用户名: 密码: 验证码:
石墨烯液晶及宏观组装纤维
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是具有一系列优越性能的新型二维碳纳米材料,对于复合材料、能量存储、电子器件等领域有着重要的应用价值。在利用石墨烯作为构筑单元制备宏观组装材料的研究热潮中,始终存在一个挑战:如何通过有效的液相组装方法制备有序化石墨烯宏观组装材料,从而将单片石墨烯的优越性质充分转化为宏观材料的性能。针对石墨烯宏观有序组装中液相有序化和液固有序化转变这两个关键科学问题,本论文开展了相应的研究,发现了氧化石墨烯的溶致液晶性质并由此实现了高性能多功能石墨烯宏观组装纤维的连续制备。
     通过合成高溶解性单层氧化石墨烯,发现了其向列相液晶,确认了液晶内部的有序排列结构,绘制了液晶相图。进而通过差速离心分级制得了窄分布氧化石墨烯,发现了二维胶体液晶领域以前未见报道的手性液晶相,确认了氧化石墨烯手性液晶的准长程有序层状结构和光学活性,探索了其内部螺旋位错手性结构,提出了“螺旋层状相”结构模型,解释了新型手性液晶的结构手性来源。氧化石墨烯液晶的发现和相态确认丰富了胶体液晶的内涵,为深入研究胶体液晶物理提供了理想的二维胶体模型体系,同时液晶的液相有序化也为高性能石墨烯宏观有序材料的宏量制备奠定了基础。
     提出了液晶湿纺组装的有效液固有序化转变方法,实现了具有一致排列结构的高性能石墨烯纤维的连续制备,这代表了高效利用石墨制备高性能碳基纤维的一条新路线。通过调控片间作用力和纺丝工艺,分别制备出高强度、高导电率及多孔高比表面积三大系列石墨烯纤维:(1)通过大片氧化石墨烯液晶湿拉纺丝及钙离子交联,化学还原后石墨烯纤维的拉伸强度达到500MPa;通过片间硫化共价交联,石墨烯纤维拉伸强度进一步提高至1.1GPa,其断裂伸长率提高至9%,断裂能达到49MJ/m3(与商业化碳纤维T800接近);(2)通过氧化石墨烯液晶与银纳米线复合纺丝制备了高导电银掺杂石墨烯纤维(电导率为9.3×104S/m),可作为柔性轻质导线应用于可拉伸电子电路领域;(3)采用‘冷冻干纺’法制备了轴取向多孔石墨烯气凝胶纤维,纤维兼具高表面积(884m2/g)和高比强度(188kN·m/kg)。石墨烯纤维同时具有高强度、高导电、高韧性、大伸长高断裂能等特性,是一类新型高性能碳基纤维材料,可应用于高性能纤维、柔性功能织物、柔性线型器件、高性能复合材料等领域。
Graphene, a two-dimensional (2D) mesh of carbon atoms, has received widespread attention due to its exceptional mechanical, electrical, and thermal properties. But harnessing these attributes requires finding a way to turn the single atomic layer carbon flakes into macroscopically ordered materials. Because of the impossibility of melting processing for carbon materials, fluid assembly is the only viable approach to meet such a big challenge. Therefore, two fundamental problems should be resolved at first: orientational ordering in fluids and ordering phase-transformation from ordered fluids into ordered solid materials. Accordingly, this dissertation presented systemic studies on the finding of graphene oxide liquid crystals (LCs) and the wet-spinning assembly methodlogy for high-performance macroscopic graphene fibers.
     By chemical exfoliation of graphite, highly soluble, single-layer graphene oxide (GO) sheets were prepared in large scale, and their spontaneous formation of nematic LCs in aqueous dispersions was found. Detailed POM and SEM characterizations revealed the ionic concentration-dependant lyotropic liquid crystalline diagram and confirmed the orientational alignment in GO nematic LCs. Further, the thesis obtained narrowly distributed GO sheets by isopycnic differential centrifugation and found a new chiral liquid crystal of two-dimensional colloids. Synchrotron SAXS and CD examinations revealed two important characteristical attributes of this new chiral mesophase, including quasi-long-range ordered lamellar structure and strong optical activity. Freeze-fracture SEM and POM experimentally confirmed the inner twist dislocation as important chiral structural element and accordingly the 'helical-lamellar-phase' model was proposed as the interpretative structural model of this new2D colloidal chiral mesophase. The finding of the two GO mesophases promoted deeper understanding of colloidal fluid assembly, indicating that graphene dispersive system can be served as an ideal model to further inverstigations in2D colloidal LCs. Even more important, the orientational ordering in GO mesophases sets the basis for the preparation of graphene macrocopic ordered materials.
     Based on GO LCs with orientational ordering in fluid state, the thesis proposed a new wet-spinning assembly stretagy to realize the fabrication of high-performance graphene fibers originated from mineral graphite. The directional flow and wet-drawing in wet-spinning process promoted the effective phase-transformation from ordered fluids of GO LCs into ordered solid materials of graphene fibers, which is verified by the uniform alignment of graphene sheets along the fiber axis and the high-performance of fibers. By this effective assembly method, the thesis designed three serials of graphene fibers with high mechanical strength, high electrical conductivity, and high porosity, respectively.
     (i) By tuning the interlayer interaction and optimizing the wet-spinning process, graphene fibers with high mechanical tensile strength and high toughness were obtained. The wet-drawing process and the Ca2+crosslinking promoted the tensile strength of graphene fibers to500MPa. Further, with the introduction of covlent polysulfide crosslinking, the graphene fiber performed the record tensile strength up to1.1GPa and a increasing in breakage elongation (9%), with a comparable toughness (49MJ/m3) with that of conventional stong carbon fiber T800(51MJ/m3).
     (ii) Wet-spinning of the complex GO LCs and Ag nanowires resulted in Ag-doped graphene fibers with high electrical conductivity (9.3X104S/m). Together with the remaining strength and flexibility, the high electrical conductive performance made Ag-doped graphene fiber promising applications as stretchable circuits.
