用户名: 密码: 验证码:
新型苯胺甲基倍半硅氧烷的制备及其与聚氨酯的复合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
笼型寡聚倍半硅氧烷(POSS)是一类独特的有机无机杂化分子,其分子尺寸约为1~3nm。POSS内部的硅氧骨架提供了强度,而外层的有机官能团提供了良好的聚合物相容性。具有反应活性的POSS能够以化学键合的方式引入聚合物中,从而提高聚合物的力学、热学性能,但产率较低。探索高产率、具有反应活性的POSS的制备及其在聚合物中的应用具有重要的意义。
     (1)本论文以苯胺甲基三乙氧基硅烷(ND42)为原料,通过单体的水解缩合制备苯胺甲基POSS,产品产率约为64%。核磁共振(NMR)、凝胶色谱(GPC)和基质辅助激光电离时间飞行质谱(MALDI-TOF MS)等测试表明,主产物为T1o和T12结构。量化计算表明单体在甲醇溶剂中、盐酸催化条件下更有利于生成具有Dsh对称性的T1o构型和具有D2d对称性的T12构型的产物。
     (2)进一步利用所制备的苯胺甲基POSS作为纳米交联剂,与聚氨酯预聚物进行反应,制备出一系列具有不同POSS含量的POSS/PU复合物。POSS显示出与聚氨酯良好的相容性,即使POSS含量达到52wt%,复合物并未发生明显的宏观相分离。高分辨透射电镜表明POSS以5-10nm的尺寸分散在聚氨酯基体中。反射红外和固体碳核磁测试表明POSS与聚氨酯预聚物发生了反应,且反应程度较高。DMA测试表明复合物的玻璃化转变温度(T。)和储存模量随着POSS含量的增加而增加。26wt%为POSS/PU复合物形成永久网络的临界值,当POSS含量超过26wt%时,体系将形成永久网络结构。力学拉伸测试表明复合物的杨氏模量在室温情况下和在各自样品的Tg以上35K情况下均随着POSS含量的增加而增加。TGA测试表明POSS/PU复合物的热学性能也随着POSS含量的增加而增加。POSS/PU复合物力学性能和热学性能的增加是因为POSS作为纳米交联剂引入聚氨酯中,提高了体系的交联密度,从而限制了PU链的运动。
     (3)利用流变学研究了苯胺甲基POSS/PU体系的凝胶过程以及固化后复合物在平衡态的粘弹性。体系的凝胶时间随着固化温度升高而缩短,凝胶点的松弛指数约为0.7。在60℃下,POSS/PU复合物形成凝胶网络的临界浓度约为2.5wt%。通过研究复合物在不同温度下的粘弹性来研究POSS/PU体系的物理凝胶和化学凝胶行为。当体系内只存在化学交联时,POSS/PU复合物平衡态下的模量可以按照POSS浓度-频率等效原则来平移得到一条主曲线,这说明了不同POSS含量的POSS/PU复合物网络结构的自相似性。
     (4)利用乳液法合成了类POSS结构的苯胺甲基纳米微球(NPAM-silica)。通过核磁,MALDI-TOF MS等表征证明了产物的主要结构为完全闭环的T型结构和少部分不完全水解缩合的结构。进而将NPAM-silica作为纳米交联剂引入聚氨酯制备NPAM-silica/PU复合物。红外和固体碳核磁测试表明NPAM-silica与PU发生了反应且反应程度较高。TEM和AFM显示出NPAM-silica与PU良好的相容性。DMA结果表明随着NPAM-silica含量的增加,复合物的Tg和低温下的储存模量逐渐增加,而在高温下的储存模量先增加后减小。力学拉伸测试表明材料的杨氏模量在室温条件下和在Tg以上35K条件下均随着NPAM-silica含量的增加而增加。有意思的是,在纳米交联剂含量相同时,NPAM-silica/PU的橡胶模量比POSS/PU复合物的要高。TEM和小角X射线衍射表明,NPAM-silica比POSS在PU中的分散显得更为均匀。这种新型低成本、高效环保的NPAM-silica比苯胺甲基POSS在工业应用上更具优势。
Polyhedral Oligomeric Silsesquioxane (POSS) is a kind of unique organic/inorganic hybrid molecular, with a size of ca.1-3nm. The silicon-oxygen frameworks provide the stiffness of the material and the organic groups provide the good compatibility with polymers. Reactive POSS could chemically cooperated into polymers and bring reinforcement in mechanical and thermal properties, but with low yields. It is significant to investigate the synthesis of reactive POSS with high yield and its application in polymers.
