醇的神经毒性。
     5.醇类诱导的雄蝇同性求偶行为
     黑腹果蝇雄虫经历每天1次的甲醇或乙醇重复诱导后,解除了性抑制,表现出积极的同性求偶行为。选择了果蝇神经营养信号途径相关的8个基因的果蝇突变品系。发现Shc、drk、csw、Pi3k21B和RhoGDI编码基因被突变后,即使在甲醇的诱导下,突变品系果蝇也不表现出同性求偶行为;然而Rhol编码基因被突变后,果蝇表现出了较高的同性求偶行为。可见,Shc、drk、csw、Pi3k21B、Rhol及RhoGDI介导了甲醇诱导的黑腹果蝇雄虫同性求偶行为。据此我们认为,每天1次的甲醇重复诱导通过神经营养信号途径重塑了神经回路,从而导致了雄蝇行为的改变。
     6.黑腹果蝇对甲醇的趋性
     水果发酵过程中,碳水化合物分解产生醇类挥发物,而蛋白质分解产生一系列挥发性的含氮化合物。利用Y型嗅觉仪分别测试了黑腹果蝇雌虫和雄虫在饥饿/饱食状态、交配/不交配状态下对甲醇、乙醇和氨的嗅觉行为反应。结果显示,交配和饥饿并不显著改变果蝇对甲醇和乙醇的趋性,而明显增加了果蝇对碳酸氢氨的选择偏好性。交配和饥饿也促进了黑腹果蝇成蝇的扩散行为。双向选择性产卵实验结果表明,野生CS品系雌虫避免在含有甲醇和乙醇的饲料上的产卵,而偏爱在含有碳酸氢氨和硫化钾的饲料上产卵。基因突变品系实验结果显示,Or83b和Nc73EF编码基因被突变的雌虫不表现产卵偏好性,在醇类和胺类物质上的产卵量没有显著差异。而lush基因被突变后,产卵果蝇失去了对醇类的忌避反应,但保留了对氨类和硫化氢的偏好;CaM编码基因突变后,果蝇失去了对甲醇的忌避反应,而对乙醇却表现出了选择偏好。这些结果暗示,交配后的雌雄蝇增强了扩散行为,通过醇类和含氮挥发物搜寻食物和产卵基质,到达后避开含醇食物源而选择含氮较高的食物源。嗅觉相关基因参与了果蝇对产卵基质的选择。
Plants produce a large amount of methanol during growth and development, and insect feeding further stimulated the release of methanol. Moreover, fermenting plant tissues also generate a great quantity of methanol. Therefore, the insects feeding on these plant tissues may be intoxicated by methanol. These insect species should have evolved some detoxification pathways and behavioral avoidance responses. Up to now, however, only one publication has been documented the detoxification to methanol in an insect species, the Asian corn borer, Ostrinia furnacalis.
     In the present study, we investigated the detoxification of and behavioral reseponses to methanol in Drosophila melanogaster. Our findings will provide a useful example to understand insect-environment co-evolution, and to develop the potential pest management strategy.
     1. The involvement of CYPs in methanol detoxification in larvae
     To investigate the detoxification pathways in Drosophila larvae, we tested the combined toxicity effects of dietary methanol (formaldehyde) and five enzyme inhibitors, namely piperonyl butoxide (PBO),3-amino-1,2,4-triazole (3-AT),4-methylpyrazole (4-MP), diethylmeleate (DEM) and triphenyl phosphate (TPP), an inhibitor of cytochrome P450monooxygenases (CYPs), catalases, alcohol dehydrogenases (ADHs), glutathione S-transferases and esterases, respectively. For the2nd-instar larvae, the combination indices of TPP, DEM,3-AT and4-MP plus methanol were1.02,0.98,0.98and1.00, of them plus formaldehyde were1.15,1.05,1.08and1.14respectively. These mixtures were indicated to be additive effects at the ratios tested. In contrast, the combination indices of PBO plus methanol and PBO plus formaldehyde were0.28and0.18respectively, significantly below1, suggesting synergistism. These results demonstrated that CYPs were involved in methanol metabolism. Moreover, methanol exposure dramatically increased CYP activity. The ratios of the CYP activities in treated larvae to that of control reached up to3.0-,3.9-and2.7-fold, at methanol concentrations of22.6,27.9and34.5mg/g diet, respectively. In addition, methanol exposure greatly up-regulated cyp304a1, cyp9f2, cyp28a5, cyp4d2and cyp4e2genes. The proteins encoded by these genes were suggested as the candidate enzymes for methanol metabolism in D. melanogaster larvae.
     2. The detoxification of methanol in adult
     The combination indices (CI) of PBO, TPP,3-AT,4-MP and DEM plus methanol were tested in female and male respectively. When methanol mixed with PBO or3-AT, it showed significantly synergistism. When methanol mixed with TPP or4-MP, it showed additive effects after the adults were exposed for24h, and then exhibited significantly synergistism after48h and72h of exposure. In contrast, when methanol mixed with DEM, it showed additive effects. Moreover, methanol exposure dramatically increased CYP activity and up-regulated mRNA expression levels of several cyp genes. In addition, the knockout mutation in gene encoding ADH or a-Est7resulted in decreased methanol tolerance, in contrast to the knockout mutation in gene encoding cyp4e2, cyp9f2or cyp318a1. Knocked out the gene encoding aldehyde dehydrogenase/octanol dehydrogenase led to increased methanol tolerance in the mutant after24h of methanol exposure, and then the tolerant level declined as the exposure period delayed. The results suggest that CYPs, catalases, ADHs and esterases play important roles in methanol detoxification in adults. Glutathione S-transferases were not responsible for methanol elimination. The involvement of aldehyde dehydrogenase/octanol dehydrogenase in methanol metabolism remains further study to confirm.
     3. The response of long-term methanol exposure in Drosophila melanogaster
     The flies were maintained on methanol-supplemented diet to select for methanol tolerant strain. The survival rates varied little on methanol-supplemented diet throughout the selection process, although the LC50value increased from27.93to40.71mg/g diet after40generations of selection. The variations of realized heritability (h2), in response to selection (R) and selection differential (S) in different generations indicated that the allelic variation in resistance was eroded by methanol selection. After selection for0,2,10and40generations, the egg-to-adult developmental periods lengthened significantly from8.33,9.78,12.01and12.51days on methanol-free diet to12.59,14.08,17.37and18.10days on methanol-contained diet respectively. Correlation analyses revealed that the variations of egg-to-adult developmental durations on methanol-free diet were contributed by both the embryonic and larval developmental delays and those on methanol-contained diet resulted from the embryonic developmental delay. Methanol selection did not slow down pupal development process. Moreover, methanol selection constitutively up-regulated several genes encoding CYPs and Ests, and also increased CYP and Est activities. These results showed a fitness disadvantage in the methanol-selected population.
     4. Seditive effect induced by methanol exposure on adults
     When exposed to methanol vapour slowly, the fruit flies showed sequential behavioral changes. In the initial several minutes, they became hyperactive, walked fast. And then, the flies lost motor control (infrequent movements and frequent falls during walking), and then were sedated (lying on their back). Methanol vapour could induce tolerance to mathanol seditive effect in males, but not in females. Pretreatment with enzyme inhibitor TPP, DEM,3-AT,4-MP or PBO reduced the duration of mean sedation time, but not change the variation pattern of mean sedition time after recurring methanol exposure. It seems that metabolism enzymes only tune the tolerance amplitude, they are not the tolerance mechanism to methanol sedative effect. Ingesting enzyme inhibitors increased the mortalities of the flies that treated with methanol vapour each day. Mortality for the males increased from2%in group treated only with methanol vapour to over10%in groups treated with enzyme inhibitors and methanol vapour, and for females it increased from5%to10%respectively. This suggestes that methanol metabolism enzymes may exist near and even in the central nervous system, in which these enzymes remove the methanol to protect the neurons from neurotoxicity.