     (iii) Lightweight graphene aerogel fibers with aligned pores were achieved via "freeze-dry spinning" method from GO LCs. Due to the "porous core-dense shell" structure, the aerogel graphene fibers possessed high specific surface area (884m2/g), high specific tensile strength (188kN-m/kg) and fine conductivity (4.9×103S/m).
     The combination of high mechanical strength, good flxiblity, high toughness and fine conductivity renders the new graphene fibers possible applications in high performance fibers, functional textiles, flexible fiberous devices and high performance composites.
引文
1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C60: buckminsterfullerne. Nature 1985,3/5(7451):p.162-163.
    2. S. Iijima, Helical microtubules of graphitic carbon. Nature 1991,354(6348):p.56-58.
    3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306(5696):p.666-669.
    4. C. Schafhaeutl and J. Park, Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden.1840,27(1):p.129-157.
    5. M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite. Advances in physics.1981,30(2):p.139-326.
    6. Y. Koike, H. Suematsu, K. Higuchi and S. Tanuma, Superconductivity in graphite-alkali metal intercalation compounds. Physica B+C 1980, PP(1-4):p.503-508.
    7. N. Emery, C. Herold, J. F. Mareche and P. Lagrange, Synthesis and superconducting properties of CaC6. Science and Technology of Advanced Materials 2008,9(4):p.044102.
    8. G. Csanyi, P. B. Littlewood, A. H. Nevidomskyy, C. J. Pickard and B. D. Simons, The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nat. Phys.2005,7(1):p.42-45.
    9. H. P. Boehm, R. Setton and E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Carbon 1986,24(2):p.241-245.
    10. R. E. Peierls,14. Remarks on transition temperatures. Helv. Phys. Acta.1934,7(Suppl.2):p. 81-83.
    11. F. Banhart, J. Kotakoski and A. V. Krasheninnikov, Structural defects in graphene. ACSNano 2011,5(1):p.26-41.
    12. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S. Roth, The structure of suspended graphene sheets. Nature 2007,446(7131):p.60-63.
    13. X. Xie, L. Ju, X. F. Feng, Y. H. Sun, R. F. Zhou, S. S. Fan, Q. Q. Li and K. L. Jiang, Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett.2009, 9(1):p.2565-2570.
    14. C. G. Lee, X. D. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321(5887):p.385-388.
    15. F. Liu, P. M. Ming and J. Li, Ab initio calculation of ideal strength and photon instability of graphene under tension. Phys. Rev. B,2007,76(6):p.064120.
    16. E. Konstaninova, S. O. Dantas and P. M. Barone, Electronic and elastic properties of two-dimensional carbon planes. Phys. Rev. B,2006,74(3):p.035417.
    17. A. Sakhaee-Pour, Elastic properties of single-layered graphene sheet. Solid State Commun. 2009,149(1-2):p.91-95.
    18. T. Filleter, J. L. McChesney, A. Bostwick, E. Rotenberg, K. V. Emtsev, Th. Seyller, K. Horn and R. Bennewitz, Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett.2009, 102(8):p.086102.
    19. D. Berman, A. Erdemir and A. V. Sumant, Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 2013,59:p.167-175.
    20. C. G Lee, Q. Y. Li, W. Kalb, X. Z. Liu, H. Berger, R. W. Carpick and J. Hone, Frictional characteristics of atomically thin sheets. Science 2010,328(5974):p.76-80.
    21. F. Schwierz, Graphene transistors. Nat. Nanotechnol.2010,5(7):p.487-496.
    22. J. J. Tang, F. Di, X. Xu, Y. H. Xiao and J. F. Che, Transparent conductive graphene films. Prog. Chem.2012,24(4):p.501-511.
    23. X. Huang, Z. Y. Zeng, Z. X. Fan, J. Q. Liu and H. Zhang, Graphene-based electrodes. Adv. Mater.2012,24(45):p.5979-6004.
    24. R. J. Young, I. A. Kinloch, L. Gong and K. S. Novoselov, The mechanics of graphene nanocomposites:a review. Composites Science and Technology 2012,72(12):p.1456-1476.
    25. J. H. Du and H. M. Cheng, The fabrication, properties and uses of graphene/polymer composites. Macromol. Chem. Phys.2012,213(10-11):p.1060-1077.
    26. D. Q. Wu, F. Zhang, H. W. Liang and X. L. Feng, Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012,41(18):p. 6160-6177.
    27. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys.2009,81(1):p.109-162.
    28. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun.2008,146(9-10):p. 351-355.
    29. K. I. Bolotin, K. J. Sikes, H. L. Stormer and P. Kim, Temperature-dependent transport in suspended graphene. Phy. Rev. Lett.2008,101(9),096802.
    30. A. K. Geim and K. S. Novoselov, The rise of graphene. Nat. Mater.2007,6(3):p.183-191.
    31. K. Geim, Graphene:status and prospects. Science 2009,324(5934):p.1530-1534.
    32. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, Room-temperature quantum hall effect in graphene. Science 2007,315(5817):p.1379.
    33. M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Chiral anotubes and the klein paradox in graphene. Nat. Phys.2006,2(9):p.620-625.
    34. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Fine structure constant defines visual transparency of graphene. Science 2008, 320(5881):p.1308.
    35. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Ⅱ. Song et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol.2010,5(8):p.574-578.
    36. D. C. Wei, B. Wu, Y. L. Guo, G Yu and Y. Q. Liu, Controllable chemical vapor deposition growth of few layer graphene for electronic devices. Acc. Chem. Res.2013,46(1):p.106-115.
    37. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett.2008,8(3):p.902-907.
    38. E. Pop, V. Varshney and A. K. Roy, Thermal properties of graphene:fundamentals and applications. MRS Bulletin 2012,37(12):p.1273-1281.
    39. K. Chua and M. Pumera, Covalent chemistry on graphene. Chem. Soc. Rev.2013,42(8):p. 3222-3233.
    40. S. Sarkar, E. Bekyarova and R. C. Haddon, Chemistry at the dirac point:Diels-Alder reactivity of graphene. Acc. Chem. Res.2013,45(4):p.673-682.
    41. T. S. Sreeprasad and V. Berry, How do the electrical properties of graphene change with its functionalization? Small 2013,9(3):p.341-350.
