用户名: 密码: 验证码:
大规模路网下中心式动态交通诱导系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能运输系统作为国际公认解决交通问题的最佳途径,已经被列入我国《国家中长期科学与技术发展纲要(2006-2020)》优先发展主题。交通诱导系统是智能运输系统的核心系统之一,其中,中心式诱导由于能够有效避免分布式诱导所造成的交通拥挤转移问题,是国际公认解决交通拥挤最有效的诱导方式。本文依托国家“863”计划项目,对大规模路网下中心式动态交通诱导系统关键技术进行了研究,文中分析了目前中心式动态交通诱导系统在实际应用过程中存在的问题,指出了本文的研究目的和意义,并给出了系统的研究思路、具体方法、大规模路网下中心式动态交通诱导系统的逻辑框架和物理框架,并对其关键技术理论进行了分析。研究了基于浮动车的路段行程时间估计技术,包括基于模糊逻辑的GPS数据地图匹配、基于单车的路段行程时间估计及基于多车的路段行程时间估计;研究了基于线圈检测器的路段行程时间估计技术,针对单线圈检测器无法直接对速度参数进行检测,建立了基于ACE变换的区间速度平均速度回归估计模型;研究了基于固定型检测器和浮动车的交通信息融合技术,建立了基于TSGA-LSSVM的交通信息融合模型;研究了基于样本分类拟合的交通信息短时预测技术,建立了基于KSOM-BP神经网络的交通信息短时预测模型;并采用实际数据对上述相关模型、算法进行了实例验证,验证结果表明,本文所提出的模型、算法具有较好的准确性、实用性和先进性。同时,基于多级递阶网络分解方法和双端队列最短路径计算方法,提出了基于MLHND-TQQ的路径优化并行计算技术,并搭建了并行计算平台,采用三个城市的实际路网数据对路径优化计算时间进行了测试,测试结果表明,该项技术能够满足大规模路网下中心式动态交通诱导系统诱导实时性要求。
Rapid growth in vehicle ownership is bringing more and more urban traffic congestion problem. The socioeconomic development and people’s daily lives are both seriously affected. Central traffic flow guidance system (CTFGS) is one of the core systems of intelligent transportation systems (ITS), which is recognized internationally as the best way of traffic flow guidance to solve traffic problems. Based on the national high-tech R&D program (863 program), this paper mainly researches on the key technology of centrally dynamic traffic flow guidance system under large-scale network.
     The mainly work is as:
     1) Achitecture design and key technologies theories analysis of centrally dynamic traffic flow guidance system under large-scale network This paper gives out the logical and physical architecture, reviews and analysizes the key technologies of centrally dynamic traffic flow guidance system under large-scale network.
     2) Link travel time estimation technology based on floating car Floating car can obtain travel time data. This paper designs a set of map-matching technology based on fuzzy logic method, which can select different criteria depending on the time interval for GPS data collection. A path travel time dividing method based on vehicles’travelling characteristics is proposed, and the average link travel time is estimated under the condition of sufficient and insufficient sample.
     3) Traffic information fusion technology based on fixed detector and floating car Fix detector and floating car are complementary with each other on traffic information collection. This paper presents a speed estimation method based on the regression model with ACE transform, which is used to obtain the link travel time data with cycle detector data. The fusion model based on TSGA-LSSVM is proposed to fuse the cycle detector data and floating car data. The results of model test based on real data show that the fusion model has higher precision than any single method, and TSGA is faster than GA for parameter optimation.
     4) Traffic information short-term forecasting technology based on sample classification fitting
     Traffic guidance based on the forecasted dynamic traffic information can void the lag problem of guidance. This paper presents a traffic information short-term forecasting technology based on sample classification fitting, which classifies the history sample based on KSOM method, and establishes sevel BP neural network forecasting models. The results of model test with the real data show that KSOM-BP neural network method has higher precision than BP neural network based on the whole history sample being trained
     5) Central guidance path optimization parallel computing technology under large scale network
     Path optimization under large scale network always is the Gordian knot. This paper presents a fast path optimization method named MLHND-TQQ through the reseach on multilevel hierarchical network decomposition method and TQQ shortest path computing method. The results of test based on real network data show that this technology can fully meet the real-time demands for central guidance.