     5. Intermale courtship induced by alcohols
     Canton-S males recurring exposured to methanol or ethanol resulted in the disinhibition of sexual behavior. Treated males showed active intermale courtship behaviour. We selected eight mutants, each contains a p-element insertion at a known gene encoding protein involving in neurotrophin signaling pathway. The knockout mutants in gene Shc, drk, csw, Pi3k21B and RhoGDI, when induced by methanol, did not show intermale courtship. However, the knockout mutant in Rhol still showed active intermale courtship. These results indicate shc, drk, csw, Pi3k21B and RhoGDI play essential roles for methanol-induced intermale courtship behavior. It was suggested that recurring methanol exposure remodeled the neural circuit through neurothrophin signaling pathway, which subsequently changed the male sexual behaviour.
     6. The behavioral avoidance to methanol, in contrast to ammonia
     During fruit fermentation, carbohydrates decompose to produce some alcohol volatiles and proteins generate some volatile nitrogenous compounds. We determined the olfactory responses and movement of D. melanogaster flies to ethanol, methanol and ammonia sources using a glass Y-tube olfactometer, and examined the influence of mating experience and food deprivation on orientation of the adult flies in the laboratory. We found that mating experience and food deprivation didn't affect the response to methanol and ethanol, but significantly increased preference to ammonium bicarbonate. Mating experience and food deprivation also increased dispersal behavior. In a two-way choice experiment to test oviposition preference, the CS females refused to lay eggs on food containing methanol and ethanol, but preferred to deposit their eggs on food containing ammonium bicarbonate and potassium sulfide. Knockout genes encoding Or83b and Nc73EF influenced the oviposition preference. After knocked out of lush gene, the resulting flies lost the behavioral sensitivity to alcohols, but exhibited the preferrence to amonia and hydrogen sulphide. Moreover, Knocked out the gene encoding CaM resulted in the oviposition preferrence to ethanol. It suggested that the fruit flies in nature may rely on alcohol and nitrogenous compound volatiles to direct food and egg-laying substrates at a distance. Upon arrival, they avoided depositing their eggs on methanol-rich environment to pretect the embryoes from methanol intoxication. At the same time, they preferred protein-rich substrates for their children.
引文
[1]蓝善坚,1999.甲醇中毒及预防.广西预防医学5,102-104.
    [2]王利英,杨振.(2006).甲醛环境危害研究综述.安徽预防医学杂志12,178-181.
    [3]Abbott, W. (1925). A method of computing the effectiveness of an insecticide.. Journal of Economic Entomology 18,265-267.
    [4]Ables, J.L., Breunig, J.J., Eisch, A.J., and Rakic, P. (2011). Not (ch) just development:Notch signalling in the adult brain. Nature Reviews Neuroscience 12,269-283.
    [5]Abrescia, C., Sjostrand, D., Kjaer, S., and Ibanez, C.F. (2005). Drosophila RET contains a nactive tyrosine kinase and elicits neurotrophic activities in mammali an cells. FEBS Letter 579, 3789-3794.
    [6]Alberola, J., Sanchez, A., and Fontdevila, A. (1987). Adh expression in species of themulleri subgroup of Drosophila. Biochemical Genetics 25,729-738.
    [7]Aleryani, S., Cluette-Brown, J., Khan, Z., Hasaba, H., Lopez de Heredia, L., and Laposata, M. (2005). Fatty acid methyl esters are detectable in the plasma and their presence correlates with liver dysfunction. Clinica Chimica Acta 359,141-149.
    [8]Anderson, S., and Barnett, S. (1991). The involvement of alcohol dehydrogenase and aldehyde dehydrogenase in alcohol/aldehyde metabolism in Drosophila melanogaster. Genetica 83,99-106.
    [9]Anderson, S.M., and McDonald, J.F. (1983). Biochemical and molecular analysis of naturally occurring Adh variants in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 80,4798-4802.
    [10]Andretic, R., van Swinderen, B., and Greenspan, R.J. (2005). Dopaminergic modulation of arousal in Drosophila. Current Biology 15,1165-1175.
    [11]Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow, M., Scott, M., Davis, R., and White, K. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science 297,2270-2275.
    [12]Arnot, C.J., Gay, N.J., and Gangloff, M. (2010). Molecular mechanism that induces activation of Spatzle, the ligand for the Drosophila Toll receptor. Journal of Biological Chemistry 285, 19502-19509.
    [13]Aron, L., Klein, P., Pham, T.T., Kramer, E.R., Wurst, W., and Klein, R. (2010). Prosurvival role for Parkinson's associated gene DJ-1 revealed in trophically impaired dopaminergic neurons. PLoS Biology 8, e1000349.
    [14]Aroor, A.R., and Shukla, S.D. (2004). MAP kinase signaling in diverse effects of ethanol. Life Science 74,2339-2364.
    [15]Bainton, R.J., Tsai, L., Singh, T.-Y., and Etal, C.M. (2000). Dopamine modulates acute responses to cocaine, nicotine, and ethanol in Drosophila. Current Biology 10,187-194.
    [16]Baker, R.C., and Kramer, R.E. (1999). Cytotoxicity of short-chain alcohols. Annual Review of Pharmacology and Toxicology 39,127-150.
    [17]Benach, J., Atrian, S., Ladenstein, R., and Gonzalez-Duarte, R. (2001). Genesis of Drosophila ADH:the shaping of the enzymatic activity from a SDR ancestor. Chemico-Biological Interactions 130,405-415.
    [18]Berger, K.H., Heberlein, U., and Moore, M.S. (2004). Rapid and chronic:two distinct forms of ethanol tolerance in Drosophila. Alcoholism:Clinical and Experimental Research 28,1469-1480.
    [19]Berger, K.H., Kong, E.C., Dubnau, J., Tully, T., Moore, M.S., and Heberlein, U. (2008). Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcoholism: Clinical and Experimental Research 32,895-908.
    [20]Bergmann, A., Tugentman, M., Shilo, B.Z., and Steller, H. (2002). Regulation of cell number by MAPK-dependent control of apoptosis:a mechanism for trophic survival signaling. Developmental Cell 2,159-170.
    [21]Berry, A., and Kreitman, M. (1993). Molecular analysis of an allozyme cline:alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics 134, 869-893.
    [22]Bhandari, P., Kendler, K.S., Bettinger, J.C., Davies, A.G., and Grotewiel, M. (2009). An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcoholism:Clinical and Experimental Research 33,1794-1805.
    [23]Billeter, J.C., Rideout, E.J., Dornan, A.J., and Goodwin, S.F. (2006). Control of male sexual behavior in Drosophila by the sex determination pathway. Current Biology 16, R766-776.
    [24]Bogwitz, M., Chung, H., Magoc, L., Rigby, S., Wong, W., O'Keefe, M., McKenzie, J., Batterham, P., and Daborn, P. (2005). Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 102,12807-12812.
    [25]Booth, G.E., Kinrade, E., and Hidalgo, A. (2000). Glia maintain follower neuron survival during Drosophila CNS development. Development 127,237-244.
    [26]Bosveld, F., Rana, A., van der Wouden, P.E., Lemstra, W., Ritsema, M., Kampinga, H.H., and Sibon, O.C. (2008). De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system. Human molecular genetics 17,2058-2069.
    [27]Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72,248-254.
    [28]Bride, J., Cuany, A., Amichot, M., Brun, A., Babault, M., Mouel, L., Sousa, D., Rahman, R., and Berge, J. (1997). Cytochrome P-450 field insecticide tolerance and development of laboratory resistance in grape vine populations of Drosophila melanogaster (Diptera:Drosophilidae). Journal of Economic Entomology 90,1514-1502.