    42. P. Huang, L. Jing, H. R. Zhu and X. Y. Gao, Diazonium functionalized graphene: microstructure, electric, and magnetic properties. Acc. Chem. Res.2013,46(1):p.43-52.
    43. E. Bekyarova, S. Sarkar, F. H. Wang, M. E. Itkis, I. Kalinina, X. J. Tian and R. C. Haddon, Effect of Covalent Chemistry on the Electronic Structure and Properties of Carbon Nanotubes and graphene. Acc. Chem. Res.2013,46(1):p.65-76.
    44. A. Hirsch, J. M. Englert and F. Hauke, Wet chemical functionalization of graphene. Acc. Chem. Res.2013,46(1):p.87-96.
    45. M. Quintana, E. Vazquez and M. Prato, Organic functionalization of graphene in dispersions. Acc. Chem. Res.2013,46(1):p.138-148.
    46. G L. C. Paulus, Q. H. Wang and M. S. Strano, Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res.2013,46(1):p.160-170.
    47. J. Park and M. D. Yang, Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res.2013,46(1):p.181-189.
    48. S. Park and R. S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009,4(4):p.217-224.
    49. C. Elias, R. R. Nair, T. M. G Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science 2009,323(5914):p. 610-613.
    50. R. R. Nair, W. C. Ren, R. Jalil, I. Riaz, V. G Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. J. Yuan et al. Fluorographene:a two-dimensional counterpart of anotu. Small 2010,6(24):p.2877-2884.
    51. Z. Sun, C. L. Pint, D. C. Marcano, C. Zhang, J. Yao, G. Ruan, Z. Yan, Y. Zhu, R. H. Hauge and J. M. Tour, Towards hybrid superlattices in graphene. Nat. Commun.2011,2:559.
    52. H. Zhang, E. Bekyarova, J. W. Huang, Z. Zhao, W. Z. Bao, F. L. Wang, R. C. Haddon and C. N. Lau, Aryl functionalization as a route to band gap engineering in single layer graphene devices. Nano Lett.2011,11(10):p.4047-4051.
    53. J. Chattopadhyay, A. Mukherjee, S. Chakraborty, J. Kang, P. J. Loos, K. F. Kelly, H. K. Schmidt and W. E. Billups, Exfoliated soluble graphite. Carbon 2009,47(13):p.2945-2949.
    54. K. F. Kelly and W. E. Billups, Synthesis of soluble graphite and graphene. Acc. Chem. Res. 2013,46(1):p.4-13.
    55. J. M. Englert, C. Dotzer, G Yang, M. Schmid, C. Papp, J. M. Gottfried, H. P. Steinriick, E. Spiecker, F. Hauke and A. Hirsch, Covalent bulk functionalization of graphene. Nat. Chem. 2011,3(4):p.279-286.
    56. X. X. Xu and K. S. Suslick, Sonochemical preparation of functionalized graphenes. J. Am. Chem. Soc.,2011,133 (24):p.9148-9151.
    57. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci.2005,102(30):p. 10451-10453.
    58. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. M. Wang, I. T. McGovern, G. S. Duesberg and J. N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc.2009, 131(10):p.3611-3620.
    59. E. Hamilton, J. R. Lomeda, Z. Z. Sun, J. M. Tour and A. R. Barron, High-yield organic dispersions of unfunctionalized graphene. Nano Lett.2009,9(10):p.3460-3462.
    60. J. N. Coleman, Liquid-Phase Exfoliation of Nanotubes and Graphene. Adv. Funct. Mater.2009, 19(23):p.3680-3695.
    61. J. N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res.2013,46(1):p. 14-22.
    62. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol.2008,3(9):p.563-568.
    63. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith et al, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011,331(6017):p.568-571.
    64. K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng and H. L. Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem., Int. Ed.2011,50(46):p. 10839-10842.
    65. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009,457(7230):p.706-710.
    66. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett.2009,9(1):p.30-35.
    67. Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater.2011,10(6):p.424-428.
    68. W. A. de Heer, C. Berger, X. S. Wu, P. N. First, E. H. Conrad, X. B. Li, T. B. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, Epitaxial graphene. Solid State Commun. 2007,143(1-2):p.92-100.
    69. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater.2009,8(3):p.203-207.
    70. M. Choucair, P. Thordarson and J. A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol.2009,4(1):p.30-33.
    71. H. Deng, X. L. Pan, L. Yu, Y. Cui, Y. P. Jiang, J. Qi, W. X. Li, Q. Fu, X. C. Ma, Q. K. Xue, G. Q. Sun and X. H. Bao, Toward N-doped graphene via solvothermal synthesis. Chem. Mater.2011, 23(5):p.1183-1193.
    72. X. Y. Yang, X. Dou, A. Rouhanipour, L. J. Zhi, H. J. Rader and K. Mullen, Two-dimensional graphene nanoribbons. J. Am. Chem. Soc.2008,130(13):p.4216-4217.
    73. J. M. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. L. Feng, K. Mullen and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010,466(7305):p.470-473.
    74. B. C. Brodie, Note sur un nouveau procede pour la purification et la desagregation du graphite. Ann. Chim. Phys.1855,45(3):p.351-353.
    75. L. Staudenmaier, Verfahren zur Darstellung der. Graphitsaure. Ber. Dtsch. Chem. Ges.1898, 31(2):p.1481-1487.
    76. W. S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80(6):p.1339.
    77. M. Segal, Selling graphene by the ton. Nat. Nanotechnol.2009,4(10):p.612-614.
    78. Q. B. Zheng, W. H. Ip, X. Y. Lin, N. Yousefi, K. K. Yeung and J. K. Kim, Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 2011,5(7):p.6039-6051.
    79. N. I. Kovtyukhova, P. J. Ollivier, B. J. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Size Graphite Oxide Sheets and Polycations. Chem. Mater.1999,11(3):p.771-778.
    80. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, Improved synthesis of graphene oxide. ACS Nano 2010,4(8): p.4806-4814.
    81. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458(7240):p.872-876.