     Finally, work summary in this paper and the suggestion on future work are given. Above the research achievements give theoretical significance as well as guidance value for the research and application on centrally dynamic traffic flow guidance system under large-scale network.
引文
[1]杨兆升.智能运输系统概论[M].北京:人民交通出版社, 2003: 2-4.
    [2] Wang C, Quddus M A, Ison S G. Impact of traffic congestion on road accidents: A spatial analysis of the M25 motorway in England[J]. Accident Analysis and Prevention. 2009, 41(4): 798-808.
    [3] Huapu Lu K K. the problems of urban traffic environment and the countermeasures in china[J]. National Institute of Informatics Scholarly and Academic Information Navigator. 1999, 3: 147-162.
    [4] Shuanglong Li M C. ONE-WAY EXPRESSWAY IN RIBBON CITY THE CASE OF LANZHOU CITY[Z]. 2003951-958.
    [5]杨兆升.城市交通诱导系统理论与模型[M].北京:人民交通出版社, 2000: 12-26.
    [6] Berger C R, Smith E. Intelligent transportation systems provide operational benefits for New York metropolitan area roadways: A systems engineering approach[C]. Farmingdale, NY, United states: Inst. of Elec. and Elec. Eng. Computer Society, 2007.
    [7] Figueiredo L, Jesus I, Tenreiro Machado J A, et al. Towards the development of intelligent transportation systems[C]. Oakland, CA, United states: Institute of Electrical and Electronics Engineers Inc., 2001.
    [8]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[Z].中国, 200617.
    [9] Yang Z, Ma D. Study on the implement technologies of urban traffic flow guidance system[C]. Guilin, China: American Society of Civil Engineers, 2002.
    [10] Yamashita T, Izumi K, Kurumatani K. Effect of using route information sharing to reduce traffic congestion[C]. Acapulco, Mexico: Springer Verlag, 2004.
    [11] Yamashita T, Izumi K, Kurumatani K. Investigation of reduction of traffic congestion with route information sharing[C]. New York, NY, United states: Association for Computing Machinery, 2004.
    [12] Abdulhai B, Look H. Impact of dynamic and safety-conscious route guidance on accident risk[J]. Transportation Engineering. 2003, 129(4): 369-376.
    [13] Lu Z, Fan B. Integration of ramp control and route guidance under accident conditions[J]. Kongzhi Lilun Yu Yinyong/Control Theory and Applications. 2009, 26(10): 1151-1156.
    [14] Oka T, Ishihara T. Operation Guidance System for Reducing Pollution Load Basedon Inflow Volume Predictions [Z]. WEFTEC 2007, 20079321-9333.
    [15] Chen Q, Stauss H J. Evaluating traffic effects of a route guidance system by dynamic simulation[J]. Simulation Practice and Theory. 1997, 5(7-8): 793-804.
    [16] Zhang H, Sun J Q, Hui Q J, et al. Vehicle route optimization of Centrally Dynamic Route Guidance Systems[C]. Malta: WITPress, 2008.
    [17] Rilett L R, Van Aerde M W. Modelling distributed real-time route guidance strategies in a traffic network that exhibits the Braess paradox[C]. Dearborn, MI, USA: Publ by SAE, 1991.
    [18] Bazzan A L C, Klugl F. Case studies on the Braess Paradox: Simulating route recommendation and learning in abstract and microscopic models[J]. Transportation Research Part C: Emerging Technologies. 2005, 13(4): 299-319.
    [19] Rilett L R, Van Aerde M W. Modelling distributed real-time route guidance strategies in a traffic network that exhibits the Braess paradox[C]. Dearborn, MI, USA: Publ by SAE, 1991.
    [20] Von Tomkewitsch R. Dynamic route guidance and interactive transport management with ALI-SCOUT[J]. IEEE Transactions on Vehicular Technology. 1991, 40(1 pt 1): 45-50.