    [29]Brun, A., Cuany, A., Le Mouel, T., Berge, J., and Amichot, M. (1996). Inducibility of the Drosophila melanogaster cytochrome P450 gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochemistry and Molecular Biology 26,697-703.
    [30]Campos, A., Fischbach, K., and Steller, H. (1992). Survival of photoreceptor neurons in the compound eye of Drosophila depends on connections with the optic ganglia. Development 114, 355-366.
    [31]Carlini, D.B. (2004). Experimental reduction of codon bias in the Drosophila alcohol dehydrogenase gene results in decreased ethanol tolerance of adult flies. Journal of Evolutionary Biology 17,779-785.
    [32]Catania, F., Kauer, M., Daborn, P., Yen, J., Ffrench-Constant, R., and Schl tterer, C. (2004). World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster. Molecular Ecology 13,2491-2504.
    [33]Cavener, D.R., and Clegg, M.T. (1978). Dynamics of correlated genetic systems. IV. Multilocus effects of ethanol stress environments. Genetics 90,629-644.
    [34]Cederbaum, A., and Qureshi, A. (1982). Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes. Biochemical Pharmacology 31,329-335.
    [35]Chakir, M., Capy, P., Genermont, J., Pla, E., and David, J.R. (1996). Adaptation to fermenting resources in Drosophila melanogaster. ethanol and acetic acid tolerances share a common genetic basis. Evolution 50,767-776.
    [36]Chakir, M., Peridy, O., Capy, P., Pla, E., and David, J.R. (1993). Adaptation to alcoholic fermentation in Drosophila:A parallel selection imposed by environmental ethanol and acetic acid. Proceedings of the National Academy of Sciences of the United States of America 90,3621-3625.
    [37]Chakraborty, M., and Fry, J.D. (2011). Drosophila lacking a homologue of mammalian ALDH2 have multiple fitness defects. Chemico-Biological Interactions 191,296-302.
    [38]Chambers, GK. (1988). The Drosophila alcohol dehydrogenase gene-enzyme system. Advances in Genetics 25,39-107.
    [39]Chambers, GK. (1991). Gene expression, adaptation and evolution in higher organisms. Evidence from studies of Drosophila alcohol dehydrogenases. Comparative Biochemistry and Physiology 99, 723-730.
    [40]Chang, H., Grygoruk, A., Brooks, E., Ackerson, L., Maidment, N., Bainton, R., and Krantz, D. (2005). Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine. Molecular Psychiatry 11, 99-113.
    [41]Chess, K.F., and Ringo, J.M. (1985). Oviposition site selection by Drosophila melanogaster and Drosophila simulans. Evolution 39,869-877.
    [42]Chou, T.C., and Hayball, M.P. (1996). ClacuSyn:Windows software for dose effect analysis Published and distributed by Biosoft.
    [43]Chou, T.C., and Talalay, P. (1984). Quantitative analysis of dose-effect relationships:the combined effects of multiple drugs or enzyme inhibitors. Advences in Enzyme Regulation 22.
    [44]Chung, H., Bogwitz, M., McCart, C., and Andrianopoulos, A. (2007). Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175,1071-1077.
    [45]Chung, H., Sztal, T., Pasricha, S., Sridhar, M., Batterham, P., and Daborn, P. (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proceedings of the National Academy of Sciences of the United States of America 106,5731-5736.
    [46]Claudianos, C., Ranson, H., Johnson, R., Biswas, S., Schuler, M., Berenbaum, M., Feyereisen, R., and Oakeshott, J. (2006). A deficit of detoxification enzymes:pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology 15,615-636.
    [47]Cohan, F.M., and Graf, J.D. (1985). Latitudinal cline in Drosophila melanogaster for knockdown resistance to ethanol fumes and for rates of response to selection for further resistance. Evolution 39,278-293.
    [48]Colon-Parrilla, W.V., and Perez-Chiesa, I. (1999). Ethanol tolerance and alcohol dehydrogenase (ADH; EC1.1.1.1) activity in species of the cardini group of Drosophila. Biochemical Genetics 37, 95-107.
    [49]Coon, M., and Koop, D. (1987). Alcohol-inducible cytochrome P-450 (P-450 ale). Archives of Toxicology 60,16-21.
    [50]Corl, A.B., Berger, K.H., Ophir-Shohat, G., Gesch, J., Simms, J.A., Bartlett, S.E., and Heberlein, U. (2009). Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell 137,949-960.
    [51]Corl, A.B., Rodan, A.R., and Heberlein, U. (2004). Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster. Nature Neuroscience 8,18-19.
    [52]Cowmeadow, R.B., Krishnan, H.R., and Atkinson, N.S. (2005). The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcoholism:Clinical and Experimental Research 29, 1777-1786.
    [53]Cowmeadow, R.B., Krishnan, H.R., Ghezzi, A., Al'Hasan, Y.M., Wang, Y.Z., and Atkinson, N.S. (2006). Ethanol tolerance caused by slowpoke induction in Drosophila. Alcoholism:Clinical and Experimental Research 30,745-753.
    [54]Cruzan, G. (2009). Assessment of the cancer potential of methanol. Critical Reviews in Toxicology 39,347-363.
    [55]Curcillo, P.G., and Tompkins, L. (1987). The ontogeny of sex appeal in Drosophila melanogaster males. Behavior genetics 17,81-86.
    [56]Daborn, P., Lumb, C., Boey, A., and Wong, W. (2007). Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochemistry and Molecular Biology 37,512-519.
    [57]Daborn, P., Yen, J., Bogwitz, M., Le Goff, G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., and Batterham, P. (2002). A single P450 allele associated with insecticide resistance in Drosophila. Science 297,2253-2256.
    [58]Danielsson, O., Atrian, S., Luque, T., Hjelmqvist, L., Gonzalez-Duarte, R., and J rnvall, H. (1994). Fundamental molecular differences between alcohol dehydrogenase classes. Proceedings of the National Academy of Sciences of the United States of America 91,4980-4984.
    [59]David, J.R., Mercot, H., Capy, P., McEvey, S.F., and van Herrewege, J. (1986). Alcohol tolerance and Adh gene frequencies in European and African populations of Drosophila melanogaster. Genetics, Selection, Evolution 18,405-416.
    [60]Dearborn Jr, R., and Kunes, S. (2004). An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development 131,2291-2303.
    [61]del Solar, E., and Palomino, H. (1966). Choice of oviposition in Drosophila melanogaster. American Naturalist 100,127-133.
    [62]DeLotto, Y., and DeLotto, R. (1998). Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mechanisms of Development 72,141-148.
    [63]Demir, E., and Dickson, B.J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell 121,785-794.
    [64]Devineni, A.V., and Heberlein, H. (2009). Preferential ethanol consumption in Drosophila models features of addiction. Current Biology 19,2126-2132.
    [65]Devineni, A.V., and Heberlein, H. (2010). Addiction-like behaviour in Drosophila. Communication in Integrated Biology 3,357-359.
    [66]Devineni, A.V., McClure, K., Guarnieri, D., Corl, A., Wolf, F., Eddison, M., and Heberlein, U. (2011). The genetic relationships between ethanol preference, acute ethanol sensitivity and ethanol tolerance in Drosophila melanogaster. Fly 5,191-199.
    [67]Dobrosotskaya, I., Seegmiller, A., Brown, M., Goldstein, J., and Rawson, R. (2002). Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science's STKE 296,879.
    [68]Donlea, J.M., Ramanan, N., and Shaw, P.J. (2009). Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324,105-108.