    82. D. K. James and J. M. Tour, The chemical synthesis of graphene nanoribbons-a tutorial review. Macromol. Chem. Phys.2012,213(10-11):p.1033-1050.
    83. A. Simon, R. Dronskowski, B. Krebs and B. Hettich, The crystal structure of Mn2O7. Angew. Chem., Int. Ed. Engl.1987,26(2):p.139-140.
    84. T. Gokus, R. R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari and A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 2009,3(12):p.3963-3968.
    85. P. L. Chiu, D. D. T. Mastrogiovanni, D. G Wei, C. Louis, M. Jeong, G. Yu, P. Saad, C. R. Flach, R. Mendelsohn, E. Garfunkel and H. X. He, Microwave- and nitronium ion-enabled rapid and direct production of highly conductive low-oxygen graphene. J. Am. Chem. Soc.2012,134(13): p.5850-5856.
    86. J. F. Shen, Y. Z. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. X. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater.2009,21(15):p. 3514-3520.
    87. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis and I. Dekany, Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006,18(11):p.2740-2749.
    88. W. H. He and L. H. Lu, Revisiting the structure of graphene oxide for preparing new-style graphene-based ultraviolet absorbers. Adv. Funct. Mater.2012,22(12):p.2542-2549.
    89. K. P. Loh, Q. L. Bao, G. Eda and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem.2010,2(12):p.1015-1024.
    90. A. Lerf, H. Y. He, M. Forster and J. Klinowski, Structure of graphite oxide revisited Ⅱ.J. Phys. Chem. B 1998,102 (23):p.4477-4482.
    91. A. Buchsteiner, A. Lerf and J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 2006,110(45):p.22328-22338.
    92. W. Gao, L. B. Alemany, L. J. Ci and P. M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem.2009,1(5):p.403-408.
    93. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern and U. Kaiser, Atomic structure of reduced graphene oxide. Nano Lett.2010,10(4):p. 1144-1148.
    94. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem.2010,2(7):p. 581-587.
    95. A. Gomez-Navarro, M. Burghard and K. Kern, Elastic properties of chemically derived single graphene sheets. Nano Lett.2008,8(7):p.2045-2049.
    96. H. C. Schniepp, K. N. Kudin, J. L. Li, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano 2008,2(12):p.2577-2584.
    97. J. I. Paredes, S.Villar-Rodil, A. Martinez-Alonso and J. M. D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir 2008,24(19):p.10560-10564.
    98. S. Lim, B. Kang, D. Kwak, W. Y. Lee, J. A. Lim and K. Cho, Inkjet-printed reduced graphene oxide/poly(vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors. J. Phys. Chem. C 2012,116(13):p.7520-7525.
    99. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff et al.,. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol.2008,3(6):p.327-331.
    100. S. Stankovich, D. A. Dikin, G H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Graphene-based composite materials. Nature 2006, 442(7100):p.282-286.
    101. H. K. He and C. Gao, General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem. Mater.2010, 22(17):p.5054-5064.
    102. L. Y. Kan, Z. Xu and C. Gao, General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization. Macromolecules 2011,44(3):p.444-452.
    103. D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol.2008,3(2):p.101-105.
    104. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali and R. S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide. Carbon 2011,49 (9):p.3019-3023.
    105. K. Moon, J. Lee and H. Lee, Highly qualified reduced graphene oxides:the best chemical reduction. Chem. Comm.2011, 47(34):p.9681-9683.
    106. S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48(15):p.4466-4474.
    107. K. Moon, J. Lee, R. S. Ruoff and H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun.2010,1:73.
    108. H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stolenberg, Z. N. Bao and Y. S. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2(3):p.463-470.
    109. S. Some, Y. Kim, Y. Yoon, H. J. Yoo, S. Lee, Y. Park and H. Lee, High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep.2013,3:p. 1929.
    110. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon and R. C. Haddon, Solution properties of graphite and graphene. J. Am. Chem. Soc.2006,128(24):p.7720-7721.
    111. Y. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang and Y. S. Chen, A graphene hybrid materials covalently functionalized with porphyrin:synthesis and optical property. Adv. Mater.2009,21(12):p.1275-1279.
    112.X. Y. Zhang, Y. Huang, Y. Wang, Y. F. Ma, Z. F. Liu and Y. S. Chen, Synthesis and characterization of graphene-C60 hybrid material. Carbon 2009,47(1):p.334-337.
    113. L. M. Veca, F. S. Lu, M. J. Meziani, L. Cao, P. Y. Zhang, G. Qi, L. W. Qu, M. Shrestha and Y. P. Sun, Polymer functionalization and solubilization of carbon nanosheets. Chem. Comm.2009, 45(18):p.2565-2567.
    114. S. Wang,P. J.Chia,L.L. Chua,L.H.Zhao,R.Q.Png,S.Sivaramakrishnan,M.Zhou,R.G.S. Goh, R. H. Friend, A. T. S. Wee and P. K. H. Ho, Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater.2008,20(18):p.3440-3446.
    115. H. F. Yang, C. S. Shan, F. H. Li, D. X. Han, Q. X. Zhang and L. Niu, Covalent functionalization of polydisperse chemically-converted graphene sheets with amino-terminated ionic liquid. Chem. Comm.2009,45(26):p.3880-3882.
    116. H. F. Yang, F. H. Li, C. S. Shan, D. X. Han, Q. X. Zhang, L. Niu and A. Ivaska, Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem.2009,19(26):p.4632-4638.
    117. S. Park, D. A. Dikin, S. T. Nguyen and R. S. Ruoff, Graphene oxide sheets chemically cross-linked by polyallyamine. J. Phys. Chem. C 2009,113(36):p.15801-15804.
    118. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang and J. M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc.2008,130(48):p.16201-16206.
    119. X. Zhong, J. Lin, S. W. Li, Z. Y. Niu, W. Q. Hu, R. Li and J. T. Ma, Aryne cycloadditon:highly efficient modification of graphene. Chem. Comm.2010,46(39):p.7340-7342.
    120. J. F. Shen, Y. Z. Hu, C. Li, C. Qin and M. X. Ye, Synthesis of amphiphilic graphene nanoplatelets. Small 2009,5(1):p.82-85.