     A new functional N-phenylaminomethyl POSS was synthesized by controlled hydrolytic condensation from ND42in one step reaction, with the yield of64%. The POSS structure was ascribed to a T10and T12derivative mixture as main component by varied characterization methods such as NMR, Gel permeation chromatography (GPC) and Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). It is calculated that the products tended to form T10with D5h symmetry and T12structures with D2d symmetry under the condition of hydrochloric acid and methanol.
     This novel POSS which acted as a nano-crosslinker was then reacted with polyether diisocyanate,a series of POSS-PU composites with different POSS concentration was prepared and characterized. The POSS/PU composites showed no macrophase separation up to52wt%POSS concentration. The high resolution transmission electron microscopy (HRTEM) images of POSS-PU composites showed a well separated nanostructure of POSS with a typical phase size of5-10nm. ATR-IR and solid state13C-NMR indicated that POSS was reacted with PU with high efficiency. Tg and storage modulus of POSS/PU composites increased with increasing POSS concentration characterized by DMA. A critical POSS concentration of26wt%was found, beyond which the POSS/PU showed a permanent network at high temperature. Young's modulus largely enhanced with increasing POSS concentration at constant Ttest-Tg. All the enhanced mechanical properties could be ascribed to synergetic effect of POSS and PU, where POSS played a role as the nanoscale crosslinker in the PU system and formed network, thus hindered the motion of PU chain.
     The gelation of N-phenylaminomethyl-POSS/PU nanocomposites during curing and the viscoelastic properties at equilibrium state after curing were investigated by rheology. The gelation time of the composites decreased with the rise of curing temperature, and relaxation exponent at the critical gel was around0.7. The critical gel point of the POSS/PU composites at equilibrium state was found around2.5wt%at60℃. The chemical and physical gelations in the composites were investigated by exploring the rheological behaviors at different temperatures. The modulus of the equilibriated materials could be scaled by POSS concentration-frequency superposition only when chemical cross-links were retained, which implied the similarity of network that formed at different POSS concentrations.
     A novel N-phenylaminomethyl silica (NPAM-silica) which was similar with POSS was firstly synthesized by one-step emulsion polymerization. The NPAM-silica was mainly composed of fully condensed silsesquioxanes and a small quantity of partially condensed silsesquioxanes which was confirmed by29Si-NMR and MALDI-TOF MS. It was introduced into polyurethane (PU) as a chemical crosslinker. The high reactivity of NPAM-silica was investigated by means of ATR-IR and solid state Nuclear Magnified Resonance (SSNMR). TEM and AFM showed that the NPAM-silica had perfect compatibility with PU. The mechanical properties of NPAM-silica/PU nanocomposites were greatly enhanced, which was reflected in DMA and tensile tests at constant Ttest-Tg. What's more interested was that the NPAM-silica/PU possessed higher storage modulus at the rubber plateau than that of N-phenylaminomethyl POSS/PU. The homogeneity of NPAM-silica/PU was better than that of POSS/PU which was characterized by TEM and small angle x-ray scattering (SAXS). The low cost and environmentally friendly functionalized NPAM-silica would have greater advantage of application in practice compared with N-phenylaminomethyl POSS.
引文
[1]Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chemical Reviews 1995, 95, (5),1409-1430.
    [2]Scott, D. W. J Am Chem Soc 1946, 68, (3), 356-358.
    [3]Feher, F. J.; Newman, D. A.; Walzer, J. F. Journal of the American Chemical Society 1989,111,(5), 1741-1748.
    [4]Lichtenhan, J. D.; Mantz, R. A.; Jones, P. F.; Carr, M.J.Abstr. Pap. Am. Chem. Soc.1994,207, 109-POLY.
    [5]Gnanasekaran,D.; Madhavan, K.; Reddy, B. S. R. J Sci Ind Res India 2009, 68, (6),437-464.
    [6]Lickiss, P.D.;Rataboul,F.,Fully condensed polyhedral oligosilsesquioxanes(POSS): From synthesis to application. In Advances in Organometallic Chemistry, Vol 57, Hill, A. F. F. M. J., Ed. 2008; Vol.57,pp1-116.
    [7]Kucuk, A. C.; Matsui, J.; Miyashita, T. J Colloid Interf Sci 2011, 355, (1), 106-114.
    [8]Feher, F. J.; Budzichowski, T. A. Journal of Organometallic Chemistry 1989, 373, (2),153-163.
    [9]Frye, C. L. Abstr. Pap. Am. Chem. Soc.1986,192,118-GEOC.