    [69]Downie, A., Miyazaki, S., Bohnert, H., John, P., Coleman, J., Parry, M., and Haslam, R. (2004). Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochemistry 65,2305-2316.
    [70]Dunkov, B., Guzov, V., Mocelin, G., Shotkoski, F., Brun, A., Amichot, M., Ffrench-Constant, R., and Feyereisen, R. (1997). The Drosophila cytochrome P450 gene Cyp6a2:structure, localization, heterologous expression, and induction by phenobarbital. DNA and Cell Biology 16,1345-1356.
    [71]Dzitoyeva, S., Dimitrijevic, N., and Manev, H. (2003). y-Aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila:adult RNA interference and pharmacological evidence. Proceedings of the National Academy of Sciences of the United States of America 100, 5485-5490.
    [72]Eddison, M., Guarnieri, D.J., Cheng, L., Liu, C.H., Moffat, K.G., Davis, G., and Heberlein, U. (2011). arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron 70, 979-990.
    [73]Fall, R., and Benson, A. (1996). Leaf methanol--the simplest natural product from plants. Trends in Plant Science 1,296-301.
    [74]Feany, M.B., and Quinn, W.G (1995). A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268,869-873.
    [75]Ferveur, J.F., Savarit, F., O'Kane, C.J., Sureau, G., Greenspan, R.J., and Jallon, J.M. (1997). Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276, 1555-1558.
    [76]Feyereisen, R. (2006). Evolution of insect P450. Biochemical Society Transactions 34,1252-1255.
    [77]Franzdottir, S.R., Engelen, D., Yuva-Aydemir, Y., Schmidt, I., Aho, A., and Klambt, C. (2009). Switch in FGF signalling initiates glial differentiation in the Drosophila eye. Nature 460,758-761.
    [78]Frenkel, C., Peters, J., Tieman, D., Tiznado, M., and Handa, A. (1998). Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. Journal of Biological Chemistry 273,4293-4295.
    [79]Fry, J. (2001). Direct and correlated responses to selection for larval ethanol tolerance in Drosophila melanogaster. Journal of Evolutionary Biology 14,296-309.
    [80]Fry, J.D. (2008). Genotype-environment interaction for total fitness in Drosophila. Journal of Genetics 87,355-362.
    [81]Fry, J.D., and Saweikis, M. (2006). Aldehyde dehydrogenase is essential for both adult and larval ethanol resistance in Drosophila melanogaster. Genetical Research 87,87-92.
    [82]Fry, J.D., Bahnck, C.M., Mikucki, M., Phadnis, N., and Slattery, W.C. (2004). Dietary ethanol mediates selection on aldehyde dehydrogenase activity in Drosophila melanogaster. Integrative and Comparative Biology 44,275-283.
    [83]Fry, J.D., Donlon, K., and Saweikis, M. (2008). A worldwide polymorphism in aldehyde dehydrogenase in Drosophila melanogaster:evidence for selection mediated by dietary ethanol. Evolution 62,66-75.
    [84]Gaffe, J., Tieman, D., and Handa, A. (1994). Pectin methylesterase isoforms in tomato (Lycopersicon esculentum) tissues:Effects of expression of a pectin methylesterase antisense gene. Plant Physiology 105,199-203.
    [85]Galbally, I., and Kirstine, W. (2002). The production of methanol by flowering plants and the global cycle of methanol. Journal of Atmospheric Chemistry 43,195-229.
    [86]Geer, B.W., Stephen, McKenchnie, W., Heinstra, P.W.H., and Pyka, M.J. (1991). Heritable variation in ethanol tolerance and its association with biochemical traits in Drosophila melanogaster. Evolution 45,1107-1119.
    [87]Gibson, J., May, T., and Wilks, A. (1981). Genetic variation at the alcohol dehydrogenase locus in Drosophila melanogaster in relation to environmental variation:ethanol levels in breeding sites and allozyme frequencies. Oecologia 51,191-198.
    [88]Gibson, J.B. (1970). Enzyme flexibility in Drosophila melanogaster. Nature 227,959-960.
    [89]Gibson, J.B., Lewis, N.I., Adena, M.I., and Wilson, S.R. (1979). Selection for ethanol tolerance in two populations of Drosophila melanogaster segregating alcohol dehydrogenase allozymes. Australian Journal of Biological Sciences 32,387-398.
    [90]Giraudo, M., Unnithan, G., Le Goff, G., and Feyereisen, R. (2010). Regulation of cytochrome P450 expression in Drosophila:Genomic insights. Pesticide Biochemistry and Physiology 97,115-122.
    [91]Godenschwege, T.A., Reisch, D., Diegelmann, S., Eberle, K., Funk, N., Heisenberg, M., Hoppe, V., Hoppe, J., Klagges, B.R.E., Martin, J.-R., et al. (2004). Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. European Journal of Neuroscience 20,611-622.
    [92]Griffiths, R., Benito-Sipos, J., Fenton, J., Torroja, L., and Hidalgo, A. (2007). Two distinct mechanisms segregate Prospero in the longitudinal glia underlying the timing of interactions with axons. Neuron Glia Biology 3,75-88.
    [93]Griffiths, R.L., and Hidalgo, A. (2004). Prospero maintains the mitotic potential of glial precursors enabling them to respond to neurons. The EMBO journal 23,2440-2450.
    [94]Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., and Mckay, W. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100,8873-8892.
    [95]Guo, L., Zeng, X.Y., Wang, D.Y., and Li, GQ. (2010). Methanol metabolism in the Asian corn borer, Ostrinia furnacalis (Guenee) (Lepidoptera:Pyralidae). Journal of Insect Physiology 56, 260-265.
    [96]Hahn, M., and Bishop, J. (2001). Expression pattern of Drosophilaret suggests a common ancestral origin between the metamorphosis precursors in insect endoderm and the vertebrate enteric neurons. Proceedings of the National Academy of Sciences of the United States of America 98,1053-1058.
    [97]Hannemann, F., Bichet, A., Ewen, K., and Bernhardt, R. (2007). Cytochrome P450 systems--biological variations of electron transport chains. Biochimica et Biophysica Acta 1770, 330-344.
    [98]Hanson, A., and Roje, S. (2001). One-carbon metabolism in higher plants. Annual Review of Plant Biology 52,119-137.
    [99]Hardstone, M., Baker, S., Gao, J., Ewer, J., and Scott, J. (2006). Deletion of Cyp6d4 does not alter toxicity of insecticides to Drosophila melanogaster. Pesticide Biochemistry and Physiology 84, 236-242.
    [100]Harris, C., Wang, S.W., Lauchu, J.J., and Hansen, J.M. (2003). Methanol metabolism and embryotoxicity in rat and mouse conceptuses:comparisons of alcohol dehydrogenase (ADH1), formaldehyde dehydrogenase (ADH3), and catalase. Reproductive Toxicology 17,349-357.
    [101]Heberlein, U. (2000). Genetics of alcohol-induced behaviors in Drosophila. Alcoholism:Clinical and Experimental Research 24,185-188.
    [102]Heinstra, P., and Geer, B. (1991). Metabolic control analysis and enzyme variation:nutritional manipulation of the flux from ethanol to lipids in Drosophila. Molecular Biology and Evolution 8, 703-708.
    [103]Heinstra, P.W.H. (1993). Evolutionary genetics of the Drosophila alcohol dehydrogenase gene-enzyme system. Genetica 92,1-22.
    [104]Henehan, G.T.M., Chang, S.H., and Oppenheimer, N.J. (1995). Aldehyde dehydrogenase activity of Drosophila melanogaster alcohol dehydrogenase:burst kinetics at high pH and aldehyde dismutase activity at physiological pH. Biochemistry 34,12294-12301.