    121. S. F. Pei and H. M. Cheng, The reduction of graphene oxide. Carbon 2012,50(9):p. 3210-3228.
    122. R. Y. N. Gengler, K. Spyrou and P. Rudolf, A roadmap to high quality chemically prepared graphene.J. Phys. D:Appl. Phys.2010,43(37):p.374015.
    123. C. Compton and S. T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010,6(6):p.711-723.
    124. G Eda and M. Chhowalla, Chemically Derived Graphene Oxide:Towards Large-Area Thin-Film Electronics and Optoelectronic. Adv. Mater.2010,22(22):p.2392-2415.
    125. L. Wang, J. T. Robinson, X. L. Li and H. J. Dai, Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc.2009,131(29):p.9910-9911.
    126. L. J. Cote, R. Cruz-Silva and J. X. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc.2009,131(31):11027-11032.
    127. Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun and F. S. Xiao, Direct imprinting of microcircuits on graphene oxide film by femtosecond laser reduction. Nano Today 2010,5(1):p.15-20.
    128. Y. W. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner and R. S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010,48(1):p. 2118-2122.
    129. M. J. Fernandez-Merino, L. Guaridia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso and J. M. D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010,114(14):p.6426-6432.
    130. M. B. Dowell and R. A. Howard, Tensile and compressive properties of flexible graphite foils. Caroon 1986,24(3):p.311-323.
    131. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmeneoko, S. E. Wu, S. F. Chen, C. P. Liu et al., Graphene-silica composite thin films as transparent conductors. Nano Lett.2007,7(7):p.1888-1892.
    132. W. J. Hong, Y. X. Xu, G. W. Lu, C. Li and G. Q. Shi, Transparent graphene/PEDOT-PSS composite films as counter electrode of dye-sensitized solar cells. Eletrochem. Commun.2008, i0(10):p.1555-1558.
    133. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, Low-temperature solution processing of graphene-carbon anotubes hybrid materials for high-performance transparent conductors. Nano Lett.2009,9(5):p.1949-1955.
    134. L. W. Peng, Y. Y. Feng, P. Lv, D. Lei, Y. T. Shen, Y. Li and W. Feng, Transparent, conductive, and flexible multiwalled carbon anotubes/graphene hybrid eletrodes with two three-dimensional microstructures. J. Phys. Chem. C 2012,116(8):p.4970-4978.
    135. Y. S. Yun, D. H. Kim, B. Kim, H. H. Park and H. J. Jin, Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility. Synth. Met.2012,162(15-16):p. 1364-1368.
    136. N. Kholmanov, S. H. Domingues, H. Chou, X. H. Wang, C. Tan, J. Y. Kim, H. F. Li, R. Piner, A. J. G. Zarbin and R. S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrode. ACS Nano 2013,7(2):p.1811-1816.
    137. J. Liang, H. Bin, D. Y. Wan and F. Q. Huang, Novel Cu nanowires/graphene as the back contact for CdTe solar cells. Adv. Funct. Mater.2012,22(6):p.1267-1271.
    138. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 2007,448(7152):p.457-460.
    139. H. Q. Chen, M. B. Muller, K. J. Gilmore, G. G Wallace and D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater.2008,20(18):p. 3557-3561.
    140. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo and Y. S. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater.2009,19(14):p.2297-2302.
    141. D. Kang, J. Y. Kwon, H. Cho, J. H. Sim, H. S. Hwang, C. S. Kim, Y. J. Kim, R. S. Ruoff and H. S. Shin, Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 2012,6(9):p.7763-7769.
    142. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva and A. K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012,335(6067):p. 442-444.
    143. Y. H. Yang, L. Bolling, M. A. Priolo and J. C. Grunlan, Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater.2013,25(4):p.503-508.
    144. Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu and G. Q. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010,4(4):p.1963-1970.
    145. M. Hu and B. X. Mi, Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol.2013,47(8):p.3715-3723.
    146. Y. X. Xu, K. X. Sheng, C. Li and G. Q. Shi, Self-assembly graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010,4(1):p.4324-4330.
    147. H. Bai, C. Li, X. L. Wang and G. Q. Shi, On the gelation of graphene oxide. J. Phys. Chem. C 2011,115(13):p.5545-5551.
    148. H. P. Cong, X. C. Ren, P. Wang and S. H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACSNano 2012,6(3):p. 2693-2703.
    149. Z. H. Tang, S. L. Shen, J. Zhuang and X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed.2010,49(27):p. 4603-4607.
    150. J. Wang and M. W. Ellsworth, Graphene aerogel. ECS Transactions 2009,19(5):p.241-247.
    151. L. Estevez, A. Kelarakis, Q. M. Gong, E. H. Da'as and E. P. Giannelis, Multifunctional graphene/platinum/nafion hybrid via ice template. J. Am. Chem. Soc.2011,133(16):p. 6122-6125.
    152.1. Langmuir, The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J. Chem. Phys.1938,6(12):p.873-896.
    153. W. W. Emerson, Liquid crystals of montmorillonite. Nature 1956,178(4544):p.1248-1249.
    154. L. Onsager, Anisotropic solutions of colloids. Phys. Rev.1942,62(11-12):p.558-559.
    155. L. Onsager, The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949,51(May):p.627-659.
    156. J. C. P. Gabriel and P. Davidson, New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater.2000,12(1):p.9-20.
    157. P. Davidson and J. C. P. Gabriel, Mineral liquid crystals. Curr. Opin. Colloid. In.2005,9(6):p. 377-383.
    158. M. van der Kooij, K. Kassapidou and H. N. W. Lekkerkerker, Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 2000, 406(6798):p.868-871.
    159. L. J. Michot, I. Bihannic, S. Maddi, S. S. Funari, C. Baravian, P. Levitz and P. Davidson, Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci.2006,103(44):p. 16101-16104.
    160. J. C. P. Gabriel, F. Camerel, B. J. Lemaire, H. Desvaux, P. Davidson and P. Batail, Swollen liquid-crystalline lamellar phase based on extended solid-likes sheets. Nature 2001, 413(6855): p.504-508.
