用户名: 密码: 验证码:
甘蔗节间生长与相关的生理生化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用8个甘蔗(Saccharum officinarum L.)基因型作试验材料,其中包括大茎甘蔗原种拔地拉(Badila,Saccharum officinarum L.)、甘蔗细茎野生种割手密种(Saccharum spontaneum L.)、三个茎径差异明显的甘蔗栽培品种(Saccharum spp.hybrid),即粤糖86—368、新台糖16号、农林8号和从父代亲本组合为Co419×粤农73—204的F_1代中选出的种茎径差异明显的3个无性系,按茎径从小到大分别编号为无性系1号、无性系2号和无性系3号。研究共包括三个试验。试验1、试验2为主要试验,试验3为试验1的补充试验。试验1以粤糖86—368、新台糖16号、农林8号为材料。试验2以拔地拉、割手密种以及F_1代的3个无性系作材料。试验3以与试验1相同的三个甘蔗栽培品种的宿根蔗为研究材料。在甘蔗伸长期、工艺成熟期取样,测定不同节位节间及其叶片的若干生理生化性状,包括节间可溶性总糖、还原糖、可溶性蛋白质、细胞壁离子型结合蛋白质和共价型结合蛋白质、超氧阴离子自由基、叶绿素等的含量,可溶性Mg~(2+)-ATP酶、细胞壁离子型结合Mg~(2+)-ATP酶和共价型结合Mg~(2+)-ATP酶、可溶性过氧化物酶、细胞壁离子型结合过氧化物酶和共价型结合过氧化物酶、可溶性超氧物歧化酶等酶活性以及叶绿素荧参数,并测定不同节位的节间长度、节间茎径、叶长、叶宽等形态指标。结果表明:
     1.不同甘蔗基因型尽管其茎径大小有较大差异,但节间自上而下在生长过程中其生理生化性状仍表现出许多相似的变化趋势。
     在伸长初期,甘蔗茎自上而下,节间可溶性蛋白质、细胞壁离子型结合蛋白质和共价型结合蛋白质的含量,可溶性Mg~(2+)-ATP酶活性、细胞壁离子型结合Mg~(2+)-ATP酶活性和共价型结合Mg~(2+)-ATP酶活性都表现为逐渐下降。而叶片的超氧阴离子自由基含量、超氧物歧化酶活性从+2叶到+5、+8叶逐渐提高。叶绿素荧光参数Fo、Fm、从+1叶到+3、+5叶表现为逐渐下降。
     在伸长盛期和工艺成熟期,自上而下,各个生理生化性状在不同节间的变化既有很多相似之处也有不同的表现。从+3节间到+5节间,节间可溶性蛋白质、超氧阴离子自由基的含量,可溶性Mg~(2+)-ATP酶、超氧物歧化酶、可溶性过氧化物酶、细胞壁离子型结合过氧化物酶、细胞壁共价型结合过氧化物酶、多酚氧化酶等酶活性等迅速下降。而在+5节间以后,可溶性Mg~(2+)-ATP酶、可溶性过氧化物酶、细胞壁离子结合过氧化物酶、细胞壁共价型结合过氧化物酶、多酚氧化酶的活性继续下降,活性极低,甚至于检测不出。而可溶性蛋白质、超氧阴离子自由基的含量和超氧物歧化酶活性等逐渐提高。自上而下在相同节位的节间,可溶性蛋白质含量、可溶性Mg~(2+)-ATP酶活性在工艺成熟期比在伸长盛期的大。成熟节间的可溶性过氧化物酶、多酚氧化酶、超氧物歧化酶的活性在伸长盛期比在工艺成熟期大。+3节间的超氧阴离子自由基含量在
    
    工艺成熟期比在伸长盛期高。在伸长盛期的+2、+5、+8叶中,叶绿素、类胡萝卜
    素的含量均以+8叶的最高。不同基因型的叶绿素荧光参数Fo、Fm值在+5叶差异较
    明显。甘蔗从未成熟节间到成熟节间,节间可溶性总糖含量不断提高,节间含水量不
    断下降。在工艺成熟期,成熟节间的可溶性总糖含量的增加逐渐减缓,逐渐达到某一
    最大值。还原糖含量也明显下降,表现出逐渐接近于O的趋势。自上而下相同节位的
    节间含水量在工艺成熟期比在甘蔗伸长盛期低,而节间可溶性总糖含量在工艺成熟期
    比伸长盛期高。可溶性总糖的积累速度在工艺成熟期节间比在伸长盛期快。成熟节间
    的还原糖含量在工艺成熟期比在伸长盛期低,但正在伸长增粗的节间其还原糖含量在
    工艺成熟期和在伸长盛期相差不大。
     2.节间和叶片的生理生化性状的变化因基因型不同而表现差异。
     在甘蔗伸长初期,茎径较大的基因型从+3节间到+8节间,其节间可溶性蛋白
    质、细胞壁离子型结合和共价型结合蛋白含量都较高,可溶性Mg2+一ATP酶活性较低,
    可溶性总糖的积累较慢。叶片的叶绿素和类胡萝卜素含量较低。茎径较大、叶片较宽
    的基因型叶绿素荧光参数Fo、Fm的值较小.而茎径较小的甘蔗基因型的表现刚好相
    反。
     在伸长盛期和工艺成熟期,从+3节间到+16节间,茎径较大的基因型,其节间
    含水量下降较慢,可溶性总糖含量积累较慢,还原糖含量、超氧物歧化酶活性较高,
    可溶性MgZ+-- ATP酶活性、细胞壁离子型和共价型结合Mg2+一ATP酶活性较低。
     8个甘蔗基因型中,以割手密种和拔地拉的生理生化特性与其它基因型的差异尤
    为突出。在甘蔗伸长盛期所检测的生理生化性状中,割手密种的测定值几乎都位居极
    端位置,如节间含水量、可溶性总糖含量、还原糖含量最低,而叶片叶绿素、类胡萝
     卜素、节间的超氧阴离子自由基、可溶性蛋白质、细胞壁离子型结合蛋白质、细胞壁
    共价型结合蛋白质等的含量最高,节间的超氧物歧化酶、可溶性MgZ七 ATP酶、细胞壁
    离子型结合和共价型结合MgZ气ATP酶、可溶性过氧化物酶、多酚氧化酶等酶活性都是
    最高,只有细胞壁共价型结合过氧化物酶活性例外。而拔地拉的叶片叶绿素和类胡萝
     卜素含量最低,叶绿素荧光参数Fo最小。节间超氧物
Eight sugarcane (Saccharum officinarum L.) genotypes were employed in three experiments. They were Badila (Saccharum officinarum L.), Saccharum spontaneum L. , three sugarcane varieties (Saccharum spp. hybrid), i.e. middle-thin cane variety NL8, middle cane variety ROC16, middle-thick cane variety YT86-368, and three other F, clones whose parents were Co419XYN73-204 named Clone One, Clone Two and Clone Three according to their cane diameter from thin to thick. There were three experiments in our research. Experiment One and Experiment Two were main experiments. Experiment One employed NL8, ROC16 and YT86?68 as materials. Experiment Two employed Saccharum spontaneum L., Badila and three Fi clones as materials. Experimemt Three was complementary experiment which employed the ratoon plants as the plant materials whose varities were the same as those in Experiment One. Different internodes and leaves were sampled at the elongating stage and the technical maturing stage. Some physiological and biochemical chara