    [105]Hense, W., Anderson, N., Hutter, S., Stephan, W., Parsch, J., and Carlini, D.B. (2010). Experimentally increased codon bias in the DrosophilaAdh gene leads to an increase in larval, but not adult, alcohol dehydrogenase activity. Genetics 184,547-555.
    [106]Herlenius, E., and Lagercrantz, H. (2001). Neurotransmitters and neuromodulators during early human development. Early Human Development 65,21-37.
    [107]Hidalgo, A., Kato, K., Sutcliffe, B., Mcilroy, G., Bishop, S., and Alahmed, S. (2011). Trophic neuron-glia interactions and cell number adjustments in the fruit fly. Glia 59,1296-1303.
    [108]Hidalgo, A., Kinrade, E.F.V., and Georgiou, M. (2001). The Drosophila neuregulin vein maintains glial survival during axon guidance in the CNS. Developmental Cell 1,679-690.
    [109]Hoffmann, A., Funkner, A., Neumann, P., Juhnke, S., Walther, M., Schier-horn, A., Weininger, U., Balbach, J., Reuter, G., and Stubbs, M.T. (2008). Biophysical characterization of refolded Drosophila Spatzle, a cystine knot protein, reveals distinct properties of three isoforms. Journal of Biological Chemistry 283,32598-32609.
    [110]Holzinger, R., Sandoval-Soto, L., Rottenberger, S., Crutzen, P., and Kesselmeier, J. (2000). Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions. Journal of Geophysical Research 105,20573-20579.
    [111]Huang, E.J., and Reichardt, L.F. (2003). Trk receptors:Roles in neuronal signal transduction. Annual Review of Biochemistry 72,609-642.
    [112]Hull, E.M., Muschamp, J.W., and Sato, S. (2004). Dopamine and serotonin:influences on male sexual behavior. Physiology and Behavior 83,291-307.
    [113]Isin, E., and Guengerich, F. (2007). Complex reactions catalyzed by cytochrome P450 enzymes. Biochimica et BiophysicaActa 1770,314-329.
    [114]Ja, W.W., Carvalho, G.B., Mak, E.M., de la Rosa, N.N., Fang, A.Y., Liong, J.C., Brummel, T., and Benzer, S. (2007). Prandiology of Drosophila and the CAFE assay. Proceedings of the National Academy of Sciences of the United States of America 104,8253-8256.
    [115]Jacobsen, D., and McMartin, K.(1986). Methanol and ethylene glycol poisonings. Mechanism of toxicity, clinical course, diagnosis and treatment. Medical toxicology 1,309.
    [116]Janzen, D.H. (1977). Why fruits rot, seeds mold, and meat spoils. American Naturalist 111, 691-713.
    [117]Janzen, D.H. (1977). Why fruits rot, seeds mold, and meat spoils. American Naturalist 111, 691-713.
    [118]Jarvis, M. (1984). Structure and properties of pectin gels in plant cell walls. Plant, Cell & Environment 7,153-164.
    [119]Johlin, F., Fortman, C., Nghiem, D., and Tephly, T. (1987). Studies on the role of folic acid and folate-dependent enzymes in human methanol poisoning. Molecular Pharmacology 31,557-561.
    [120]Jones, R., Bakker, S., Stone, D., Shuttleworth, S., Boundy, S., McCart, C., and Daborn, P. (2010). Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance. Pest Management Science 66,1106-1115.
    [121]Kaphalia, B., Green, S., and Ansari, G. (1999). Fatty acid ethyl and methyl ester synthases, and fatty acid anilide synthase in HepG2 and AR42J cells:interrelationships and inhibition by tri-o-tolyl phosphate. Toxicology and applied pharmacology 159,134-141.
    [122]Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., and Morin, S. (2008). Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology 38,634-644.
    [123]Kaun, K.R., Azanchi, R., Maung, Z., Hirsh, J., and Heberlein, U. (2011). A Drosophila model for alcohol reward. Nature Neuroscience 14,612-619.
    [124]Kaun, K.R., Devineni, A.V., and Heberlein, U. (2012). Drosophila melanogaster as a model to study drug addiction. Human Genetics DOI 10.1007/s00439-012-1146-6,1-17.
    [125]Kim, Y.C., Lee, H.G, Seong, C.S., and Han, K.A. (2003). Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster. Gene Expression Patterns 3,237-245.
    [126]Kim, Y.K., Lee, B.C., Ham, B.J., Yang, B.H., Roh, S., Choi, J., Kang, T.C., Chai, Y.G, and Choi, I.G (2009). Increased transforming growth factor-betal in alcohol dependence. Journal of Korean Medical Science.
    [127]Kimura, K.I., Ote, M., Tazawa, T., and Yamamoto, D. (2005). Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438,229-233.
    [128]King, I., Tsai, L.T., Pflanz, R., Voigt, A., Lee, S., Jackle, H., Lu, B., and Heberlein, U. (2011). Drosophila tao controls mushroom body development and ethanol-stimulated behavior through par-1. Journal of Neuroscience 31.
    [129]Knox, J., Linstead, P., King, J., Cooper, C., and Roberts, K. (1990). Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181, 512-521.
    [130]Kong, E.C., Woo, K., Li, H., Lebestky, T., Mayer, N., Sniffen, M.R., Heberlein, U., Bainton, R.J., Hirsh, J., and Wolf, F.W. (2010). A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One 5, e9954.
    [131]Korner, E., von Dahl, C., Bonaventure, G, and Baldwin, I. (2009). Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Nicotiana attenuata. Journal of Experimental Botany 60,2631-2640.
    [132]Krishnan, H.R., Al-Hasan, Y.M., Pohl, J.B., Ghezzi, A., and Atkinson, N.S. (2012). A role for dynamin in triggering ethanol tolerance. Alcoholism, Clinical and Experimental Research 36, 24-34.
    [133]LaFerriere, H., Guarnieri, D.J., Sitaraman, D., Diegelmann, D., Heberlein, U., and Zars, T. (2008). Genetic dissociation of ethanol sensitivity and memory formation in Drosophila melanogaster. Genetics 178,1895-1902.
    [134]Lankford, K., DeMello, R, and Klein, W. (1988). D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons:evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proceedings of the National Academy of Sciences of the United States of America 5,239-243.
    [135]Lanoue, B.R., Gordon, M.D., Battye, R., and Jacobs, J.R. (2000). Genetic analysis of vein function in the Drosophila embryonic nervous system. Genome 43,564-573.
    [136]Lasek, A.W., Giorgetti, F., Berger, K.H., Tayor, S., and Heberlein, U. (2011a). Lmo genes regulate behavioral responses to ethanol in Drosophila melanogaster and the mouse. Alcoholism: Clinical and Experimental Research 35,1600-1606.
    [137]Lasek, A.W., Lim, J., Kliethermes, C.L., Berger, K.H., Joslyn, G., Brush, G, Xue, L., Robertson, M., Moore, M.S., and Vranizan, K. (2011b). An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS One 6, e22636.
    [138]Le Goff, G., Hilliou, F., Siegfried, B., Boundy, S., Wajnberg, E., Sofer, L., and Audant, P. (2006). Xenobiotic response in Drosophila melanogaster:sex dependence of P450 and GST gene induction. Insect Biochemistry and Molecular Biology 36,674-682.
    [139]Leal, J., and Barbancho, M. (1992). Acetaldehyde detoxification mechanisms in Drosophila melanogaster adults involving aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) enzymes. Insect Biochemistry and Molecular Biology 22,885-892.
    [140]Leal, J., and Barbancho, M. (1993). Aldehyde dehydrogenase (ALDH) activity in Drosophila melanogaster adults:evidence for cytosolic localization. Insect Biochemistry and Molecular Biology 23,543-547.