    161. N. Miyamoto and T. Nakato, Liquid crystalline nature of K4Nb6O17 nanosheet sols and their macroscopic alignment. Adv. Mater.2002,14(18):p.1267-1270.
    162. N. Wang, S. Y. Liu, J. Zhang, Z. H. Wu, J. Chen and D. J. Sun, Lamellar phase in colloidal suspensions of positively charged LDHs platelets. Soft Matt.2005,1(6):p.428-430.
    163. M. A. Bates and D. Frenkel, Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J. Chem. Phys.1999,10(13):p.6553-6559.
    164. J. A. C. Veerman and D. Frenkel, Phase behavior of disklike hard-core mesogens. Phys. Rev. A 1992,45(8):p.5632-5648.
    1. L. Onsager, Anisotropic solutions of colloids. Phys. Rev.1942,62(11-12):p.558-559.
    2. L. Onsager, The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51(May):p.627-659.
    3. W. S. Hummers Jr. and R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80(6):p.1339.
    4. N. I. Kovtyukhova, P. J. Ollivier, B. J. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-size graphite oxide sheets and polycations. Chem. Mater.,1999,11(3):p.771-778.
    5. A. A. Kaznacheev, M. M. Bogdanov and A:S. Sonin, The influence of anchoring energy on the prolate shape of tactoids in lyotropic inorganic liquid crystals. J. Experimental and Theoretical Phys.2003,97(6):p.1159-1167.
    6. P. Davidson and J. C. P. Gabriel, Mineral liquid crystals. Curr. Opin. Colloid. In.2005,9(6):p. 377-383.
    7. F. M. van der Kooij, K. Kassapidou and H. N. W. Lekkerkerker, Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 2000,406(6798):p. 868-871.
    8. J. C. P. Gabriel, F. Camerel, B. J. Lemaire, H. Desvaux, P. Davidson and P. Batail, Swollen liquid-crystalline lamellar phase based on extended solid-likes sheets. Nature 2001,4/3(6855): p.504-508.
    9. M. Miyamoto and T. Nakato, Liquid crystalline nature of K4Nb6O17 nanosheet sols and their macroscopic alignment. Adv. Mater.2002,14(18):p.1267-1270.
    10. N. Wang, S. Y. Liu, J. Zhang, Z. H. Wu, J. Chen and D. J. Sun, Lamellar phase in colloidal suspensions of positively charged LDHs platelets. Soft Matt.2005,1(6):p.428-430.
    11. W. W. Emerson, Liquid crystals of montmorillonite. Nature 1956,178(4544):p.1248-1249.
    12. J. C. P. Gabriel, C. Sanchez and P. Davidson, Observation of nematic liquid-crystal textures in aqueous gels of smectite clays. J. Phys. Chem.1996,100(26):11139-11143.
    13. C. J. Murphy and N. R. Jana, Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem.2002,12(10):p.2909-2912.
    14. M. A. Bates and D. Frenkel, Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J. Chem. Phys.1999,10(13):p.6553-6559.
    15. J. A. C. Veerman and D. Frenkel, Phase behavior of disklike hard-core mesogens. Phys. Rev. A 1992, 45(8):p.5632-5648.
    16. N. R. Jama, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann and C. J. Murphy, Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem.2002,12(10):p. 2909-2912.
    17. L. S. Li, J. Walda, L. Manna and A. P. Alivisatos, Semiconductor nanorod liquid crystals. Nano Lett.2002,2(6):p.557-560.
    18. W. H. Song and A. H. Windle, Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 2005,38(14):p.6181-6188.
    19. A. N. G. Parra-Vasquez, N. Behabtu, M. J. Green, C. L. Pint, C. C. Young, J. Schimidt, E. Kesselman, A. Goyal, P. M. Ajayan, Y. Cohen et aL., Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes. ACS Nano 2010,4(7):p.3969-3978.
    20. M. P. B. Bruggen, F. M. V. V. D. Kooij and H. N. W. Lekkerkerker, Liquid crystal phase transitions in dispersions of rod-like colloidal Particles. J. Phys. Condens. Matter.1996,8(47): p.9451-9456.
    21. A. B. D. Brown, S. M. Clarke and A. R. Rennie, Ordered phase of platelike particles in concentrated dispersions. Langmuir 1998,14(11):p.3129-3132.
    22. L. J. Michot, I. Bihannic, S. Maddi, S. S. Funari, C. Baravian, P. Levitz and P. Davidson, Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci.2006,103(44):p. 16101-16104.
    23. Z. Liu, J. T. Robinson, X. M. Sun and H. J. Dai. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130(33):p.10876-10877.
    24. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. J. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.2008,1(3):p.203-212.
    25. Z. T. Luo, P. M. Vora, E. J. Mele, A. T. Charlie-Johnson and J. M. Kikkawa, Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett.2009,94(11): p.111909-111911.
    1. T. E. Strzelecka, M. W. Davidson and R. L. Rill, Multiple liquid crystal phases of DNA at high concentrations. Nature 1988,331(6155):p.457-460.
    2. Z. Dogie and S. Fraden, Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett.1997,78(12):p.2417-2420.
    3. N. Donkai, H. Hoshino, K. Kajiwara, and T. Miyamoto, Lyotropic mesophase of imogolite,3 observation of liquid crystal structure by scanning electron and novel polarized optical microscopy. Die Makromolekulare Chemie.1993,194(2):p.559-580.
    4. W.W. Emerson, Liquid crystals of montmorillonite. Nature 1956,178(4544):p.1248-1249.
    5. F. M. van der Kooij, K. Kassapidou and H. N. W. Lekkerkerker, Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 2000,406(6798):p.868-871.
    6. L. J. Michot, I. Bihannic, S. Maddi, S. S. Funari, C. Baravian, P. Levitz, and P. Davidson, Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci.2006,103(44):p. 16101-16104.
    7. J. C. P. Gabriel, F. Camerel, B. J. Lemaire, H. Desvaux, P. Davidson and P. Batail, Swollen liquid-crystalline lamellar phase based on extended solid-likes sheets. Nature 2001,413(6855):p. 504-508.