    [21] D.e. Boyce D H L B. Dynamic user-optimal route choice model of a large-scale traffic network[Z]. Taipei, Taiwan,ROC: 1995.
    [22] O'Cearbhaill E A, O'Mahony M. Parallel implementation of a transportation network model[J]. Parallel and Distributed Computing. 2005, 65(1): 1-14.
    [23] Tomkewitsch R. ALI-SCOUT - A UNIVERSAL GUIDANCE AND INFORMATION SYSTEM FOR ROAD TRAFFIC.[C]. London, Engl: IEE, 1986.
    [24] Harris S P, Rabone A J, Randall D, et al. ROGUS. A simulation of dynamic Route Guidance systems[J]. Traffic Engineering and Control. 1992, 33(5): 327-329.
    [25] Porter C, Hochmuth J, Nicarico T, et al. EVALUATION OF THE ADVANCE TRAFFIC INFORMATION CENTER[Z]. Washington, D.C.: 1996139-148.
    [26] Tamura K, Hirayama M. Toward realization of VICS - vehicle information and communications system[C]. Ottawa, Ont, Can: Publ by IEEE, 1993.
    [27] Nagaoka K. Travel time system by using Vehicle Information and Communication System (VICS)[J]. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. 1999: 816-819.
    [28] Nakahara T, Yumoto N. Its development and deployment in Japan[C]. Boston, MA, USA: IEEE, 1997.
    [29] Pang G, Takahashi K, Yokota T, et al. Adaptive route selection for dynamic routeguidance system based on fuzzy-neural approaches[C]. Seattle, WA, USA: IEEE, 1995.
    [30] Shimoura H, Tenmoku K. Accuracy of travel time necessary for DRGS and evaluation of measuring algorithm[C]. Tokyo, Jpn: IEEE, 1996.
    [31] Yamamoto T, Liu K, Morikawa T. Variability of travel time estimates using probe vehicle data[C]. Xi'an, China: American Society of Civil Engineers, 2006.
    [32]唐克双,姚恩建.日本ITS开发和运用的实例——名古屋基于浮动车信息的P-DRGS简介[J].城市交通. 2006, 4(3): 74-76.
    [33] A. Hadj-Alouane N H 0 J, Underwood S. The Ali-Scout Route Guidance Simulation[R]. Ann Arbor, Michigan: The University of Michigan, 1996.
    [34] Y S. MARRIAGE MADE IN MICHIGAN[Z]. 1997.
    [35] Boyce D K A S J. Design and implementation of ADVANCE[Z]. IEEE, 1993415-426.
    [36] Lv W, Xu L, Zhu T, et al. An FCD information processing model under traffic signal control[C]. Pisa, Italy: IEEE Computer Society, 2009.
    [37] Kerner B S, Demir C, Herrtwich R G, et al. Traffic state detection with floating car data in road networks[C]. Vienna, Austria: Institute of Electrical and Electronics Engineers Inc., 2005.
    [38] Quddus M A, Ochieng W Y, Noland R B. Integrity of map-matching algorithms[J]. Transportation Research Part C: Emerging Technologies. 2006, 14(4): 283-302.
    [39] Greenfeld J S. Matching GPS observations to locations on a digital map[J]. In proceedings of the 81st Annual Meeting of the Transportation Research Board. 2002.
    [40] Bernstein D K A. An introduction to map-matching for personal navigation assistants[R]. , 1996.
    [41] Velaga N R, Quddus M A, Bristow A L. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems[J]. Transportation Research Part C: Emerging Technologies. 2009, 17(6): 672-683.
    [42] Meng Y. Improved Positioning of Land Vehicle in ITS Using Digital Map and Other Accessory Information[D]. Hong Kong: Hong Kong Polytechnic University, 2006.
    [43] Quddus M A, Ochieng W Y, Noland R B. Current map-matching algorithms for transport applications: State-of-the art and future research directions[J]. Transportation Research Part C: Emerging Technologies. 2007, 15(5): 312-328.
    [44] Ochieng W Y Q M. Map-matching in complex urban road networks.[J]. Brazilian Journal of Cartography (Revista Brasileira de Cartografia). 2004, 55(2): 1-18.