    [141]Learte, A.R., Forero, M.G., and Hidalgo, A. (2008). Gliatrophic and gliatropic functions of PVR signal ling during axon guidance. Glia 56,164-176.
    [142]Lee, G., and Hall, J.C. (2001). Abnormalities of male-specific FRU protein and serotonin expression in the CNS of fruitless mutants in Drosophila. Journal of Neuroscience 21,513-526.
    [143]Lee, H.G, Kim, Y.C., Dunning, J.S., and Han, K.A. (2008). Recurring ethanol exposure induces disinhibited courtship in Drosophila. PLoS One 3, e1391.
    [144]Lee, S., Nahm, M., Lee, M., Kwon, M., Kim, E., Zadeh, A.D., Cao, H., J., K.H., Lee, Z.H., Oh, S.B., et al. (2007). The F-actin-microtubule crosslinker shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development 134,1767-1777.
    [145]Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science 237,1154-1162.
    [146]Li, C., Zhao, X., Cao, X., Chu, D., Chen, J., and Zhou, J. (2008). The Drosophila homolog of jwa is required for ethanol tolerance. Alcohol and Alcoholism 43,529-536.
    [147]Lindholm, P., and Saarma, M. (2010). Novel CDNF/MANF family of neurotrophic factors. Developmental Neurobiology 70,360-371.
    [148]Liu, T., Dartevelle, L., Yuan, C., Wei, H., Wang, Y., Ferveur, J.F., and Guo, A. (2008). Increased dopamine level enhances male-male courtship in Drosophila. The Journal of Neuroscience 28, 5539-5546.
    [149]Luque, T., Atrian, S., Danielsson, O., J rnvall, H., and Gonzalez-Duarte, R. (1994). Structure of the Drosophila melanogaster glutathione-dependent formaldehyde dehydrogenase/octanol dehydrogenase gene (class III alcohol dehydrogenase). European Journal of Biochemistry 225, 985-993.
    [150]MacDonald, R., and Fall, R. (1993). Detection of substantial emissions of methanol from plants to the atmosphere. Atmospheric Environment Part A General Topics 27,1709-1713.
    [151]Mackenzie, S.M., Brooker, M.R., Gill, T.R., Cox, G.B., and Howells, A.J. (1999). Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Boichim Biopys Acta 1419,173-185.
    [152]Maitra, S., Dombrowski, S., Waters, L., and Ganguly, R. (1996). Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene 180, 165-171.
    [153]Malherbe, Y., Kamping, A., Delden, W., and Zande, L. (2005). ADH enzyme activity and Adh gene expression in Drosophila melanogaster lines differentially selected for increased alcohol tolerance. Journal of Evolutionary Biology 18,811-819.
    [154]Mangos, T., and Haas, M. (1997). A spectrophotometric assay for the enzymatic demethoxylation of pectins and the determination of pectinesterase activity. Analytical biochemistry 244,357-366.
    [155]Manoli, D.S., Foss, M., Villella, A., Taylor, B.J., Hall, J.C., and Baker, B.S. (2005). Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436,395-400.
    [156]Margaritis, L., Kafatos, F., and Petri, W. (1980). The eggshell of Drosophila melanogaster. I. Fine structure of the layers and regions of the wild-type eggshell. Journal of Cell Science 43,1-35.
    [157]Martel, M.L., Baumgardner, C.A., Dybas, L.K., and Geer, B.W. (1995). The toxicities of short-chain primary alcohols and the accumulation of storage bodies in the larval fat body of Drosophila melanogaster. Comparative Biochemistry and Physiology C 111,99-108.
    [158]McCobb, D., Haydon, P., and Kater, S. (1988). Dopamine and serotonin inhibition of neurite elongation of different identified neurons. Journal of Neuroscience Research 19,19-26.
    [159]McKechnie, S.W., and Geer, B.W. (1993). Long-chain dietary fatty acids affect the capacity of Drosophila melanogaster to tolerate ethanol. The Journal of Nutrition 123,106-116.
    [160]McKenzie, J.A., and McKechnie, S.W. (1979). A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans. Oecologia 40,299-309.
    [161]McTigue, D.M., and Tripathi, R.B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of Neurochemistry 107,1-19.
    [162]Mellerick, D.M., and Liu, H. (2004). Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS. Journal of Neurobiology 60,308-318.
    [163]Mercot, H., Defaye, D., Capy, P., Pla, E., and David, J.R. (1994). Alcohol tolerance, ADH activity, and ecological niche of Drosophila species. Evolution 48,746-757.
    [164]Micheli, F. (2001). Pectin methylesterases:cell wall enzymes with important roles in plant physiology. Trends in Plant Science 6,414-419.
    [165]Mizuguchi, K., Parker, J.S., Blundell, T.L., and Gay, N.J. (1998). Getting knotted:a model for the structure and activation of Spatzle. Trends in Biochemistry Science 23,239-242.
    [166]Montooth, K.L., Siebenthall, K.T., and Clark, A.G. (2006). Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster. Journal of Experimental Biology 209,3837-3850.
    [167]Moore, M.S., Dezazzo, J., and Luk, A.Y. (1998). Ethanol intoxication in Drosophila:Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93,997-1007.
    [168]Morozova, T., Anholt, R., and Mackay, T. (2006). Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biology 7, R.95.
    [169]Morozova, T., Anholt, R., and Mackay, T. (2007). Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Genome Biology 8, R231.
    [170]Mueller, L.A., Tanksley, S.D., Giovannoni, J.J., van Eck, J., Stack, S., Choi, D., Kim, B.D., Chen, M., Cheng, Z., Li, C., et al. (2005). The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comparative and functional genomics 6,153-158.
    [171]Neckameyer, W.S., and Bhatt, P. (2012). Neurotrophic actions of dopamine on the development of a serotonergic feeding circuit in Drosophila melanogaster. BMC Neuroscience 13,26.
    [172]Nemecek-Marshall, M., MacDonald, R., Franzen, J., Wojciechowski, C., and Fall, R. (1995). Methanol emission from leaves:enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiology 108,1359-1368.
    [173]Oakeshott, J., Cohan, F., and Gibson, J. (1985). Ethanol tolerances of Drosophila melanogaster populations selected on different concentrations of ethanol supplemented media. Theoretical and Applied Genetics 69,603-608.
    [174]Oakeshott, J., Gibson, J., Anderson, P., Knibb, W., Anderson, D., and Chambers, G. (1982). Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution 36,86-96.
    [175]Obendorf, R., Koch, J., Gorecki, R., Amable, R., and Aveni, M. (1990). Methanol accumulation in maturing seeds. Journal of Experimental Botany 41,489-495.
    [176]Ohayon, D., Pattyn, A., Venteo, S., Valmier, J., Carroll, P., and Garces, A. (2009). Zfhl promotes survival of a peripheral glia subtype by antagonizing a Jun N-terminal kinase-dependent apoptotic pathway. The EMBO Journal 28,3228-3243.
    [177]Oppentocht, J.E., Van Delden, W., and Van De Zande, L. (2002). Isolation and characterization of the genomic region from Drosophila kuntzei containing the Adh and Adhr genes. Molecular Biology and Evolution 19,1026-1040.
    [178]Palgi, M., Lindstrom, R., Peranen, J., Piepponen, T.P., Saarma, M., and Heino, T.I. (2009). Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America 106,
    [179]Pani, L., and Gessa, GL. (2002). Dopaminergic deficit and mood disorders. International Clinical Psychopharmacology 17, S1-S7.
    [180]Park, S.K., Sedore, S.A., Cronmiller, C., and Hirsh, J. (2000). PKA-RII-deficient Drosophila are viable but show developmental, circadian and drug response phenotypes. Journal of Biological Chemistry 275,20588-20596.