    [10]Sprung, M. M.; Guenther, F. O. Journal of the American Chemical Society 1955, 77,(15), 3990-3996.
    [11]Brown, J. F. Journal of the American Chemical Society 1965, 87,(19), 4317-&.
    [12]Bassindale, A. R.; Pourny, M.; Taylor, P. G.; Hursthouse, M. B.; Light, M. E. Angewandte Chemie-International Edition 2003,42,(30),3488-3490.
    [13]Gentle,T.E.;Bassindale,A.R.Journal of Inorganic and Organometallic Polymers 1995,5,(3),281-294.
    [14]Schwab, J. J.; An, Y.-Z. Process for assembly of POSS monomers.2006-US8262 2006096775, 20060307., 2006.
    [15]Kucuk, A. C.; Matsui, J.; Miyashita, T. Langmuir 2011,27,(10).6381-6388.
    [16]Seino, M.; Hayakawa, T.; Ishida, Y.; Kakimoto. M.-a.; Watanabe, K.; Oikawa, H. Macromolecules 2006,39, (10),3473-3475.
    [17]Wu, S.; Hayakawa, T.; Kakimoto, M.-a.; Oikawa, H. Macromolecules (Washington, DC, United States) 2008,41,(10),3481-3487.
    [18]Wu, S.; Hayakawa, T.; Kikuchi, R.; Grunzinger, S. J.; Kakimoto, M.-A.; Oikawa, H. Macromolecules (Washington, DC, United States) 2007,40, (16),5698-5705.
    [19]Frye, C. L.; Collins, W. T. J Am Chem Soc 1970,92, (19),5586-&.
    [20]Tsuchida, A.; Bolln, C.; Sernetz, F. G.; Frey, H.; Mulhaupt, R. Macromolecules 1997,30, (10),2818-2824.
    [21]Provatas, A.; Luft, M.; Mu, J. C.; White, A. H.; Matisons, J. G.; Skelton, B. W. Journal of Organometallic Chemistry 1998,565, (1-2),159-164.
    [22]Itami, Y.; Marciniec, B.; Kubicki, M. Chemistry-a European Journal 2004,10, (5),1239-1248.
    [23]Rikowski, E.; Marsmann, H. C. Polyhedron 1997,16, (19),3357-3361.
    [24]Asuncion, M. Z.; Laine, R. M. J Am Chem Soc 2010,132, (11),3723-3736.
    [25]Roll, M. F.; Kampf, J. W.; Kim, Y.; Yi, E.; Laine, R. M. Journal of the American Chemical Society 2010,132,(29),10171-10183.
    [26]Bonhomme, C.; Toledano, P.; Maquet, J.; Livage, J.; BonhommeCoury, L.J Chem Soc Dalton 1997, (9),1617-1626.
    [27]Liu, Z. H.; Bassindale, A. R.; Taylor, P. G. Chemical Research in Chinese Universities 2004,20, (4),433-436.
    [28]Agaskar, P. A.; Klemperer, W. G. Inorganica Chimica Acta 1995,229, (1-2), 355-364.
    [29]Toepfer, O.; Neumann, D.; Choudhury, N. R.; Whittaker, A.; Matisons, J. Chemistry of Materials 2005,17, (5),1027-1035.
    [30]Cordes, D. B.; Lickiss, P. D.; Rataboul. F. Chemical Reviews 2010,110, (4). 2081-2173.
    [31]Xiang. K. H.; Pandey, R.; Pernisz. U. C.; Freeman. C. J Phys Chem B 1998,102. (44),8704-8711.
    [32]Earley. C. W. Journal of Physical Chemistry 1994,98, (35),8693-8698.
    [33]Takamura, N.; Viculis, L.; Zhang, C.; Laine, R. M. Polymer International 2007, 56,(11),1378-1391.
    [34]Hussain, H.; Tan, B. H.; Gudipati, C. S.; Xaio, Y.; Liu, Y.; Davis, T. P.; He, C. B. J. Polym. Sci. Pol. Chem.2008,46, (22),7287-7298.
    [35]Bassindale, A. R.; Liu, Z. H.; MacKinnon, I. A.; Taylor, P. G.; Yang, Y. X.; Light, M. E.; Horton, P. N.; Hursthouse, M. B. Dalton Transactions 2003, (14),2945-2949.
    [36]Gao, Y.; Eguchi, A.; Kakehi, K.; Lee, Y.C. Organic Letters 2004,6, (20), 3457-3460.