    [45] Honey S K Z W. Vehicle navigational system and method[P].
    [46] Dewandaru A, Said A M, Matori A N. A novel map-matching algorithm to improve vehicle tracking system accuracy[C]. Kuala Lumpur, Malaysia: Inst. of Elec. and Elec. Eng. Computer Society, 2007.
    [47] Jo T, Haseyama M, Kitajima H. Map matching method with the innovation of the Kalman filtering[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. 1996, E79-A(11): 1853-1855.
    [48] El Najjar M E, Bonnifait P. A road-matching method for precise vehicle localization using Belief Theory and Kalman filtering[J]. Autonomous Robots. 2005, 19(2): 173-191.
    [49] Hu L, Gu Z, Yang Y, et al. Map matching in vehicle navigation based on weighted D-S evidence theory[J]. Zhongguo Gonglu Xuebao, Journal of Highway and Transport. 2008, 21(2): 116-120.
    [50] Quddus M A, Noland R B, Ochieng W Y. A high accuracy fuzzy logic based map matching algorithm for road transport[J]. Intelligent Transportation Systems: Technology, Planning, and Operations. 2006, 10(3): 103-115.
    [51]张存保,杨晓光.基于浮动车的道路交通信息采集系统研究[C].北京: 2006.
    [52]方志伟.基于浮动车数据的城市路段行程时间预测研究[D].北京:北京交通大学, 2007.
    [53] Li S, Zhu K. Addressing issues with GPS data accuracy and position update rate for field traffic studies[J]. ITE Journal (Institute of Transportation Engineers). 2003, 73(2): 32-37.
    [54] Hellinga B, Izadpanah P, Takada H, et al. Decomposing travel times measured by probe-based traffic monitoring systems to individual road segments[J]. Transportation Research Part C: Emerging Technologies. 2008, 16(6): 768-782.
    [55] Li Q. Arterial Road Travel Time Study using Probe Vehicle Data[D]. Nagoya University, 2007.
    [56] Quiroga C A B D. Determination of Sample Sizes for Travel Time Studies[J]. 1ITE Jour nal. 1998, 68(8): 92-98.
    [57] Sen A T P V. Frequency of probe reports and variance of travel time estimates[J]. TRANSPORTATION ENGINEERING-ASCE. 1997, 123: 290-297.
    [58] Chen M, Chien S I J. Determining the number of probe vehicles for freeway travel time estimation by microscopic simulation[J]. Transportation Research Record. 2000(1719): 61-68.
    [59]涂智,李昊,姚琛, et al.基于最小浮动车样本数量的道路覆盖率与交通信息更新周期研究[J].中国铁道科学. 2006, 27(5): 127-131.
    [60] Srinivasan K K, Jovanis P P. Determination of number of probe vehicles required for reliable travel time measurement in urban network[J]. Transportation Research Record. 1996(1537): 15-22.
    [61] De Fabritiis C, Ragona R, Valenti G. Traffic estimation and prediction based on real time floating car data[C]. Beijing, China: Institute of Electrical and Electronics Engineers Inc., 2008.
    [62]林思.基于仿真试验的GPS浮动车最佳样本容量确定方法研究[J].交通与计算机. 2008, 26(143): 72-74.
    [63] Jiang G, Gang L, Cai Z. Impact of probe vehicles sample size on link travel time estimation[C]. Toronto, ON, Canada: Institute of Electrical and Electronics Engineers Inc., 2006.
    [64]张存保,严新平.固定检测器和移动检测器的交通信息融合方法[J].交通与计算机. 2007, 25(136): 14-17.
    [65] H K M K. Review of multisensor data fusion architectures and techniques [Z]. 1993, 25-27.
    [66] Tarko A, Rouphail N. Travel Time Data Fusion In Advance[C]. Seattle, WA, USA: Publ by ASCE, 1993.
    [67] Choi Y S C A. A Development of Travel Time Estimation Algorithm Fusing GPS Probe and Loop Detector[J]. Korean Transportation Society. 1999, 17(3): 97-116.