    cters of the different internodes or leaves were assayed. Those characters included the content of the total soluble sugar, reducing sugar, soluble protein, ionically-bound protein and covalently-bound protein in the cell wall, the superoxide anion radical, chlorophyll, carotenoid , and activities of the soluble Mg~(2+)-ATPase, ionically-bound Mg~(2+)-ATPase and covalently-bound Mg~(2+)-ATPase in the cell wall, the soluble peroxidase, the ionically-bound peroxidase and covalently-bound peroxidase in the cell wall, the soluble superoxide dismutase, soluble polyphenol oxidase and some parameters of chlorophyll fluorescence. The length of internodes and leaves, the leaf width and internode diameter were determined. The results were as follows.
    1. During the growth of the internodes down the stalk of sugarcane, changes of the physiological and biochemical characters in different internodes and leaves were similar in many aspects although the stalk diameter was quite different among the genotypes.
    At the early elongating stage, contents of the soluble protein, the ionically-bound protein and the covalently-bound protein in the cell wall, and activities of the soluble Mg~(2+)-ATPase, the ionically-bound Mg~(2+)-ATPase and the covalently-bound Mg~(2+)-ATPase in the cell wall decreased rapidly from Internode
    
    
    Three to Internode Five and then slowly from Internode Five to Internode Eight. The content of the superoxide anion radical and the activities of soluble superoxidase dismutase in leaves increased gradually from Leaf Two to Leaf Five and Eight. The parameters of chlorophyll fluorescence such as Fo, Fm decreased gradually from Leaf One to Leaf Three and Five.
    At the middle elongating stage and technical maturing stage, changes of the physiological and biochemical characters in different internodes and leaves were similar, but still there were some difference in many aspects during growth of the internodes down the stalk of sugarcane. Contents of the soluble protein, superoxide anion radical, and activities of the soluble Mg~(2+)-ATPase, peroxidase, superoxide dismutase, polyphenol oxidase, the ionically-bound peroxidase and the covalently-bound peroxidase in the cell wall decreased rapidly from Internode Three to Internode Five. Activities of the soluble Mg~(2+)-ATPase, peroxidase, polyphenol oxidase, the ionically-bound peroxidase and the covalently-bound peroxidase in the cell wall decreased gradually and they were very low even not available below Internode Five. But contents of the soluble protein, superoxide anion radical and activities of the superoxede dismutase showed a trend of increasing gradually below Internode Five. At the same internode from the top, contents of the soluble protein and activities
    2+
    of the soluble Mg~(2+)-ATPase were higher, but the activity of the superoxide dismutase was lower at the technical maturing stage than at the middle elongating stage. Activities of the soluble peroxidase, polyphenol oxidase and superoxide dismutase in maturing internodes were higher at the m
引文
1.彭绍光.甘蔗育种学.北京:农业出版社,1990.
    2.骆君骗.甘蔗学.广州:广东甘蔗协会,1984.
    3.轻工业部甘蔗糖业科学研究所,广东省农业科学院主编.中国甘蔗栽培学,北京:农业出版社.1985.
    4.李玉潜.甘蔗产量因素的关联性研究。中国农业科学,1983(5):27-32.
    5.尹章明,余松泉.甘蔗产量与农艺性状间的统计分析.甘蔗糖业—甘蔗分刊,1985(3):8-21.
    6.李杨瑞.引进甘蔗品种产量性状的遗传、相关及选择指数.福建农学院学报,1986,15(4):317—326.