    [181]Parkash, R., Karan, D., and Munjal, A.K. (1999). Geographical variation in AdhF and alcoholic resource utilization in Indian populations of Drosophila melanogaster. Biological Journal of the Linnean Society 66,205-214.
    [182]Parsons, P.A., and Kling, S.B. (1977). Ethanol:Larval discrimination between two Drosophila sibling species. Experientia 33,898-899.
    [183]Pecsenye, K., and Saura, A. (1998). Interaction between the Adh and Odh loci in response to ethanol in Drosophila melanogaster. Biochemical Genetics,363,147-170.
    [184]Pecsenye, K., Bokor, K., Lefkovitch, L., Giles, B., and Saura, A. (1997). Enzymatic responses of Drosophila melanogaster to long-and short-term exposures to ethanol. Molecular and General Genetics 255,258-268.
    [185]Pelloux, J., Rusterucci, C., and Mellerowicz, E. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science 12,267-277.
    [186]Penuelas, J., Filella, I., Stefanescu, C., and Llusia, J. (2005). Caterpillars of Euphydryas aurinia (Lepidoptera:Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytologist 167,851-857.
    [187]Peralta, S., Gomez, Y., Gonzalez-Gaitan, M.A., Moya, F., and Vinos, J. (2009). Notch down-regulation by endocytosis is essential for pigment cell determination and survival in the Drosophila retina. Mechanisms of Development 126,256-269.
    [188]Pfeiler, E., and Markow, T. (2001). Ecology and population genetics of Sonoran Desert Drosophila. Molecular Ecology 10,1787-1791.
    [189]Pfeiler, E., and Markow, T.A. (2003). Induction of suppressed ADH activity in Drosophila pachea exposed to different alcohols. Biochemical Genetics 41,413-426.
    [190]Phillips, T.J., and Andshen, E.H. (1996). Neurochemical bases of locomotion and ethanol stimulant effects. International Reviews of Neurobiology 39,243-282.
    [191]Pilling, J., Willmitzer, L., Bucking, H., and Fisahn, J. (2004). Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219,32-40.
    [192]Pyle, D.W. (1976). Oviposition site differences in strains of Drosophila melanogaster selected for divergent geotactic maze behaviour. American Naturalist 110,181-184.
    [193]Ramirez, I., Dorta, F., Espinoza, V., Jimenez, E., Mercado, A., and Pena-Cortes, H. (2006). Effects of foliar and root applications of methanol on the growth of Arabidopsis, tobacco, and tomato plants. Journal of Plant Growth Regulation 25,30-44.
    [194]Rand, M.D., Kearney, A.L., Dao, J., and Clason, T. (2010). Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochemistry and Molecular Biology 40, 792-804.
    [195]Ranson, H., Claudianos, C., Ortelli, F., Abgrall, C., Hemingway, J., Sharakhova, M., Unger, M., Collins, F., and Feyereisen, R. (2002). Evolution of supergene families associated with insecticide resistance. Science 298,179-181.
    [196]Rawson, R.B. (2003). The SREBP pathway-insights from Insigs and insects. Nature Reviews Molecular Cell Biology 4,631-640.
    [197]Rehmsmeier, M., Steffen, P., H CHSMANN, M., and Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. Rna 10,1507-1517.
    [198]Reiling, J.H., Doepfner, K.T., Hafen, E., and Stocker, H. (2005). Diet-dependent effects of the Drosophila Mnkl/Mnk2 homolog Lk6 on growth via eIF4E. Current Biology 15,24-30.
    [199]Richardt, A., Kemme, T., Wagner, S., Schwarzer, D., Marahiel, M.A., and Hovemann, B.T. (2003). Ebony, a novel nonribosomal peptide synthetase for β-alanine conjugation with biogenic amines in Drosophila. Journal of Biological Chemistry 278,41160-41166.
    [200]Richmond, R.C., and Gerking, J.L. (1979). Oviposition site preference in Drosophila Behavior Genetics 9,233-241.
    [201]Rogulja-Ortmann, A., Luer, K., Seibert, J., Rickert, C., and Technau, GM. (2007). Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development 134, 105-116.
    [202]Rogulja-Ortmann, A., Renner, S., and Technau, GM. (2008). Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development 135,3435-3445.
    [203]Rothenfluh, A., Threlkeld, R.J., Bainton, R.J., Tsai, L.T., Lasek, A.W., and Heberlein, U. (2006). Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 127, 199-211.
    [204]Roux, P.P., and Barker, P.A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology 67,203-233.
    [205]Ryner, L.C., Goodwin, S.F., Castrillon, D.H., Anand, A., Villella, A., Baker, B.S., Hall, J.C., Taylor, B.J., and Wasserman, S.A. (1996). Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87,1079-1089.
    [206]Saner, C., Weibel, B., Wurgler, F., and Sengstag, C. (1996). Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae. Environmental and Molecular Mutagenesis 27,46-58.
    [207]Savakis, C., and Ashburner, M. (1985). A simple gene with a complex pattern of transcription: the alcohol dehydrogenase gene of Drosophila melanogaster. Cold Spring Harbor Symposia on Quantitive Biology 50,505-514.
    [208]Schmidt, D., Voelckel, C., Hartl, M., Schmidt, S., and Baldwin, I. (2005). Specificity in ecological interactions. Attack from the same lepidopteran herbivore results in species-specific transcriptional responses in two solanaceous host plants. Plant Physiology 138,1763-1773.
    [209]Scholz, H., Franz, M., and Heberlein, U. (2005). The hangover gene defines a stress pathway required for ethanol tolerance development. Nature 436,845-847.
    [210]Scholz, H., Ramond, J., Singh, C.M., and Heberlein, U. (2000). Functional ethanol tolerance in Drosophila. Neuron 28,261-271.
    [211]Schrader, J., Schilling, M., Holtmann, D., and Sell, D. (2009). Methanol-based industrial biotechnology:current status and future perspectives of methylotrophic bacteria. Trends in Biotechnology 27,107-115.
    [212]Schwartz, M., and Sofer, W. (1976). Diet-induced alterations in distribution of multiple forms of alcohol dehydrogenase in Drosophila. Nature 263,129-131.
    [213]Schwenkert, I., Eltrop, R., Funk, N., Steinert, J.R., Schuster, C.M., and Scholz, H. (2008). The hangover gene negatively regulates bouton addition at the Drosophila neuromuscular junction. Mechanisms of Development 125,700-711.
    [214]Sepp, K.J., and Auld, V.J. (2003). Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development. The Journal of Neuroscience 23, 8221-8230.
    [215]Shao, L., Shuai, Y., Wang, J., Feng, S., Lu, B., Li, Z., Zhao, Y., Wang, L., and Zhong, Y. (2011). Schizophrenia susceptibility gene dysbindin regulates glutamatergic and dopaminergic functions via distinctive mechanisms in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 108,18831-18836.
    [216]Sharkey, T. (1996). Emission of low molecular mass hydrocarbons from plants. Trends in Plant Science 1,78-82.
    [217]Sheeba, N., Madhyastha, N.A.A., and Joshi, A. (1998). Oviposition preference for novel versus normal food resources in laboratory populations of Drosophila melanogaster. Journal of Bioscience 23,93-100.
    [218]Shohat-Ophir, G., Kaun, K., Azanchi, R., and Heberlein, U. (2012). Sexual deprivation increases ethanol intake in Drosophila. Science 335,1351-1355.
    [219]Singh, A.K., and Jiang, Y. (1995). Quantitative chromatographic analysis of inositol phospholipids and related compounds. Journal of chromatography B, Biomedical applications 671, 255-280.
    [220]Snider, J., and Dawson, G. (1985). Tropospheric light alcohols, carbonyls, and acetonitrile Concentrations in the southwestern United States and Henry's law data. Journal of Geophysical Research 20,3797-3805.