    8. M. Miyamoto and T. Nakato, Liquid crystalline nature of K4Nb6O17 nanosheet sols and their macroscopic alignment. Adv. Mater.2002,14(18):1267-1270.
    9. N. Wang, S. Y. Liu, J. Zhang, Z. H. Wu, J. Chen and D. J. Sun, Lamellar phase in colloidal suspensions of positively charged LDHs platelets. Soft Matt.2005,1(6):p.428-430.
    10. M. A. Bates and D. Frenkel, Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J. Chem. Phys.1999,10(13):p.6553-6559.
    11. J. A. C. Veerman and D. Frenkel, Phase behavior of disklike hard-core mesogens. Phys. Rev. A 1992, 45(8):p.5632-5648.
    12. J. C. P. Gabriel and P. Davidson, New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater.2000,12(1):p.9-20.
    13. P. Davidson and J. C. P. Gabriel, Mineral liquid crystals. Curr. Opin. Colloid. In.2005,9(6):p. 377-383.
    14. P. G. de Gennes, The physics of liquid crystals. Chapter 6 (Oxford Univ. Press, Oxford,1974).
    15. W. H. Song, I. A. Kinloch, and A. H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes. Science 2003,302(5649):p.1363.
    16. L. M. Ericson, H. Fan, H. Q. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. H. Wang, R. Booker, J. Vavro, C. Guthy et al., Macroscopic, neat, single-walled carbon nanotube fibres. Science 2004, 305(5689):p.1447-1450.
    17. V. A. Davis, A. N. G. Parra-Vasquez, M. J. Green, P. K. Rai, N. Behabtu, V. Prieto, R. D. Booker, J. Schmidt, E. Kesselman, W. Zhou et al, True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol.2009,4(12):p.830-834.
    18. J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak and J. S. Patel, Characterization of a new helical smectic liquid crystal. Nature 1989,337(6209):p.449-452.
    19. S. S. Renn and T. C. Lubensky, Abrikosov dislocation lattice in a model of the cholesteric-to-smectic-A transition. Phys. Rev. A 1988,38(4):p.2132-2147.
    20. P. G. de Gennes, The physics of liquid crystals Ch.1 (Oxford Univ. Press, Oxford,1974).
    21. J. Als-Nielsen, J. D. Litster, R. J. Birgeneau, M. Kaplan, C. R. Safinya, A. Lindegaard-Andersen and S. Mathiesen, Observation of algebraic decay of positional order in a smectic liquid crystal. Phys. Rev. B 1980,22(1):p.312-320.
    22. C. R. Safinya, D. Roux, G. S. Smith, P. Dimon, N. A. Clark and A. M. Bellocq, Steric interactions in a model multimembrane system:a synchrotron X-ray study. Phys. Rev. Lett.1986, 57(21):p.2718-2721.
    23. N. Lei, C. R. Safinya and R. F. Bruinsma, Discrete harmonic model for stacked membranes: theory and experiment. J. Phys. Ⅱ France 1995,5(8):p.1155-1163.
    24. C. G6mez-Navarro, M. Burghard and K. Kern, Elastic properties of chemically derived single graphene sheets. Nano Lett.2008,8(7):p.2045-2049.
    25. F. D. Saeva and J. J. Wysocki, Induced circular dichroism in cholesteric liquid crystals. J. Am. Chem. Soc.1971,93(23):p.5928-5929.
    26. F. D. Saeva, P. E. Sharpe and G. R. Olin, Cholesteric liquid crystal induced circular dichroism (LCICD). V. Some mechanistic aspects of LCICD. J. Am. Chem. Soc.1973,95(23):p. 7656-7659.
    27. S. A. Che, Z. Liu, T. Ohauna, K. Sakamoto, O. Terasaki and T. Tatsumi, Synthesis and characterization of mesoporous silica with chiral structure. Nature 2004, 429(6989):p.281-284.
    28. R. A. M. Hikmet and H. Kemperman, Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 1998,392(6675):p.476-479.
    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306(5696):p.666-669.
    2. C. G. Lee, X. D. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321(5887):p.385-388.
    3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys.2009,81(1):p.109-162.
    4. A. K. Geim, Graphene:status and prospects. Science 2009,324(5934):p.1530-1534.
    5. K. Geim and K. S. Novoselov, The rise of graphene. Nat. Mater.2007,6(3):p.183-191.
    6. O. C. Compton and S. T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials. Small 2010,6(6):p.711-723.
    7. W. H. Song, I. A. Kinloch and A. H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes. Science 2003,302(5649):p.1363.
    8. L. M. Ericson, H. Fan, H. Q. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. H. Wang, R. Booker, J. Vavro, C. Guthy et al., Macroscopic, neat, single-walled carbon nanotube fibres. Science 2004, 305(5689):p.1447-1450.
    9. V. A. Davis, A. N. G. Parra-Vasquez, M. J. Green, P. K. Rai, N. Behabtu, V. Prieto, R. D. Booker, J. Schmidt, E. Kesselman, W. Zhou et al., True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol.2009, 4(12):p. 830-834.
    10. W. S. Hummers Jr. and R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80(6):p.1339.
    11. N. I. Kovtyukhova, P. J. Ollivier, B. J. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Size Graphite Oxide Sheets and Polycations. Chem. Mater.,1999,11(3):p.771-778.
    12. S. F. Pei and H. M. Cheng, The reduction of graphene oxide. Carbon 2012,50(9):p. 3210-3228.
    13. H. L. Wang, J. T. Robinson, X. L. Li and H. J. Dai, Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc.2009,131(29):p.9910-9911.
    14. W. Gao, L. B. Alemany, L. J. Ci and P. M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem.2009,1(5):p.403-408.
    15. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali and R. S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide. Carbon 2011,49 (9):p.3019-3023.
    16. S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48(15):p.4466-4474.
    17. I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun.2010,1:73.
    18. H. Q. Chen, M. B. Muller, K. J. Gilmore, G G Wallace and D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater.2008,20(18):p. 3557-3561.
    19. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 2007,448(1152):p.457-460.