    7.李杨瑞.甘蔗7个性状对产量的效应.福建农学院学报,1987,16(4):287-292.
    8. Mariotti JA. A path analysis of yield components in sugarcane. ISSCT. 1973, SBN 32:14-18.
    8.黄家雍,诸葛莹,刘海斌,等.甘蔗主要性状的遗传相关及通径分析.甘蔗,1999,6(3):6-9.
    9.江永.广西港市甘蔗生长和产量性状的研究.甘蔗糖业,2000(6):1-7.
    10.潘世明,王子琳,郭陈福,等.果蔗4个性状对蔗茎产量的效应.甘蔗,1997,4(3):13-15.
    11.何启钧,林彦铨,张加明等.甘蔗产量性状与品质性状的相关与通径分析.甘蔗,1995,2(3):6—12.
    12. Jain P, Pal R. Kadian SP, et al. Character relationship among quality and agronomical traits in sugarcane. Indian Sugar. 2002, Dec.:723-726.
    13. Hossain MA, Anshun, Yoshinaga et al. Intergation of irrigation and interplant spacing on yield and sucrose content of sugarcane. Forestry Studies in China. 1999,1(2):54-63.
    14.廖明坛,陈克文.供氮水平对甘蔗生长和产量的影响.福建农业大学学报,1995,24(2):195—200.
    15.梁计南,谭中文.甘蔗不同基因型群体叶面积与光照度和蔗茎产量的关系.中国糖料,1998(2):9-11.
    16.陈惠,林添忠.甘蔗群体生长及产量形成与气象条件的关系.甘蔗,1998,5(4):12-16.
    17.潘有强,林炎坤,李杨瑞.甘蔗分蘖期喷施乙烯利对甘蔗生长及主要农艺性状的影响.广西农业大学学报,1997,16(3):198-203.
    18.梁和,李杨瑞,满世志,等.不同浓度乙烯利处理对甘蔗经济性状的效应.广西农业大学学报,1995,14(2):101-10.
    19.张向军,李杨瑞,林炎坤.乙烯利浸种对甘蔗茎内一些生理生化特性和农艺性状的影响.甘蔗,2001,8(3):14-19.
    20.成萍,陈西凯.乙烯利对甘蔗生长发育的影响.西南农业大学学报[J],1993(6):489-491.
    21.文颖,刘世杰,吴文勇.蔗桩和叶面喷施乙烯利对甘蔗发株、生长、形态及产量改善的影响.四川甘蔗,1990(2):10-15.
    22.徐良年,邓祖湖,张华,等.甘蔗有性世代主要经济性状的配合力分析.甘蔗,2002,9(1):1-5.
    
    
    23. Singh A, Bhatnagar Pk, Khan AQ. Variability and heritability for cane yield, its components and quality characters in sugar cane (Saccharum spp complex). Indian Sugar. 2002, Jan. 717-719.
    24. Alexander AG. Sugarcane physiology. New York: Elsevier Scientific Publ. Co.,Amsterdam. 1973.
    25. Kortschak HP, Hartt CE, Burr GO. Carbon dioxide in sugarcane leaves. Plant physiol. 1965,40(2):209-213.
    26. Hatch MD, Slack CR. Photosynthesis by sugarcane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem. 1966,101:103-111.
    27. Hatch MD, Slack CR. Ptotosynthetic CO_2 fixation pathways. Ann. Rev. Plant Physiol. 1970,21:141-162.
    28. Gifford RM, Thhorne JH, Hitz WD et al. Crop productivity and photoassimilate pertitioning. Science. 1984,225:801-808.
    29. Ho LC. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1988,39:812-818.
    30. Sung S-J S, Xu,D-P, Identification of actively filling sucrose sinks. Plant Pyssiol.1989,89:1117-1121.
    31.陈伟栋,陈西凯.甘蔗叶片转化酶与甘蔗进化生长和糖分积累的关系.四川甘蔗科技,1985(3):27-36.
    32.叶振邦.甘蔗不同品种(种)间叶片中酶活性差异的研究.作物学报,1987,13(2):157-162.
    33.陈伟栋,陈西凯.甘蔗叶片转化酶的分布及叶片分类.西南农业大学报,1991,13(3):288-291.
    34.范隆葆.甘蔗的几个生理生化参数与蔗糖积累的关系,甘蔗糖业,1989(3):20-27.
    35.谭中文,赵文宜,李玉潜.甘蔗基因型蔗茎糖分及一些生理生化性状的遗传研究.华南农业大学学报,1993,14(4):1-7.
    36.罗明珠,梁计南,李玉潜,等.甘蔗产量、糖分与叶片酶和激素的关系,华南农业大学学报(自然科学版),2002,23(3):49—51.
    37. Alexander AG, Samuels G. Controlled temperature studies of growth, enzymology and sucrose prodution by two sugarcane varieties in Puerto Rico. J. Agric. Univ. P.R. 1968,52(3):204-217.
    38.李杨瑞.不同基因型甘蔗的几个生化特性与产量、品质的关系.福建农学院博士学位论文,1987.
    39.周可涌,李杨瑞.甘蔗叶片细胞器中IAA氧化酶活性与茎伸长的关系初探.作物学报,1987,13(3):203—212.
    40.李杨瑞.植物组织中过氧化物酶活性及其与生长和工艺成熟的关系初探.广西农学院学报,1990,9(1):13-18.