    [37]Brick, C. M.; Tamaki, R.; Kim, S. G.; Asuncion, M. Z.; Roll, M.; Nemoto, T.; Ouchi, Y.; Chujo, Y.; Laine, R. A. Macromolecules 2005,38, (11),4655-4660.
    [38]Nie, W. Y.; Li, G.; Li, Y.; Xu, H. Y.Chinese Chemical Letters 2009,20, (6), 738-742.
    [39]Chen, J.-H.; Chiou, Y-D. J. Polym. Sci. Pt. B-Polym. Phys.2006,44, (15), 2122-2134.
    [40]Fina, A.; Tabuani, D.; Peijs, T.; Camino, G. Polymer 2009,50, (1),218-226.
    [41]Pakjamsai, C.; Kawakami, Y.Designed Monomers and Polymers 2005,8, (5), 423-435.
    [42]Boehning, M.; Hao, N.; Schoenhals, A. Desalination 2006,200, (1-3),142-143.
    [43]Agaskar, P. A. Inorganic Chemistry 1991,30, (13),2707-2708.
    [44]Feher, F. J.; Wyndham, K. D. Chemical Communications 1998, (3),323-324.
    [45]Feher, F. J.; Wyndham, K. D.; Soulivong, D.; Nguyen, F. J Chem Soc Dalton 1999,(9),1491-1497.
    [46]Lee, D.; Kim, Y.A.; Kim, Y. B.; Kim. J. K.; Han, Y.K. Macromol Res 2008,16, (4),353-359.
    [47]Meng, Z.; Xue, C. Y.; Zhang, Q. H.; Yu, X. H.; Xi, K.; Jia, X. D. Langmuir 2009, 25, (14),7879-7883.
    [48]Mori, H.; Sada, C.; Konno. T.:Yonetake. K. Polymer 2011,52, (24),5452-5463.
    [49]Mori, H.; Lanzendorfer, M. G.; Muller. A. H. E.; Klee, J. E. Macromolecules 2004, 37, (14),5228-5238.
    [50]Zhao, Y. Q.; Schiraldi, D. A. Polymer 2005,46, (25),11640-11647.
    [51]Ciolacu, F. C. L.; Choudhury, N. R.; Dutta, N.; Kosior, E. Macromolecules 2007, 40, (2),265-272.
    [52]Fu, B. X.; Gelfer, M. Y.; Hsiao, B. S.; Phillips, S.; Viers, B.; Bianski, R.; Ruth, P. Polymer 2003,44, (5),1499-1506.
    [53]Madbouly, S. A.; Otaigbe, J. U.; Nanda, A. K.; Wicks, D. A. Macromolecules 2007,40, (14),4982-4991.
    [54]Wu, J. A.; Ge, Q.; Mather, P. T. Macromolecules 2010,43, (18),7637-7649.
    [55]Dasgupta, B.; Sen, S. K.; Banerjee, S. Materials Science and Engineering B-Advanced Functional Solid-State Materials 2010,168, (1-3),30-35.
    [56]Hu, E. L.; Sun, Y.; Zeng, F. L.; Qu, J. M. Acta Mechanica Solida Sinica 2011,24, (4),365-372.
    [57]Dodiuk-Kenig, H.; Maoz, Y.; Lizenboim, K.; Eppelbaum, I.; Zalsman, B.; Kenig, S. Journal of Adhesion Science and Technology 2006,20, (12),1401-1412.
    [58]Kopesky, E. T.; McKinley, G. H.; Cohen, R. E. Polymer 2006,47, (1),299-309.
    [59]Ni, C. H.; Ni, G. F.; Zhang, L. P.; Mi, J. Q.; Yao, B. L.:Zhu, C. P. Journal of Colloid and Interface Science 2011,362, (1),94-99.
    [60]Matejka, L.; Strachota, A.; Plestil, J.; Whelan, P.; Steinhart, M.; Slouf, M. Macromolecules 2004,37, (25),9449-9456.
    [61]Strachota, A.; Kroutilova, I.; Kovarova, J.; Matejka, L. Macromolecules 2004,37, (25),9457-9464.
    [62]Iyer, P.; Coleman, M. R. J. Appl. Polym. Sci.2008,108, (4),2691-2699.
    [63]Liu, H.; Zheng, S. Macromolecular Rapid Communications 2005,26, (3), 196-200.
    [64]Milliman, H. W.; Ishida, H.; Schiraldi, D. A. Macromolecules 2012,45, (11), 4650-4657.