    [221]Sofer, W., and Martin, P.F. (1987). Analysis of alcohol dehydrogenase gene expression in Drosophila. Annual Review of Genetics 21,203-225.
    [222]Starmer, W.T., Barker, J., Phaff, H.J., and Fogleman, J.C. (1986). Adaptations of Drosophila and Yeasts:their Interactions with the Volatile 2-propanol in the Cactus-Micro organism-Drosophila Model System. Australian Journal of Biological Sciences 39,69-78.
    [223]Sweeting, J., Siu, M., Wiley, M., and Wells, P. (2011). Species-and strain-dependent teratogenicity of methanol in rabbits and mice. Reproductive Toxicology 31,50-58.
    [224]Tabashnik, B.E. (1992). Resistance risk assessment:realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera:Chrysomelidae). Journal of Economic Entomology 85,1551-1559.
    [225]Tabashnik, B.E., and McGaughey, W.H. (1994). Resistance risk assessment for single and multiple insecticides:responses of Indianmeal moth (Lepidoptera:Pyralidae) to Bacillus thuringiensis. Journal of Economic Entomology 87,834-841.
    [226]Takamura, T., and Fuyama, Y. (1980). Behavior genetics of choice of oviposition sites in Drosophila melanogaster. I. Genetic-variability and analysis of behavior. Behavior Genetics 10, 105-120.
    [227]Tamura, T., Sone, M., Yamashita, M., Wanker, E.E., and Okazawa, H. (2009). Glial cell lineage expression of mutant ataxin-1 and huntingtin induces developmental and late-onset neuronal pathologies in Drosophila models. PLoS One 4, e4262.
    [228]Thapar, N., Kim, A., and Clarke, S. (2001). Distinct patterns of expression but similar biochemical properties of protein L-isoaspartyl methyltransferase in higher plants. Plant Physiology 125,1023-1035.
    [229]Theunissen, T.W., van Oosten, A.L., Castelo-Branco, G, Hall, J., Smith, A., and Silva, J.C. (2011). Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr Biol 21,65-71.
    [230]Thompson, J.L., Pogue-Geile, M.F., and Grace, A.A. (2004). Developmental pathology, dopamine, and stress:a model for the age of onset of schizophrenia symptoms. Schizophrenia Bulletin 30,875-900.
    [231]Tijet, N., Helvig, C., and Feyereisen, R. (2001). The cytochrome P450 gene superfamily in Drosophila melanogaster. annotation, intron-exon organization and phylogeny. Gene 262,189-198.
    [232]Tsuneizumi, K., Nakayama, T., Kamoshida, Y., Kornberg, T.B., Christian, J.L., and Tabata, T. (1997). Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389,627-631.
    [233]Urban, S., Lee, J.R., and Freeman, M. (2002). A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO Journal 21,4277-4286.
    [234]Urizar, N.L., Yang, Z., Edenberg, H.J., and Davis, R.L. (2007). Drosophila Homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. Journal of Neuroscience 27,4541-4551.
    [235]Van Delden, W. (1982). The alcohol dehydrogenase polymorphism in Drosophila melanogaster. Selection at an enzyme locus. Evolutionary Biology 15,87-222.
    [236]Van Delden, W., Kamping, A., and Van Dijk, H. (1975). Selection at the alcohol dehydrogenase locus in Drosophila melanogaster. Cellular and Molecular Life Sciences 31,418-420.
    [237]Van der Zel, A., Dadoo, R., Geer, B., and Heinstra, P. (1991). The involvement of catalase in alcohol metabolism in Drosophila melanogaster larvae. Archives of biochemistry and biophysics 287,121.
    [238]Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, research0034.
    [239]Voelker, R., Langley, C., Brown, A., Ohnishi, S., Dickson, B., Montgomery, E., and Smith, S. (1980). Enzyme null alleles in natural populations of Drosophila melanogaster:frequencies in a North Carolina population. Proceedings of the National Academy of Sciences of the United States of America 77,1091-1095.
    [240]von Dahl, C., Havecker, M., Schlogl, R., and Baldwin, I. (2006). Caterpillar-elicited methanol emission:a new signal in plant-herbivore interactions? The Plant Journal 46,948-960.
    [241]Vorwerk, S., Somerville, S., and Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science 9,203-209.
    [242]Wallage, H., and Watterson, J. (2008). Formic acid and methanol concentrations in death investigations. Journal of Analytical Toxicology 32,241-247.
    [243]Wang, K., Guo, Y., Wang, F., and Wang, Z. (2011). Drosophila TRPA channel Painless inhibits male-male courtship behavior through modulating olfactory sensation. PLoS One 6, e25890.
    [244]Waters, L., Zelhof, A., Shaw, B., and Ch'ang, L. (1992). Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 89,4855-4859.
    [245]Weber, A.N., Gangloff, M., Moncrieff, M.C., Hyvert, Y., Imler, J.L., and Gay, N.J. (2007). Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand. Journal of Biological Chemistry 282,13522-13531.
    [246]Weiss, E., Maness, P., and Lauder, J. (1998). Why do neurotransmitters act like growth factors? Perspectives on Developmental Neurobiology 5,323-335.
    [247]Wen, T., Parrish, C.A., Xu, D., Wu, Q., and Shen, P. (2005). Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proceedings of the National Academy of Sciences of the United States of America 102,2141-2146.
    [248]Willats, W., McCartney, L., Mackie, W., and Knox, J. (2001). Pectin:cell biology and prospects for functional analysis. Plant Molecular Biology 47,9-27.
    [249]Willingham, A., and Keil, T. (2004). A tissue specific cytochrome P450 required for the structure and function of Drosophila sensory organs. Mechanisms of Development 121,1289-1297.
    [250]Winberg, J.O., Thatcher, D.R., and McKinley-McKee, J.S. (1982). Alcohol dehydrogenase from the fruitfly Drosophila melanogaster. Substrate specificity of the alleloenzymes AdhS and AdhUF. Biochimica et Biophysica Acta 70,7-16.
    [251]Wolf, F.W., and Heberlein, U. (2003). Invertebrate models of drug abuse. Journal of Neurobiology 54,161-178.
    [252]Woods, H., and Singer, M. (2001). Contrasting responses to desiccation and starvation by eggs and neonates of two Lepidoptera. Physiological and Biochemical Zoology 74,594-606.
    [253]Xiong, W.C., and Montell, C. (1995). Defective glia induce neuronal apoptosis in the repo visual system of Drosophila. Neuron 14,581-590.
    [254]Yang, C., Belawat, P., Hafen, E., Jan, L.Y., and Jan, Y.N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319,1679-1683.
    [255]Yang, J., McCart, C., Woods, D., Terhzaz, S., and Greenwood, K. (2007).A Drosophila systems approach to xenobiotic metabolism. Physiological Genomics 30,223-231.
    [256]Yu, Q., Lu, C., Li, W., Xiang, Z., and Zhang, Z. (2009). Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC genomics 10,553.
    [257]Zars, T. (2012). She said no, pass me a beer. Science 335,1309-1310.
    [258]Zhang, S.D., and Odenwald, W.F. (1995). Misexpression of the white (w) gene triggers male-male courtship in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 92,5525-5529.
    [259]Zhong, J.F., Wang, S.P., Shi, X.Q., Mu, L., and Li, GQ. (2010). Hydrogen sulfide exposure increases desiccation tolerance in Drosophila melanogaster. Journal of Insect Physiology 56, 1777-1782.
    [260]Zhu, B., Pennack, J.A., McQuilton, P., Forero, M.G, Mizuguchi, K., Sutcliffe, B., Gu, C.J., Fenton, J.C., and Hidalgo, A. (2008). Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLoS Biology 6, e284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700