    41.李杨瑞.不同基因型甘蔗组织中ATP酶活性的研究.作物学报,1992,18(6):453—457.
    42.林国栋.甘蔗硝酸还原酶活性及其与产量性状的关系.福建农学院学报,1987,16(4):293-298.
    
    
    43.谭中文,梁计南,陈建平,等.甘蔗基因型苗期生理生化与糖分及产量的关系.华南农业大学学报,2002,23(1):1-4.
    44. Perumal KR. Leaf anatomical chatacters and sugar content of cane. Proceding of 54th Annual Convention of the Sugar Technologist' Association of India. Ag. 1981,73-79.
    45.周可涌,卢川北,郑雨平.甘蔗叶片几个解剖特征与含糖量的关系.福建农学院学报,1987,16(3):183-189.
    46.周可涌,卢川北.甘蔗栽培品种的更替与光合膜关系的研究Ⅰ.品种更替与叶肉细胞的关系.中国农业科学,1983(4):1—5.
    47.周可涌,卢川北.甘蔗栽培品种的更替与光合膜关系的研究Ⅱ.品种更替与叶绿体超微结构的关系.中国农业科学,1984(6):50—53.
    48.卢川北.甘蔗栽培品种的更替与光合膜关系的研究Ⅲ.品种更替与维管束鞘细胞的关系.中国农业科学,1987,20(4):77—80.
    49.谭中文,梁计南,陈建平,等。甘蔗基因型苗期叶片形态解剖性状与糖分、产量关系研究.华南农业大学学报,2001,22(1):5—8.
    50. Hatch MD, Sacher JA, Glasziou KT. Sugar accumulation cycle in sugar cane.Ⅰ. Studies on Enzymes of the cycle. Plant Physiol. 1963,38:338-343.
    51. Hatch MD, Glasziou KT. Sugar accumulation cycle in sugar cane.Ⅱ. Relationship of Invertase Activity to sugar content & Growth rate in storage tissue of plant grown in controlled environments. Plant Physiol. 1963,38:344-348.
    52. Sacher JA, Hatch MD, Glasziou KT. Sugaraccumulation cycle in sugar cane.Ⅲ. Physical & metabolic aspects of cycle in immature storage tissues. Plant Physiol.1963,38:348-354.
    53. Gayler KR, Glasziou KT. Sugar accumulation in sugarcane. Carrier-mediated active transport of glucose. Plant Physiol. 1972,49:563-568.
    54. Legendre BL. Ripening of sugarcane: Effects of sunlight, temperature, and rainfall. Crop Sci. 1975,15:349-352.
    55. Welbaum GE, Meinzer FC. Compartmentation of solutes and water in developing sugarcane stalk tissue. Plant Physiol. 1990,93:1147-1153.
    56. Lingle SE, Irvine JE. Sucrose synthase and natural ripening in sugarcane. Crop Sci. 1994,34:1279-1283.
    57. Lingle SE. Seasonal internode development and sugar metabolism in sugarcane. Crop Sci. 1997,37:1222-1227.
    58. Lingle SE. Sugar metabolism during growth and development in sugarcane internodes. Crop Sci. 1999,39:480-486.
    59. Zhu YJ, Komor E, Moore PH. Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiol. 1997,115:609-616.
    
    
    60. Whittaker A, Botha FC. Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol. 1997, 115: 1651-1659.
    61. Agarwal M,Sehtiya HL, Dendsay JPS. Starch hydrolysis activity from internodes of sugarcane. Sugar Cane. 1998(5) : 16-17.
    62. BattaSK, Kaur S, Mann APS. sucrose accumulation and muturity behaviour in sugarcane is related to invertase activities under subtropical conditions. Sugar Cane Internationl. 2002, Jan. /Feb. : 10-13.
    63. Glasziou KT. Accumulation & transformation of sugars in sugar cane stalks. Plant Physiol. 1960,35:895-901.
    64. Glasziou KT. Accumulation & transformation of sugars in sugar cane. Origin of glucose & fructose in the inner space. Plant Physiol. 1961,36:175-179.
    65. Glasziou KT. Accumulation & transformation of sugars in sugar cane stalks: Mechanism of inversion of sucrose in the inner space. Nature. 1962,193:1100
    66. Glasziou KT, Waldron JC. Regulation of acid invertase Ievels in sugarcane stalks by auxin-and metabolite-mediated control systems. Nature. 1964,203:541-542.
    67. Hatch MD. Sugar accumulation by sugarcane storage tissue. The role of sucrose phosphate. Biochem. J. 1964,93:521-526.
    68. Cosgrove DJ, Cleland RE. Solutes in the free spaces of growing stem tissues. Plant Physiol. 1983,72:326-333.
    69. Lingle SE, Smith RC. Sucrose metabolism related to growth and ripening in sugarcane internodes. Crop Sci. 1991,31:172-177.
    70. Venkataramana S, Naidu KM, Singh S. Invertases and growth factors dependent sucrose accumulation in sugarcane. Plant Sci. 1991,74:65-72.
    71. Nolte KD, Koch KE. Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol. 1993,101:899-905.
    72. Batta SK, Mahajan N, Asthir B. Characterization and inhibition of soluble neutral invertase from sugarcane juice. Indian Sugar. 1997, Mar. 965-971.
    73. Srivastava RP, Singh SP, Agarwal, et al. Sugar accumulation in early and late muturing varieties of sugarcane as influenced by different dat鐂 of planting. Indian Sugar. 1998, Sep. : 431-439.