    [65]Augustine, B. H.; Hughes, W. C.; Zimmermann. K. J.; Figueiredo, A. J.; Guo, X. W.; Chusuei, C. C.; Maidment, J. S. Langmuir 2007,23, (8).4346-4350.
    [66]Iyer, S.; Abu-Ali, A.; Detwiler. A.; Schiraldi, D. A., Transparent Polymer-Polyhedral Oligomeric Silsesquioxane Composites. In Science and Technology of Silicones and Silicone-Modified Materials, Clarson, S. J.; Fitzgerald, J. J.; Owen, M. J.; Smith, S. D.; VanDyke, M. E., Eds.2007; Vol.964, pp313-325.
    [67]Nusser, K.; Schneider, G. J.; Pyckhout-Hintzen, W.; Richter, D. Macromolecules 2011,44, (19),7820-7830.
    [68]Zhou, Z. Y.; Zhang, Y.; Zhang, Y. X.; Yin, N. W. J. Polym. Sci. Pt. B-Polym. Phys. 2008,46, (5),526-533.
    [69]Markovic, E.; Matisons, J.; Hussain, M.; Simon, G. P. Macromolecules 2007,40, (13),4530-4534.
    [70]Ramirez, S. M.; Diaz, Y. J.; Campos, R.; Stone, R. L.; Haddad, T. S.; Mabry, J. M. Journal of the American Chemical Society 2011,133, (50),20084-20087.
    [71]Valentini, L.; Bon, S. B.; Cardinali, M.; Monticelli, O.; Kenny, J. M. Chemical Physics Letters 2012,537,84-87.
    [72]Vasquez, K. A.; Vincent-Johnson, A. J.; Hughes, W. C.; Augustine, B. H.; Lee, K.: Parsons, G. N.; Scarel, G. Journal of Vacuum Science & Technology A 2012,30, (1).
    [73]Chhatre, S. S.; Guardado, J. O.; Moore, B. M.; Haddad, T. S.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Acs Applied Materials & Interfaces 2010,2, (12), 3544.3554.
    [74]Meuler, A. J.; Chhatre, S. S.; Nieves, A. R.; Mabry, J. M.; Cohen, R. E.: McKinley, G. H. Soft Matter 2011,7, (21).10122-10134.
    [75]Lee, Y. J.; Huang, J. M.; Kuo, S. W.; Lu, J. S.; Chang, F. C. Polymer 2005,46, (1), 173-181.
    [76]Chen, W. Y.; Wang, Y. Z.; Kuo, S. W.; Huang, C. F.; Tung, P. H.; Chang, F. C. Polymer 2004,45, (20),6897-6908.
    [77]Tseng, M. C.; Liu, Y. L. Polymer 2010,51, (23),5567-5575.
    [78]Ceyhan. T.; Oezdag, M. A.; Salih, B.; Erbil, M. K.; Elmah. A.; Oezkaya. A. R.; Bekaroglu, O. European Journal of Inorganic Chemistry 2008, (31),4943-4950.
    [79]Ceyhan, T.; Altindal, A.; Ozkaya, A. R.; Salih, B.; Bekaroglu, O. Dalton Transactions 2009, (46),10318-10329.
    [80]Lai, Y. S.; Tsai, C. W.; Yang, H. W.:Wang, G. P.; Wu. K. H. Materials Chemistry and Physics 2009,117, (1),91-98.
    [81]Alvarado-Tenorio, B.; Romo-Uribe, A.; Mather, P. T. Macromolecules 2011,44, (14),5682-5692.
    [82]Oleksy, M.; Oliwa, R.; Zawila, B.; Budzik, G. Polimery 2012,57, (6),463-469.
    [83]Mahapatra, S. S.; Yadav, S. K.; Cho, J. W. Reactive & Functional Polymers 2012, 72, (4),227-232.
    [84]Cheng, K. M.; Tian, C. R.; Du, Y.; He, F.; Wang, J. H.; Sun, J. Polymer-Plastics Technology and Engineering 2012,51, (4),396-400.
    [85]Liu, Y.; Ni, Y.; Zheng, S. Macromolecular Chemistry and Physics 2006,207, (20), 1842-1851.
    [86]Tan, J. J.; Jia, Z. Y.; Sheng, D. K.; Wen, X.; Yang, Y.M. Polymer Engineering and Science 2011,51, (4),795-803.
    [87]Nanda, A. K.; Wicks, D. A. PMSE Preprints 2006,95,67-69.
    [88]Nanda, A. K.; Wicks, D. A.; Madbouly, S. A.; Otaigbe, J. U. Macromolecules 2006,39, (20),7037-7043.