    20. H. G Chae and S. Kumar, Making strong fibers. Science 2008,319(5865):p.908-909.
    21. F. Guo, F. Kim, T. H. Han, V. B. Shenoy, J. X. Huang and R. H. Hurt. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano 2011,5(10):p. 8019-8025.
    22. X. L. Wang, H. Bai and G. Q. Shi, Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J. Am. Chem. Soc.2011,133(16):p.6338-6342.
    23. S. Park, K. S. Lee, G Bozoklu, W. W. Cai, S. T. Nguyen and R. S. Ruoff. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2008,2(3):p.572-578.
    24. S. Penczek, R. Slazak and A. Duda, Anionic copolymerisation of elemental sulphur. Nature 1978,273(5665):p.739-739.
    25. A. Duda and S. Penczek, Anionic copolymerization of elemental sulfur with propylene sulfide. Macromolecules 1982,15(1):p.36-40.
    1. S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48(15):p.4466-4474.
    2. M. J. Fernaedez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso and J. M. D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010,114(14):6426-6432.
    3. W. F. Chen and L. F. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011,3(8):p.3132-3137.
    4. F. Guo, F. Kim, T. H. Han, V. B. Shenoy, J. X. Huang and R. H. Hurt. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano 2011,5(10):p. 8019-8025.
    5. S. F. Pei and H. M. Cheng, The reduction of graphene oxide. Carbon 2012,50(9):p. 3210-3228.
    6. W. Gao, L. B. Alemany, L. J. Ci and P. M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem.2009,1(5):p.403-408.
    7. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem.2010,2(7):p. 581-587.
    8. K. K. Kim, A. Reina, Y. M. Shi, H, Park, L.J. Li, Y. H. Lee and J. Kong, Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 2010,21(28):285205.
    9. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol, Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano 2010,4(1):p.3839-3844.
    10. C. Gao, W. W. Li, Y. Z. Jin and H. Kong, Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology 2006,17(12):p. 2882-2890.
    11. E. Y. Jang, J. Carretero-Gonzalez, A. Choi, W. J. Kim, M. E. Kozlov, T. Kim, T. J. Kang, S. J. Baek, D. W. Kim, Y. W. Park, R. H. Baughman and Y. H. Kim, Fibers of reduced graphene oxide nanoribbons. Nanotechnology 2012,23(23):235601.
    12. C. Compton and S. T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010,6(6):p.711-723.
    13. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 2007,448(7152):p.457-460.
    14. H. Q. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace and D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater.2008,20(18):p. 3557-3561.
    1. Y. X. Xu, K. X. Sheng, C. Li and G. Q. Shi, Self-assembly graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010,4(7):p.4324-4330.
    2. H. P. Cong, X. C. Ren, P. Wang and S. H. Yu. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACSNano 2012,6(3):p. 2693-2703.
    3. Z. H. Tang, S. L. Shen, J. Zhuang and X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed.2010,49(21):p. 4603-4607.
    4. J. Wang and M. W. Ellsworth, Graphene aerogel. ECS Transactions 2009,19(5):p.241-247.
    5. L. Estevez, A. Kelarakis, Q. M. Gong, E. H. Da'as and E. P. Giannelis, Multifunctional graphene/platinum/nafion hybrid via ice template. J. Am. Chem. Soc.2011,133(16):p. 6122-6125.
    6. O. C. Compton and S. T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials. Small 2010,6(6):p.711-723.
    7. W. S. Hummers Jr. and R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80(6):p.1339.
    8. N. I. Kovtyukhova, P. J. Ollivier, B. J. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Size Graphite Oxide Sheets and Polycations. Chem. Mater.,1999,11(3):p.771-778.
    9. L. Onsager, Anisotropic solutions of colloids. Phys. Rev.1942,62(11-12):p.558-559.
    10. L. Onsager, The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949,51(May):p.627-659.
    11. M. A. Bates and D. Frenkel, Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J. Chem. Phys.1999,10(13):p.6553-6559.
    12. J. A. C. Veerman and D. Frenkel, Phase behavior of disklike hard-core mesogens. Phys. Rev. A 1992, 45(8):p.5632-5648.
    13. L. J. Michot, I. Bihannic, S. Maddi, S. S. Funari, C. Baravian, P. Levitz and P. Davidson, Liquid-crystalline Aqueous Clay Suspensions. Proc. Nat I. Acad. Sci.2006,103(44):p. 16101-16104.
    14. J. C. P. Gabriel, F. Camerel, B. J. Lemaire, H. Desvaux, P. Davidson and P. Batail, Swollen liquid-crystalline lamellar phase based on extended solid-likes sheets. Nature 2001, 413(6855): p.504-508.
    15. S. F. Pei and H. M. Cheng, The reduction of graphene oxide. Carbon 2012,50(9):p. 3210-3228.
    16. S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren and H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48(15):p.4466-4474.
    17. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem.2010,2(7):p. 581-587.
    18. Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater.2011,10(6):p.424-428.
    19. X. T. Zhang, Z. Y. Sui, B. Xu, S. F. Yue, Y. J. Luo, W. C. Zhan and B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem.2011,21(18):p.6449-6497.
    20. S. Korkut, J. D. Roy-Mayhew, D. M. Dabbs, D. L. Milius and I. A. Aksay, High surface area tapes produced with functionalized graphene. ACS Nano 2011,5(6):p.5214-5222.
    21. X. C. Gui, J. Q. Wei, K. L. Wang, A. Y. Cao, H. W. Zhu, Y. Jia, Q. K. Shu, D. H. Wu, Carbon nanotubes sponges. Adv. Mater.2010,22(5):p.617-621.
    22. S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier and K. Mullen, Graphene-based nanosheets with a sandwich structure. Angew. Chem., Int. Ed.2010,49(28); p.4795-4799.
    23. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer and P. Kim, Temperature-dependent transport in suspended graphene. Phys. Rev. Lett.2008,101(9):096802.
    24. S. N. Mott, Conduction in Non-crystalline Materials, Clarendon, Oxford,1987.
    25. H. S. Peng, Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity. J. Am. Chem. Soc.2008,130(1):p.42-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700