    74. Vorster DJ, Botha FC. Sugarcane internodal invertase and tissue muturity. J. Plant Phytochem. 1999,155:470-476.
    75. Zhu YJ, Albert HH, Moore PH. Differential expression of soluble acid invertase (SAI) genes correlates to differences in sucrose accumulation in sugarcane. Aus. J. Plant Physiol.2000, 27:193-199.
    76. Kaur S, Batta SK, Sital JS, et al. Partial purification and properties of soluble invertase isoforms from sugarcane storage tissue. India Sugar. 2002, Mar. 851-857.
    
    
    77. Amodkar VT, Joshi SS. Effect of sulphur application on sucrose synthesizing enzyme activities in sugarcane. Sugar Cane International. 2002, Sep/Oct. 27-32
    78. Alexander AG, Samuels G. Controlled temperature studies of growth, enzymology and sucrose production by two sugarcane varieties in Puerto Rico. J. Agric. Univ. P.R.1968,52(3):204-217
    79. Thom M, Willenbrink J, Maretzhi A. Characteristics of ATPase from sugarcane(Saccharum sp) protoplast and vacuole membranes. Physiol. Plant 1983,58(4):497-504.
    80. Thom M, Komor E. Effect of magcesium and ATP on ATPase sugarcane (Sacchrum spp.).Planta. 1984, 161(4):361-365.
    81. Thom M, Komor E. Role of the ATPase (EC. 3.6.1.3)of sugarcane vacules in energization of the tonoplast. Eur. J. Biochem. 1984,138(1):93-100.
    82. Thom M, Komor E. Eletrogenic proton translocation by the ATPase of sugarcane. Plant Physiol. 1985,77:329-334.
    83.庄伟健,彭时尧,王景辉.甘蔗茎韧皮部ATP酶活性以及在糖分运输上的作用.福建省农科院学报,1989,4(1):64—69.
    84.庄伟健.甘蔗茎解剖生理研究Ⅲ.不同品种茎贮藏组织ATP酶活性与细胞体积和糖分的关系.福建农科院学报,1990,5(1):69-75.
    85.庄伟健,彭时尧,刘利华.甘蔗茎解剖生理研究Ⅳ.不同节间ATP酶定位活性及其与糖分运输和积累的关系.福建农学院学报,1990,19(增刊):12-18.
    86.姚瑞亮,李杨瑞,杨丽涛,等.乙烯利对甘蔗茎内IAA氧化酶活性动态变化的影响.广西农业生物科学,2000,19(1):6—9.
    87.姚瑞亮,李杨瑞,杨丽涛,等.甘蔗伸长盛期乙烯利处理对节间ATP酶和转化酶活性的影响.热带作物学报,2002,2:66—71
    88.李志刚,李杨瑞,林炎坤,等.生长前期叶面喷施乙烯利对甘蔗茎细胞几种酶活性的影响.广西植物,2002,22(2):177—180.
    89.彭绍光,叶佑民.甘蔗生长之初步研究.见:彭绍光甘蔗论文集.广西壮族自治区甘蔗研究所印制,1999:262-269.
    90.张允演.甘蔗品种叶片长相和长宽度对有效茎的影响.甘蔗糖业,1985(3):15-17.
    91.甘晓伟,苏广达.甘蔗叶片生长与蔗茎生长关系的研究.甘蔗糖业,1995(6):1-5.
    92.谢仙环,林彦铨,林谋沂,等.甘蔗栽培.北京:农业出版社.1982.
    93.莫家让,周承圣.甘蔗栽培育种的生理基础.福州:福建科学技术出版社.1984.
    94.苏广达,叶振邦,吴伯全,等.甘蔗栽培生物学.北京:轻工业出版社,1983.
    95.轻工业部甘蔗糖业科学研究所,广东省农业科学院主编.中国甘蔗栽培学.北京:农业出版社,1985.
    96.李扬汉,禾本科作物的形态与解剖.上海:上海科学技术出版社,1979.
    97.王维赞,朱秋珍,邓展云.几个引进甘蔗新品种主要性状的稳定性分析.甘蔗,2001,8(2):16-19.
    
    
    98.彭绍光.台湾省新台糖(ROC)甘蔗新品种介绍.广西农业科学,1998(5):229-233.
    99.张纯.甘蔗新品种粤糖86—368的选育与应用.甘蔗糖业,2002(3):1-5.
    100. Clements HF, Ghotb A. The numbering of leaves and internodes for sugarcane nutrition studies. Proc. Intl. Soc. Sugar Cane Technol. 1968,13:569-584.
    101. Serrano R. Structure and function of plasma membrane ATPase. Annu. Rev. Plant Mol.Biol.1989,40:61-94.
    102.李杨瑞,甘蔗叶片的细胞器的Mg++-ATP酶活性(简报),植物生理学通讯,1987(6):20-22.
    103.中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南.北京:科学出版社,1999.
    104. Hunter DA, Watson LM, McManus. Cell wall protein in white clover: Influence of plant phosphate status. Plant Physiol. Biochem. 1999, 37(1):25-32.
    105. Christensen JH, Bauw G, Welinder KG, et al. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 1998, 118:125-135.
    106.贺立红,宾金华.高等植物中的多酚氧化酶.植物生理学通讯,2001,37(4):340-345.