    [89]Lach, R.; Michler, G. H.; Grellmann, W. Macromolecular Materials and Engineering 2010,295, (5),484-491.
    [90]Madbouly, S. A.; Otaigbe, J. U.; Nanda, A. K.; Wicks, D. A. Macromolecules (Washington, DC, United States) 2007,40, (14),4982-4991.
    [91]Turri, S.; Levi, M. Macromolecules 2005,38, (13),5569-5574.
    [92]Turri, S.; Levi, M. Macromolecular Rapid Communications 2005,26, (15), 1233-1236.
    [93]Fu, B. X.; Hsiao, B. S.; White, H.; Rafailovich, M.; Mather, P. T.; Jeon, H. G.; Phillips, S.; Lichtenhan, J.; Schwab, J. Polym. Int.2000,49, (5),437-440.
    [94]Knight, P. T.; Lee, K. M.; Qin, H.; Mather, P. T. Biomacromolecules 2008,9, (9), 2458-2467.
    [95]Janowski, B.; Pielichowski, K. Thermochimica Acta 2008,478, (1-2),51-53.
    [96]Neumann, D.; Fisher. M.; Tran, L.; Matisons, J. G.J. Am. Chem. Soc.2002,124, (47).13998-13999.
    [97]Bliznyuk. V. N.; Tereshchenko, T. A.; Gumenna, M. A.; Gomza, Y.P.; Shevchuk, A. V.; Klimenko, N. S.; Shevchenko, V. V. Polymer 2008,49. (9).2298-2305.
    [1]Feher, F. J.; Wyndham, K. D. Chemical Communications 1998, (3),323-324.
    [2]Gravel, M. C.; Zhang, C.; Dinderman, M.; Laine, R. M. Applied Organometallic Chemistry 1999,13, (4),329-336.
    [3]Butola, B. S.; Joshi, M.; Kumar, S. Fibers and Polymers 2010,11, (8), 1137-1145.
    [4]Sheen, Y.-C.; Lu, C.-H.; Huang, C.-F.; Kuo, S.-W.; Chang, F.-C. Polymer 2008, 49, (18),4017-4024.
    [5]Asuncion, M. Z.; Laine, R. M. Journal of the American Chemical Society 2010, 132, (11),3723-3736.
    [6]Lickiss, P. D.; Rataboul, F., Fully condensed polyhedral oligosilsesquioxanes(POSS):From synthesis to application. In Advances in Organometallic Chemistiy, Vol 57, Hill, A. F. F. M. J., Ed.2008; Vol.57, pp1-116.
    [7]Rikowski, E.; Marsmann, H. C. Polyhedron 1997,16,(19),3357-3361.
    [1]Liaw, D. J.; Huang, C. C.; Liaw, B. Y. Polymer 1998, 39, (15), 3529-3535.
    [2]Mittal, V. Polymer Nanocomposites 2009, 143-152.
    [3]Qu, M.; Deng, F.; Kalkhoran, S. M.; Gouldstone, A.; Robisson, A.; Van Vliet, K. J. Soft Matter 2011, 7, (3), 1066-1077.
    [4]Mizuno, M.; Nakamura, K.; Konishi, T.; Fukao, K. J Non-Cryst Solids 2011, 357, (2), 594-597.
    [5]Konishi, Y.; Cakmak, M. Polymer 2005, 46, (13), 4811 -4826.
    [6]Zhang, W.; Blackburn, R. S.; Dehghani-Sanij, A. Scripta Mater 2007, 57, (10), 949-952.
    [7]Jiang, L.; Zhang, J.; Wolcott, M. P. Polymer 2007, 48, (26), 7632-7644.
    [8]Kemal, I.; Whittle, A.; Burford, R.; Vodenitcharova, T.; Hoffman, M. Polymer 2009,50,(16),4066-4079.
    [9]Xie, X. L.; Liu, Q. X.; Li, R. K. Y.; Zhou, X. P.; Zhang, Q. X.; Yu, Z. Z.; Mai, Y. W. Polymer 2004, 45, (19), 6665-6673.
    [10]Zhang, Q. X.; Yu, Z. Z.; Xie, X. L.; Mai, Y W. Polymer 2004, 45,(17), 5985-5994.
    [11]Lai, Y.-S.; Tsai, C.-W.; Wu, K.-H.; Chang, T.-C.; Wang, K.-P. Huoyao Jishu 2006, 22,(2), 49-60.
    [12]Bourbigot, S.; Turf, T.; Bellayer, S.; Duquesne, S. Polymer Degradation and Stability 2009, 94, (8), 1230-1237.