    [68] C K A C. Travel time estimation algorithm using GPS probe and loop detector data fusion[Z]. Washington D.C.: 2001.
    [69] Ruey Long Cheu D L A C. An Arterial Speed Estimation Model Fusing Data from Stationary and Mobile Sensors[Z]. Oakland: 200125-29.
    [70] Zou Liang Z L. Link Travel Time Estimation Model Fusing Data from Mobile and Stationary Detector Based on BP Neural Network[Z]. 20062146-2149.
    [71]熊文华,徐建闽,林思.基于BP网络的浮动车与线圈检测数据融合模型[J].计算机仿真. 2009, 26(9): 235-238.
    [72] Nanthawichit C, Nakatsuji T, Suzuki H. Application of Probe-Vehicle Data for Real-Time Traffic-State Estimation and Short-Term Travel-Time Prediction on a Freeway[C]. National Research Council, 2003.
    [73] Lianyu Chu J O A W. Adaptive Kalman Filter Based Freeway Travel time Estimation[Z]. Washington D.C.: 2005.
    [74] Sethi V, Bhandari N, Koppelman F S, et al. Arterial incident detection using fixed detector and probe vehicle data[J]. Transportation Research Part C: Emerging Technologies.1995, 3(2): 99-112.
    [75] Ivan J N, Sethi V. Data fusion of fixed detector and probe vehicle data for incident detection[J]. Computer-Aided Civil and Infrastructure Engineering. 1998, 13(5): 329-337.
    [76] Dia H, Thomas K. Development and evaluation of arterial incident detection models using fusion of simulated probe vehicle and loop detector data Hussein Diaa, , and Kim Thomasb, 1,[J]. Information Fusion. 2005, 5(5): 313-331.
    [77] Guiyan J, Zhili C, Longhui G, et al. Study on automated incident detection algorithms for freeways based on SVM[C]. Dalian, China: Institute of Electrical and Electronics Engineers Inc., 2006.
    [78]姜桂艳.基于实时信息的城市道路交通状态评价指标体系研究[J].交通与计算机. 2007, 25(5): 21-24.
    [79]邹亮徐建闽朱玲湘.基于融合技术的道路交通状态判别模型[J].清华大学学报(自然科学版). 2007, 47(z2): 1822-1825.
    [80]孔庆杰,陈宜开,刘允才.基于证据融合的实时交通状态估计[J].上海交通大学学报. 2008, 42(10): 1682-1686.
    [81]蔡志理.高速公路交通事件检测及交通疏导技术研究[D].长春:吉林大学, 2007.
    [82]王春娥.基于数据融合的城市道路交通状态判别算法研究[D].长春:吉林大学, 2008.
    [83]杨兆升.新一代智能化交通控制系统关键技术及其应用[M].北京:人民交通出版社, 2008: 15-30.
    [84]李娟,罗霞,姚琛.基于多源数据的交通状态判定研究[J].铁道运输与经济. 2009(10): 77-80.
    [85]高慧赵贾.短时交通流预测方法综述[J].济南大学学报(自然科学版). 2008, 22(1): 88-94.
    [86]王进史其信.神经网络模型在短期交通流预测领域应用综述[J].河南科技大学学报(自然科学版). 2005, 26(2): 22-26.
    [87]杨兆升王媛管青.基于支持向量机的短时交通流预测方法基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学报). 2006, 36(6): 881-884.
    [88]梅宏标,王坚,张慧哲.城市快速路交通流分形预测算法的研究[J].公路交通科技. 2009, 26(10): 105-110.
    [89] Jiang H, Ma R, Wei X, et al. A method of rapidly identifying chaos characteristics of short-term traffic flow based on small-data-sets[J]. Tiedao Xuebao/Journal of the China Railway Society. 2006, 28(2): 63-66.
    [90] Xue J, Shi Z. Short-Time Traffic Flow Prediction Based on Chaos Time Series Theory[J]. Transportation Systems Engineering and Information Technology. 2008, 8(5): 68-72.
    [91]贺同光,马寿峰,冯蔚东.对交通流分形问题的初步研究[J].中国公路学报. 2002, 15(4): 82-85.