    107. Bowler C, Mintagu MV, Inzé D. Superoxide dismutase and stress tolerance. Annu. Rev.Plant Physiol. Plant Mol. Biol. 1992,43:83-116
    108.刘祖棋,张石诚.植物抗性生理学.北京:中国农业出版社,1994,371-372.
    109.潘有强,林炎坤,李杨瑞.甘蔗分蘖期喷施乙烯利对两个甘蔗品种的三种保护酶活性的影响.广西农业大学学报,1997,16(2);105-109.
    110.袁晓华,杨中汉.植物生理生化实验.北京:高等教育出版社,1983.
    111.荆家海,丁钟荣译(X.H.波钦若克著,1976)植物生物化学分析方法.北京:科学出版社,1981.
    112. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72:248-254.
    113.杨丽涛,李杨瑞,莫家让.硝酸镧、混合稀土对甘蔗叶片多酚氧化酶和过氧化物酶活性的影响.广西农学院学报,1990,9(3):80-84.
    114. Murphy TM, Vu H, Nguyen T. The Superoxide synthases of rose cells-comparison of Assays. Plant Physiol. 1998, 117:1301-1305
    115.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990(6):55-56
    116.林炎坤.常用的几种蒽酮比色定糖法的比较和改进.植物生理学通讯,1989,25(4):53-55
    117.华东师范大学生物系植物生理教研组.植物生理学实验指导.北京:高等教育出社.1980.
    118.华南工学院.制糖工业分析,北京:中国轻工业出版社,1981.
    119. Cock JH. Sugarcane growth and development. Sugar Cane International, 2001, Aug.:5-15
    120.张荣铣,戴新宾,许晓旺,等,叶片光合功能期与作物生产潜力.见:娄成后,王学臣.作物产量形成的生理学基础,北京:中国农业出版社.2001:52-63.
    121. Watson DJ. Comparative physiological studes on the growth of field crops. Ann.
    
    Bat.NS,1947,11:375-407.
    122.赵智中,张上隆,徐昌杰.蔗糖磷酸合成酶在高等植物蔗糖代谢中的作用.见植物分子生理学进展.杭州:浙江大学出版社,2000:67—77.
    123.吴光南,刘宝仁,张金渝.水稻叶片蛋白水解酶的某些理化特性及其与衰老的关系.江苏农业学报,1985,1(1):1—8.
    124.陆定志,潘裕才,马跃芳,等.杂交水稻抽穗结实期间叶片衰老的生理生化研究.中国农业科学,1988,21(3):21—26.
    125.宋松泉,苏卫珍,袁晓南.杂交水稻离体叶片衰老与蛋白代谢的关系.中山大学学报论丛,1995,1:20-23.
    126.江祁,谭保才,梁厚果.萌发绿豆子叶衰老期间蛋白质代谢的变化.植物生理学报,1992,18(3):273—278.
    127.梁和,李杨瑞,周生茂,等.不同浓度乙烯利处理对甘蔗若干生理生化特性的影响.广西农业大学学报,1995,14(1):1-7.
    128.潘有强,李杨瑞,林炎坤.较高浓度乙烯利对甘蔗叶片生长和若干生理生化特性的影响.中国糖料.2003(1):10—13.
    129.李美茹,刘鸿先,王以柔.植物细胞膜ATP酶及其植物低温生理过程的关系(综述).热带亚热带植物学报,1997,5(3):74-82.
    130. Serrano R. Structure and function of plasma membrane ATPase. Annu. Rev. Plant Physiol.Plant Mol. Biol. 1989,40:61-94.
    131. Palmgren MG. Plant plasma membrane H-ATPases: Powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001. 52:817-845.
    132. Askerlund P. Calmodulin-stimulated Ca~(2+)-ATPases in the vacuolar and plasma membranes in cauliflower. Plant Physiol. 1997, 114:999-1007
    133. Martinez-Cortina C, Sanz A. Effect of hormones on sucrose uptake and on ATPase Activity of Citrus sinensis L. osbeck Leaves. Ann. Bot. 1994,73: 331-335.
    134. Giaquinta RT. Phloem loading of sucrose: involvement of membrane ATPase and proton transport. Plant physiol. 1979,63:744-748.
    135. Giaquinta RT. Phloem Loading of sucrose. Ann. Rev. Plant Physiol. 1983,34:347-387.
    136. Bentwood BJ, Cronshaw T. Cytochemical localization of adenosine triphosphatase in the phloem of Pisum cell. Planta. 1978,140:111-120.
    137. Pstets-Soler A, Pardo AM, Serrano R. Immunocytolocalization of plasma membrane H+-ATPase. Plant Physiol. 1990,93:1654-1658.
    138.王爱国.植物的氧代谢.见:余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社.1998,366—389.
    139.敖良德,王明鑫,梁玉琺.苹果成熟过程中吲哚乙酸氧化酶和过氧化物酶的研究.植物学报,1983,25(5):450-454.
    140.王水平,沈曾佑,张志良,等.棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系.植物生
    
    理学报,1985,11(4):409—417.
    141. Jansen MAK, Noort RE, Tan MYA, et al. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol. 2001,126:1012-1023.
    142.姚瑞亮,李杨瑞,林炎坤.乙烯利对甘蔗节间过氧化物酶活性的影响及酶细胞化学.广西农业生物科学,1999,18(3):169-172.
    143.成萍,陈本凯.四川割手密种同工酶研究。西南农业大学学报,1990,12(1):76—80.
    144.林炎坤,蔡泽霖.甘蔗及其近缘属植物同工酶特点的比较研究.广西农学院学报,1985,2:25—30.