    [13]Zammarano, M.; Kramer, R.; Harris, R., Jr.; Ohlemiller, T. J.; Shields, J. R.; Rahatekar, S. S.; Gilman, J. W. Proceedings of the Conference on Recent Advances in Flame Retardancy of Polymeric Materials 2007, 18,319-327.
    [14]Turri, S.; Levi, M. Macromolecules 2005, 38, (13), 5569-5574.
    [15]Turri,S.; Levi, M. Macromolecular Rapid Communications 2005, 26,(15), 1233-1236.
    [16]Nanda, A. K.; Wicks, D. A.; Madbouly, S. A.; Otaigbe. J. U. Proceedings of the International Waterborne, High-Solids, and Powder Coatings Symposium 2006, 33rd, 97-109.
    [17]Nanda, A. K.; Wicks, D. A. PMSE Preprints 2006,95,67-69.
    [18]Madbouly, S. A.; Otalgbe, J. U.; Nanda, A. K.; Wicks, D. A. PMSE Preprints 2006,95,120-122.
    [19]Madbouly, S. A.; Otaigbe, J. U.; Nanda, A. K.; Wicks, D. A. Macromolecules (Washington, DC, United States) 2007,40, (14),4982-4991.
    [20]Nanda, A. K.; Wicks, D. A.; Madbouly, S. A.; Otaigbe, J. U. Macromolecules 2006,39, (20),7037-7043.
    [21]Neumann, D.; Fisher, M.; Tran, L.; Matisons, J. G. Journal of the American Chemical Society 2002,124,(47),13998-13999.
    [22]Liu, H. Z.; Zheng, S. X. Macromolecular Rapid Communications 2005,26, (3), 196-200.
    [23]Zeng, K.; Zheng, S. X. Macromolecular Chemistry and Physics 2009,210, (9), 783-791.
    [24]Flory, P. J.; Rehner, J. Journal of Chemical Physics 1943,11, (11),521-526.
    [25]Flory, P. J.; Rehner, J. Journal of Chemical Physics 1943,11, (11),512-520.
    [26]Nandi, S.; Winter, H. H. Macromolecules 2005,38, (10),4447-4455.
    [27]芦明;黄志萍;宋永莱.固体火箭技术1994,(03),54-60.
    [28]Janowski, B.; Pielichowski,K. Thermochimica Acta 2008,478, (1-2),51-53.
    [29]Knight, P. T.; Lee, K. M.; Qin, H.; Mather, P. T. Biomacromolecules 2008,9,(9). 2458-2467.
    [1]Shibayama, M.; Tsujimoto, M.; Ikkai, F. Macromolecules 2000,33, (21), 7868-7876.
    [2]Schmidt, M.; Burchard, W. Macromolecules 1981,14, (2),370-376.
    [3]Valles, E. M.; Macosko, C. W. Macromolecules 1979,12, (4),673-679.
    [4]Barton, J. M.; Buist, G. J.; Hamerton, I.; Howlin, B. J.; Jones, J. R.; Liu, S. Y. Polymer Bulletin 1994,33, (2),215-219.
    [5]Mijovic, J.; Kim, J.; Slaby, J. Journal of Applied Polymer Science 1984,29, (4), 1449-1462.
    [6]Muzumdar, S. V.; Lee, L. J. Polymer Engineering & Science 1991,31, (23), 1647-1656.
    [7]Valles, E. M.; Macosko, C. W. Macromolecules 1979,12. (3),521-526.
    [8]Lyon, R. E.; Chike, K. E.; Angel, S. M. Journal of Applied Polymer Science 1994, 53,(13),1805-1812.
    [9]Richtering, H. W.; Gagnon, K. D.; Lenz, R. W.; Fuller, R. C.; Winter, H. H. Macromolecules 1992,25, (9),2429-2433.
    [10]Halley, P. J.; Mackay, M. E.; George, G. A. High Performance Polymers 1994,6, (4),405-14.
    II1] Hodgson, D. F.; Amis, E. J. Macromolecules 1990,23, (9),2512-2519.
    [12]Muller, R.; Gerard, E.; Dugand, P.; Rempp, P.; Gnanou, Y. Macromolecules 1991, 24,(6),1321-6.
    [13]Mortimer. S.;Ryan,A. J.; Stanford. J. L. Macromolecules 2001,34, (9), 2973-2980.
    [14]Wang, Y. X.; Lue, A.; Zhang, L. N. Polymer 2009,50, (23),5474-5481.