    [92]郑长青.研究城市快速公路交通流的分形数学方法[J].交通运输系统工程与信息. 2006, 6(1): 96-99.
    [93]梅宏标,王坚,张慧哲.城市快速路交通流分形预测算法的研究[J].公路交通科技. 2009, 26(10): 105-110.
    [94]张晓利.基于小波分析与神经网络的交通流短时预测方法[J].信息与控制. 2007, 36(4): 467-475.
    [95]杨芳明,朱顺应.基于小波的短时交通流预测[J].重庆交通学院学报. 2006, 25(3): 99-102.
    [96]郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究[J].中国公路学报. 2005, 18(1): 85-89.
    [97]刘国林,高放,李俊芬.最优组合预测及其在短时交通流预测中的应用[J].山东科技大学学报(自然科学版). 2009, 28(1): 9-13.
    [98]倪安宁.交通网络分析中的最短路径并行算法研究与实现[D].长春:吉林大学, 2004.
    [99] Zhan F B, Noon C E. Shortest path algorithms: an evaluation using real road networks[J]. Transportation Science. 1998, 32(1): 65-73.
    [100] Zhan F B. Three Fastest Shortest Path Algorithms on Real Road Networks: Data Structures and Procedures[J]. Geographic Information and Decision Analysis. 1997, 1(1): 70-82.
    [101]隽志才,倪安宁,贾洪飞,李杰.两种策略下的最短路径并行算法研究与实现[J].系统工程理论方法应用. 2006, 15(2): 123-127.
    [102] Liu L, Kuo M, Huang S, et al. Gradient method on the initial partition of Fiduccia-Mattheyses (FM) algorithm[C]. San Jose, CA, USA: IEEE, 1995.
    [103]数据挖掘研究院.多层概图文档聚类方法中精化算法的研究[Z]. 2010.
    [104] Hendrickson B, Leland R. Multilevel algorithm for partitioning graphs[C]. San Diego, CA, USA: IEEE, 1995.
    [105] F M. Global quiescence detection based on credit distribution and recovery[J]. Information Processing Letters. 1989, 30(4): 195-200.
    [106] Tsitsiklis D P B A. Convergence Rate and Termination of Asynchronous IterativeAlgorithms[Z]. Irakleion, Greece: 1989461-470.
    [107]刘玉雪,李文敬,杨立志,张海志. Credit—Recovery分布式并行终止检测算法的改进[J].广西师范学院学报(自然科学版). 2009, 26(2): 78-82.
    [108]顾国昌,刘文捷.周期终止探测算法研究[J].计算机应用. 2006, 26(2): 265-278.
    [109]陈坤.基于移动源数据的城市路网行程时间可靠性评价模型与算法[D].北京:北京交通大学, 2008.
    [110] Zhao Y. Vehicle Location and Navigation Systems: Intelligent Transportation Systems[D]. Boston, London: 1997.
    [111] B L A F. Estimating optimal transformations for multiple regression and correlation[J]. the American Statistical Association. 1985, 80(391): 580-598.
    [112] Murphy D W A M. Estimating Optimal Transformations for Multiple Regression Using the ACE Algorithm[J]. Data Science. 2004, 2(4): 329-346.
    [113] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters. 1999, 9(3): 293-300.
    [114] Guo Z, Bai G. Application of Least Squares Support Vector Machine for Regression to Reliability Analysis[J]. Chinese Journal of Aeronautics. 2009, 22(2): 160-166.
    [115] Zhang H, Luo Y, Zhang L, et al. Cultivated land change forecast based on genetic algorithm and least squares support vector machines[J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering. 2009, 25(7): 226-231.
    [116] Yang Z, Gu X S, Liang X Y, et al. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity[J]. Materials and Design. 2010, 31(3): 1042-1049.
    [117] Pan N, Hsaio P, Chen K. A study of project scheduling optimization using Tabu Search algorithm[J]. Engineering Applications of Artificial Intelligence. 2008, 21(7): 1101-1112.
    [118]叶世伟,史忠植(译).神经网络原理[M].北京:机械工业出版社, 2004: 321-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700