    145.黄卓烈,潘涛.几个甘蔗品种的过氧化物酶活性及其同工酶多样性的比较研究.华南农业大学学报,1998,19(4):72-76.
    146.杨文,何如洲,程剑平,等.甘蔗过氧化物酶同工酶分析.植物学通报,1998,15(6):65-69.
    147.洪月云,卢川北,戴艺民.应用过氧化物酶同工酶分析技术鉴定甘蔗远缘杂交后代研究初报.甘蔗,1994,1(4):12—14.
    148.王丽萍,范源洪,马丽,等.云南割手密(S.spontaneum)的过氧化物酶同工酶研究,甘蔗,1999,6(4):1—6.
    149. Mayer AM, Harel E. Polyphenol oxidases in plants. Phytochem. 1979, 18:193-215.
    150.贺立红,宾金华.高等植物中的多酚氧化酶.植物生理学通讯,2001,37(4):340-345.
    151. Kowalski SP,Eannetta NT,Hirzel AT etal. Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol.1992,100:677-684.
    152. Vaughn KC, Lax AR, Duke SO. Polyphenol oxidase:the chloroplast enzyme with no established function. Physiol. Plant. 1988,72:659-665.
    153. Trebst A, DepKa B. Polyphenol oxidase and photosynthesis research. Photosynth Res. 1995, 46:41-44.
    154. Vaughn KC, Duke SO. Tentoxin stops the processing of polyphenol oxidase into an active protein. Physiol. Plant. 1984,60:257-261.
    155.陈亚晓.植物次生代谢及调控.见:余叔文,汤章城主编.植物生理与分子生物学(第二版)。北京:科学出版社,1998,390—401.
    156. Campbell MM. Ronald R. Variation in lignin content and composition. Plant Physiol. 1996,110:3-13.
    157.席屿芳,罗自生,程度,等.竹笋采后木质化与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶的关系(简报).植物生理学报,2001,37(4):294—295.
    158. Raffert G, Flurkey WH. Carbohydrate associated with broad bean polyphenol oxidase is resistant to enzymatic chemical deglycosylation.Phytochemistry.1995,38(6):1355-1360.
    159. Thygesen PW, Dry IB, Robinson SP. Polyphenol oxidase in potato (A multigene family
    
    that exhibits differential expression patterns).Plant Physiol. 1995, 109: 525-531.
    160. Fridovich I. Superoxide radical and superoxide dismutases. Annual Rev. of Biochem. 1995, 64:97-112.
    161.马德华,庞金安,霍振荣,等.高温对黄瓜幼苗膜脂过氧化作用的影响,西北植物学报,2000,20(1):141-144.
    162.宋凤鸣,郑重,葛秀春.活性氧及膜脂过氧化在植物-病原的互作中的作用,植物生理学通讯,1996,32(5):377-385.
    163.王俊刚,张承烈.活性氧引起的DNA合成抑制与小麦的抗旱性,植物生理学,2000,20(3):376-381.
    164.李卫业,李群,郭房庆,等.辐射和活性氧对DNA的损伤以及芥子碱的保护作用,植物生理学报,1997,23(4):319-323.
    165.王长发,张嵩午.冷型小麦旗叶衰老和活性氧代谢特性研究,西北植物学报,2000,20(5):727-732.
    166.王钧.植物抗病反应的分子机理.见:余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社.1998:784-806.
    167. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol. Rev.1998, 78:547-581.
    168.王根轩,杨成德,梁厚果.蚕豆叶片发育衰老过程中超氧物歧化酶活性与丙二醛含量变化.植物生理学报,1989,15(1):13-17.
    169.夏慧莉,陈浩明,吴逸,等.羟自由基诱导烟草细胞凋亡,植物生理学报,1999,25(4):339-342.
    170.邱更妹,李杉,崔凯荣,等.植物体细胞胚发生中抗氧化系统代谢动态和程序性细胞死亡,生命科学,2000,12(5):214-216.
    171. Fath A, Paul Bethke P, Beligni V, et al. Active oxygen and cell death in cereal aleurone cell. J. Exp. Botany, 2002, 53(372): 1273-1282.
    172.邱金龙,金巧玲,王钧.活性氧与植物抗病的反应,植物生理学通讯,1998,34(1):56-63.
    173.傅爱根,罗广华,王爱国.活性氧在植物抗病反应中的作用(综述),热带亚热带植物学报,2000,8(1):63-69.
    174.柯德森,王爱国,罗广华.成熟香蕉果实活性氧与乙烯形成酶活性的关系,植物生理学报,1998,24(4):313-319.
    175.周功克,梁厚果.盐胁迫下烟草愈伤组织内源活性氧及乙烯的产生与交替途径的发生、运行的关系,实验生物学报,2000,33(4):285-292
    176. Ranata R, Stefan W, Edward AG. Free radical formation and activities of antioxidant enzymes in lupin roots expose to lead. Plant Physiol. Biochem. 1999, 37(3):187-194.
    177. Rao MY, B. A. Hale BA, Ormrod DP. Amelioration of Ozone-Induced Oxidative Damage in Wheat Plants Grown under High Carbon Dioxide (Role of Antioxidant Enzymes) Plant Physiol., 1995,109: 421-432.
    178. Asada K. The water-water cycle in chloroplasts: Scaverging of active oxygens and
    
    dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999,50:601-639.