    [15]Chambon, F.; Petrovic, Z. S.; Macknight, W. J.; Winter, H. H. Macromolecules 1986,19, (8),2146-2149.
    [16]Liu, H.; George. G. A.; Halley. P. J. Polymer 1997,38. (12).2997-3002.
    [17]Dean. K.; Cook, W. D.:Rey, L.; Galy. J.; Sautereau, H. Macromolecules 2001,34, (19),6623-6630.
    [18]Wedler, W.; Tang, W.; Winter, H. H.; MacKnight, W. J.; Farris, R. J. Macromolecules 1995,28, (2),512-16.
    [19]Yang, Y. L.; Zhao, Y.; Cao, Y.; Wu, C. Macromolecules 2003,36, (3),855-859.
    [20]Lin, W.-C.; Fan, W.; Marcellan, A.; Hourdet, D.; Creton, C. Macromolecules (Washington, DC, United States) 2010,43, (5),2554-2563.
    [21]Das, A.; Wang, D.-Y.; Stockelhuber, K. W.; Jurk, R.; Fritzsche, J.; Klueppel, M.; Heinrich, G. Advances in Polymer Science 2011,239, (Advanced Rubber Composites), 85-166.
    [22]Andersson, O.; Tonpheng, B.; Yu, J. C.; Andersson, B. M. Macromolecules 2010, 43, (18),7680-7688.
    [23]Izuka, A.; Winter, H. H.; Hashimoto, T. Macromolecules 1997,30, (20), 6158-6165.
    [24]Han, J. L.; Yu, C. H.; Lin, Y.H.; Hsieh, K. H. Journal of Applied Polymer Science 2008,107, (6),3891-3902.
    [25]Villar, L. D.; Cicaglioni, T.; Diniz, M. F.; Takahashi, M. F. K.; Rezende, L. C. Materials Research-Ibero-American Journal of Materials 2011,14, (3),372-375.
    [26]Winter, H. H.; Mours, M., Rheology of polymers near liquid-solid transitions. In Neutron Spin Echo Spectroscopy Viscoelasticity Rheology,1997; Vol.134, pp 165-234.
    [27]Trappe, V.; Weitz, D. A. Physical Review Letters 2000,85, (2),449-452.
    [1]Alvarado-Tenorio, B.; Romo-Uribe, A.; Mather, P. T. Macromolecules 2011, 44, (14), 5682-5692.
    [2]Lee, D.; Kim, Y. A.; Kim, Y. B.; Kim, J. K.; Han, Y K. Macromol Res 2008,16, (4), 353-359.
    [3]Zhou, Z. H.; Xue, J. M.; Chan, H. S.O.; Wang, J. Mater Chem Phys 2002, 75, (1-3), 181-185.
    [4]Zhang, W.; Blackburn, R. S.; Dehghani-Sanij, A. A. Scripta Mater 2007, 56, (7), 581-584.
    [5]Perruchot, C; Chehimi, M. M.; Delamar, M.; Lascelles, S. F.; Armes, S.P.J Colloid Inter/Sci 1997, 193, (2), 190-199.
    [6]Bae, G. Y.;Jang, J.; Jeong, Y G.; Lyoo, W. S.; Min, B. G. J Colloid Interf Sci 2010, 344, (2), 584-587.
    [7]Meng, Z.; Xue, C. Y.; Zhang, Q. H.; Yu, X. H.; Xi, K.; Jia, X. D.Langmuir 2009, 25, (14), 7879-7883.
    [8]Mori, H.; Sada, C.; Konno, T.; Yonetake, K. Polymer 2011, 52, (24), 5452-5463.
    [9]Mori, H.; Lanzendorfer, M. G.; Muller, A. H. E.; Klee,J.E.Macromolecules 2004, 37, (14), 5228-5238.
    [10]Hao,N.;Boehning,M.;Schoenhals,A.Macromolecules 2007,40,(26), 9672-9679.
    [11]Hao, N.; Bohning, M.; Goering, H.; Schonhals, A. Macromolecules 2007,40,(8), 2955-2964.
    [12]Valette. L.; Hsu, C. P. Polymer 1999, 40, (8), 2059-2070.
    [13]Kopesky. E. T.; McKinley. G H.; Cohen, R. E. Polymer 2006, 47, (1), 299-309.
    [14]Bliznyuk, V. N.; Tereshchenko, T. A.; Gumenna, M. A.; Gomza, Y. P.; Shevchuk. A. V.; Klimenko, N. S.; Shevchenko, V. V. Polymer 2008, 49, (9), 2298-2305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700