    179. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Annals of Botany. 2003,91:179-194
    180.罗俊,林彦铨,张木清.甘蔗活性氧代谢对水分胁迫的响应.福建农业大学学报,2000,29(4):405—410.
    181. June HG, Engels FM. Alfalfa Stem Tissues: Cell Wall Deposition, Composition, and Degradability. Crop Sci. 2002, 42: 524-534.
    182.李一勤.细胞壁与植物的生长,发育和分化.见:李承森主编.植物科学进展(第二卷).北京:高等教育出版社,施普林格出版社,1999:14-22.
    183. Cassab GI and Varner JE. Cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol.Biol. 1988, 39:321-353
    184. Huffaker EC, Peterson LW. Protein turnover in plants and possible means of its regulation. Annu. Rev. Physiol. 1974,25:363
    185. Mcqueen-Mason SJ, Cosgrove DJ. Expansion mode of action on cell walls: analysis of wall hydrolysis, stress relaxation and binding. Plant Physiol. 1995,107: 87-100.
    186. Taix L. Plant cell expansion regulation of cell wall mechanical properties. Ann. Rev. Plant Physiol. 1984,35:585-657.
    187. Hayashi T. Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989,40:139-168.
    188. Lu ZJ,Neumann PM. Low cell-wall extensibility can limit maximum leaf growth rates in rice. Crop Sci. 1999,39:126-130.
    189.颜季琼,张孝琪,龙程.高等植物细胞壁的结构和功能的分子生物学基础.见:余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社.1998,93—11.
    190. Cassab GI. Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998,49:281-309.
    191.李雄彪.植物细胞壁酶的分子结构与生理功能.植物生理学通讯,1991,27(4):246-252.
    192.尹增芳,樊汝汶.植物细胞壁研究进展.植物研究,1999,19(4):407-414.
    193. Carpita NC, Defernez M, Findlay K, et al. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 2001, 127: 551-565.
    194. Nunan KJ, Sims IM, Bacic A, et al. Changes in cell wall composition during ripening of grape berries. Plant Physiol. 1998, 118: 783-792.
    195. Stolle-Smits T, Beekhuizen JG, Kok MTC, et al. Changes in cell wall polysaccharides of green bean pods during development. Plant Physiol, 1999,121:363-372.
    196. Sanchez M, Pena NJ, Revilla G. et al. Changes in dehydrodiferulic acids and peroxidase cativity against ferulic acid associated with cell walls during growth
    
    of pinus pinaster hypocotyls. Plant Physiol. 1996,111:941-946
    197. Morrison TA, Jung HG, Buxton DR, et al. Cell-wall composition of maize internodes of varying maturity. Crop Sci, 1998, 38: 455-460.
    198. Jung HG, Morrison TA, Buxton DR. Degradability of cell-wall polysaccharides in maize internodes during stalk development. Crop Sci, 1998, 38: 1047-1051.
    199. Cordoba-Pedregosa MdC, Gonzalez-Reyes JA, Canadillas MdS, et al. Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol. 1996, 112:1119-1125
    200. Christensen JH, Bauw G, Welinder KG, et al. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 1998,118:125-135.
    201.贺新强,胡玉熹,林金星.细胞壁木质化过程的细胞生物学研究进展.见:李承森主编.植物科学进展.北京:高等教育出版社,施普林格出版社,1999:23-34.
    202. Mussel G, et al. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Plata. 1997, 201:146-159.
    203.简令成,孙龙华,孙德兰.根尖分生区、伸长区和根毛区细胞内ATP酶活性的超微结构定位.植物学报,1982,24(5):408—412.
    204.李彬,邢更妹,崔凯荣,等.植物体细胞胚发生中ATP酶活性时空分布动态与内源激素的变化.植物学报,2001,18(3):308—317.
    205.王秀玲,高新起,张恒悦.西瓜胚乳吸器的发育及ATP酶的超微细胞化学定位.西北植物学报,2001,21(2):301—305.
    206. Thomas H, Stoddart JL. Leaf senescence. Ann Rev. Plant Physiol. 1980,31:83-111.
    207.徐春和,米华玲.光合作用的原初反应.见:余叔文,汤章城主编.植物生理与分子生物学(第二版)。北京:科学出版社,1998:188-197.
    208.林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(1):1-16.
    209.陈贻竹,刘鸿先,黄林可,等.不同角度水稻剑叶的叶绿素Fv/Fm测定(简报).植物生理学通讯,1991,27(2):114-116.
    210.董彩霞,田纪春,赵世杰.不同形态氮素对高蛋白小麦幼苗叶绿素荧光特性的影响.西北植物学报,2002,22(2):229-234.
    211. Huang XQ(黄雪清), Jiao DM(焦德茂), Li X(李霞). Charcteristics of chlorophyll fluorescence and membrane-lipid peroxidation of various high-yield rices under photooxidation conditions. Acta Botanica Sinica(植物学报). 2002, 44(3):279-286.
    212.张其德,卢从明.水分胁迫与光合作用.见:娄成后,王学臣.作物产量形成的生理学基础,北京:中国农业出版社.2001:39-51.
    213.高三基,罗俊,陈如凯,等.甘蔗品种抗早性光合生理指标及其综合评价.作物学报,2002,28
    
    (1) : 94-98.
    214. Zhang MQ, Chen RK. Diurnal variations of gas exchange and photochemical efficiency, and their response to light and temperature in sugarcane. Sugar Cane International. 2000, Jan. :5-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700